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What does it mean to solve a polynomial system?

The pure mathematician says:

For F ⊂ k[x1, . . . , xn] find
a primary decomposition (can be unique) of 〈F 〉 or
the unique irreducible decomposition of V (F ) (the zero set of F in
k
n
).

We don’t do this because:

for practical purposes it’s computationally infeasible and

this decomposition may not be helpful for actually constructing points
in k

n
.
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What does it mean to solve a polynomial system?

The computer algebra system constructs:

For F ⊂ k[x1, . . . , xn] with k some effective ring (i.e. Z/pZ or Q),
a lex Gröbner basis of 〈F 〉.

Elimination theory ensures that we get 〈G 〉 = 〈g1, . . . , gn〉 = 〈F 〉 such that
(crucially):

G ∩ k[xℓ+1, . . . , xn]

is a Gröbner basis of the ℓ-th elimination ideal Iℓ.

This allows for a kind of back substitution (not guaranteed to be easy).
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What does it mean to solve a polynomial system?

But most scientists and engineers need:

For F ⊂ Q[x1, . . . , xn]:
a “useful” description of the points of V (F ) whose coordinates are
real.

For F ⊂ Q[u1, . . . , ud ][x1, . . . , xn]:
the real (x1, . . . , xn)–solutions from Q(u1, . . . , ud ) (the xi ’s are
rational functions in the variables u1, . . . , ud ).
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Example of Different Techniques
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F :=
[(

x2 + y + z − 1
)

,
(

x + y2 − z − 1
)

,
(

x + y + z2
)]
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Maple 15 - Polynomial Ideals

> with(PolynomialIdeals) :
> F :=

〈(

x2 + y + z − 1
)

,
(

x + y2 − z − 1
)

,
(

x + y + z2
)〉

:
> PrimeDecomposition(F );

〈

(z − 1) ,
(

z2 + x + y − 1
)

,
(

x + y2 + z − 1
)

,
(

x2 + y + z − 1
)〉

〈(

z2 + 2z − 1
)

,
(

z2 + x + y − 1
)

,
(

x + y2 + z − 1
)

,
(

x2 + y + z − 1
)〉

〈

(y) , (z) ,
(

z2 + x + y − 1
)

,
(

x + y2 + z − 1
)

,
(

x2 + y + z − 1
)〉

〈

(z) , (y − 1) ,
(

z2 + x + y − 1
)

,
(

x + y2 + z − 1
)

,
(

x2 + y + z − 1
)〉
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Maple 15 - Gröbner Basis

> with(Groebner) :
> F :=

[(

x2 + y + z − 1
)

,
(

x + y2 − z − 1
)

,
(

x + y + z2
)]

:
> B := Basis(F , plex(x , y , z));

z6 − 4z4 + 4z3 − z2

z4 + 2yz2 − z2

y2 − z2 − y + z

z2 + x + y − 1
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Maple 15 - Regular Chains

> with(RegularChains) :
> R := PolynomialRing([x , y , z ]):
> F :=

[(

x2 + y + z − 1
)

,
(

x + y2 − z − 1
)

,
(

x + y + z2
)]

:
> dec := Triangularize(F ,R) : map(Display , dec ,R) :
















x − z = 0

y − z = 0

z2 + 2z − 1 = 0

,











x = 0

y = 0

z − 1 = 0

,











x = 0

y − 1 = 0

z = 0

,











x − 1 = 0

y = 0

z = 0







{This is a “triangular” decomposition.}
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Maple 15 - Regular Chains

> with(RegularChains) :
> R := PolynomialRing([x , y , z ]):
> F :=

[(

x2 + y + z − 1
)

,
(

x + y2 − z − 1
)

,
(

x + y + z2
)]

:
> dec := RealRootIsolate(F ,R) : map(Display , dec ,R) :

















x = [−1, 4]

y = [−1, 4]

z = [0, 3]

,











x = [−4, 1]

y = [−4, 1]

z = [−3, 0]

,











x = [0, 0]

y = [1, 1]

z = [0, 0]

,











x = [0, 0]

y = [0, 0]

z = [1, 1]

,











x = [1, 1]

y = [0, 0]

z = [0, 0]







{Observe that we don’t lose the exact solutions from the last slide.}
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0-Dimensional Case

The solutions of the last examples are what we classify 0-dimensional (i.e.
have finite many solutions).

Definition (Dimension of Triangular Component)

The number of “free variables” of the ideal (i.e. the number of
polynomials that are not “algebraic” in some polynomial equation; e.g.
x = 0 versus x 6= 0 or x > 0).

This definition is far from complete. What we really mean by “free” is
algebraic independence of S ⊂ {x1, . . . , xn}:

I ∩K[S ] = 〈0〉 .

Example (Free Variables)

For k[x , y ] and F =
〈

x2 + 2x + 1
〉

the variable y is free.

Paul Vrbik (UWO) Regular Chains: Theory and Computation February 23, 2011 10 / 35



Positive-Dimensional Case
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F :=
[(

x2 + y3 + z5
)

,
(

x4 + z2 − 1
)]
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Positive-Dimensional Case

(Like finding a zero dimensional solution where free variables are moved to
the coefficient ring.)

> with(RegularChains):
> R := PolynomialRing([x , y , z ]):
> F :=

[(

x2 + y3 + z5
)

,
(

x4 + z2 − 1
)]

:
> dec := Triangularize(F ,R) : map(Display , dec ,R) :

[{

(

−2x4 + x8 + 1
)

z + x2 + y2

10x12 − 10x8 − 5x16 + 6x4 + x20 − 1 + 2x2y2 + y4

]

Using the option output = lazard will actually give you the specialization
for −2x4 + x8 + 1 as well.
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Positive-Dimensional Case

To get better information we may restrict the solutions to the real
numbers:

> with(RegularChains) :
> R := PolynomialRing([x , y , z ]):
> F :=

[(

x2 + y3 + z5
)

,
(

x4 + z2 − 1
)]

:
> dec := RealTriangularize(F ,R) : map(Display , dec ,R) :

















z = 0

y + 1 = 0

x − 1 = 0

,











z = 0

y + 1 = 0

x + 1 = 0

,











(−2x4 + x8 + 1)z + x2 = 0

y = 0

x12 − 4x8 + 5x4 − 1 = 0

,











x − 1 = 0

y = 0

z = 0

,







(−2x4 + x8 + 1)z + y3 + x2 = 0

y6 + 2x2y3 + 10x12 − 10x8 + x20 − 5x16 + 6x16 + 6x4 − 1 = 0

x < 1

0 < x + 1

x12 − 4x8 + 5x4 − 1 6= 0






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Objectives

Many aspects of the theory regular chains were motivated by the following
questions:

1 How do we represent (encode) an irreducible component of a variety?

◮ And how do we decompose our variety into irreducible components in
the first place?

◮ Can we avoid finding irreducible components?

2 How can we make this encoding useful for computing points in the
affine space?

◮ Require that we can back substitute.

◮ Require that this back substitution is “well behaved”.
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Triangular Sets

Definition (notation)

1 Let ≻ be an ordering on the variables {x1, . . . , xn} and assume that
xn ≻ · · · ≻ x1.

2 Let T = {T1, . . . ,Tℓ} ⊂ k[x1, . . . , xn]− k.
3 For and p ∈ k[x1, . . . , xn] let mvar(p) (read “main variable”) denote

the ≻-largest xi such that deg(p, xi ) > 0.

Definition (Triangular Sets)

T is a triangular set if for all p, q ∈ T with p 6= q we have
mvar(p) 6= mvar(q).

Or in other words: T is a triangular set if it’s Ti ’s have mutually different
≻-largest variable.
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Example

T =
{

x1 − x − 12, x22 − x1, x1x
2
3 − 2x2x3 + 1, (x2x3 − 1)x4 + x22

}

⊂ P4 is
a triangular set because

(x2x3 − 1)x4 + x22 ∈ k[x1, x2, x3, x4]

x1x
2
3 − 2x2x3 + 1 ∈ k[x1, x2, x3]

(x1 − 1)x22 − x1 ∈ k[x1, x2]

(x1 − 1)(x1 + 1) ∈ k[x1]

(the triangular shape of the polynomial rings as they are written above was
the inspiration for the name “triangular” set).

Triangular sets allow us to back substitute. (Two steps forwards).

Back substitution isn’t guaranteed to be well behaved—consider
(x1 − 1) = 0. (One step back).

It’s clear that we’ll need more restrictions.
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Properties of Triangular Sets

Theorem (J.F. Ritt, 1932)

Let V ⊂ kn be an irreducible variety and F ⊂ k[x1, . . . , xn] s.t. V = V (F ).
Then one can compute a (reduced) triangular set T = 〈T1, . . . ,Tℓ〉 ⊂ 〈F 〉
such that

(∀g ∈ 〈F 〉) prem(g ,T ) = 0.

Where

prem(g ,T ) = prem(· · · prem(prem(g ,Tℓ),Tℓ−1) · · · ,T1)

(assuming mvar(Tℓ) ≻ · · · ≻ mvar(T1)).

We get: an ideal membership test for 〈F 〉.
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Properties of Triangular Sets

What if we can’t get the irreducible components? (Which is typically true
because multivariate factorization is expensive in practice).

Theorem (W.T. Wu, 1987)

Let V ⊂ kn be a variety and F ⊂ k[x1, . . . , xn] s.t. V = V (F ). Then one
can compute a (reduced) triangular set T ⊂ 〈F 〉 such that

(∀g ∈ F ) prem(g ,T ) = 0.

We loose: test for V = ∅.

The stronger restrictions we impose on triangular sets to avoid this will
make them regular chains (later).
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Addressing the back substitution problem

Vanishing leading terms usually result in bad back substitution.

Definition (Initial)

For p ∈ k[x1, . . . , xn] \ k let init(p) be the leading coefficient (in the usual
sense) of p when considered univariate in mvar(p).

Example

Let p = (x1 + x2)x
2
3 − 2x2x3 + 1.

mvar(p) = x3

init(p) = (x1 + x2)
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Where do the initials vanish?

For a triangular set T let hT :=
∏

t∈T

init(T ).

The initials will vanish on V (hT ). So, let’s get rid of them!

Definition (Geometrically shedding bad initials)

Let
W (T ) := V (T ) \ V (hT ).

which we call T ’s quasi-component.

Definition (Algebraically shedding bad initials)

Let

sat(T ) := 〈T 〉 : h∞T =
{

p ∈ k[x1, . . . , xn]
∣

∣ ∃n ∈ N, hnp ∈ 〈T 〉
}

which we call the saturation ideal of T .
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Saturation Ideals Example 1
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sat(T ) = 〈y , z〉

Paul Vrbik (UWO) Regular Chains: Theory and Computation February 23, 2011 21 / 35



Saturation Ideals Example 2
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sat(T ) = 〈y + u,−x + 1〉
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Saturation Ideals Example 3

Example

sat(T ) can be lager than 〈T 〉. For v ≻ u ≻ y ≻ x :

T =

{

ux + v

vy + u

〈T 〉 = 〈u, v〉 ∩ 〈−xy + 1, vy + u〉

sat(T ) = 〈1− xy , vy + u〉 .
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Relating sat(T ) and W (T )

Theorem (F. Bouleer, F. Lemaire, MMMM 2006)

We have:
W (T ) = V (sat(T ))

and, moreover, if sat(T ) 6= 〈1〉 then sat(T ) is strongly equidimensional.

Equidimensional: the components of prime decomposition that
correspond to sat(T ) are of the same dimension

Strongly Equidimensional: the prime components of sat(T ) have the
same set of parameters.

Or, more precisely: If dim(sat(T )) = d then ∃S ⊂ {x1, . . . , xn} such that
#S = d and

∀P ∈ Ass (sat(T )) P ∩ k[S ] = 〈0〉 .
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Regular Chains

Simultaneously discovered by M. Kalkbrener and L. Yan/J. Zhang in 1991.

Definition (Regular Chain)

T is a regular chain if
1. T = ∅, or
2. T = T ′ ∪ {t} with mvar(t) ≻ mvar(t ′) for all t ′ ∈ T ′ and

i. T ′ is a regular chain, and
ii. init(t) is regular (not a zero divisor) modulo sat(T ′).

2-ii means that (in the zero dimensionally case) t can be made monic
modulo T ′, fixing the bad back substitution problem.

In higher dimensions we make t monic over some special field of fractions
(e.g. k(S)[y ] where y =

{

mvar(t)
∣

∣ t ∈ T
}

and S = x \ y .)
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Properties of Regular Chains

Theorem (Wang 2000, MMM 2000)

For any F ⊆ k[x1, . . . , xn] one can compute regular chains T1, . . . ,Tℓ such
that

z ∈ V (F ) ⇐⇒ ∃i st z ∈ W (Ti).
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Algorithmic Properties of Regular Chains

Definition (Iterated Resultant)

Let T = T ′ ∪ {t} be a regular chain with t having largest main variable.
For p ∈ k[x1, . . . , xn] the iterated resultant is given by

res(∅, p) = p

res(T , p) =

{

p if deg(p,mvar(t)) = 0

res (T ′, res (t, p,mvar(t))) otherwise

Definition (Iterate Pseudo Remainder (revisited))

· · · the iterated pseudo remainder is given by

prem(p, ∅) = p

prem(p,T ) = prem(prem(p, t,mvar(t)),T ′)
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Algorithmic Properties of Regular Chains

Theorem (L. Yang, J. Zhang 1991)

T is a regular chain if and only if

res(T , hT ) 6= 0.

(also p is regular modulo sat(T ) if and only if res(T , p) 6= 0.)

Theorem (Aubry, Lazard, MMM)

T is a regular chain if and only if

{

p
∣

∣prem(p,T ) = 0
}

= sat(T ).

In a way, these combine to give the technical realization of our “nice back
substitution” requirement.
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Regular GCD

Definition (Regular GCD)

Let P ,Q ∈ A[y ] be non-constant polynomials with regular leading
coefficient.
G is a regular GCD of P , Q if we have:
1. lc(G , y) is regular in A,
2. G ∈ 〈P ,Q〉 ⊂ A[y ],
3. deg(G , y) > 0 ⇒ prem(P ,G , y) = prem(Q,G , y) = 0

(In practice y = xn and A = k[x1, . . . , xn−1] \ sat(T ) for a regular chain
T .)

Also, the existence of this GCD isn’t guaranteed. However, we are
guaranteed when the regular chain T = 〈T1, . . . ,Tℓ〉 the existence of

Gi the regular GCD of P ,Q mod sat(Ti ).
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First Steps Towards Algorithms

Input: p ∈ k [x1, . . . , xn] \ k and T ⊆ k [x1, . . . , xn] a regular chain.

Output: Regular chains T1, . . . ,Td such that

W (T ) ∩ V (p) = W (T1) ∪ · · · ∪W (Td )

and W (T ) ∩ V (p) ⊆ W (T1) ∪ · · · ∪W (Td ).

INTERSECT := proc(F)
...

end proc
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First Steps Towards Algorithms

Input: F a finite set of polynomial of k[x1, . . . , xn].

Output: Regular Chains T1, . . . ,Td such that when
W = W (T1) ∪ · · · ∪W (Td ) then V (F ) = W and V (F ) ⊆ W .

SOLVE := proc(F)
C := [∅]; (a list or regular chains)
while F 6= ∅ repeat

choose and remove a polynomial p from F
C ′:=[]
for T ∈ C repeat

C ′:=concat(intersect(p,T ), C ′)
C :=C ′

return C
end proc
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The Regular Chains Package

1 SemiAlgebraicSetTools and RealTriangularize (real solving)

2 ParametricSystemTools (solving higher dimensional problems as seen
as zero dimensional in their parameters)

3 ConstuctibleSetTools (for algebraic geometers)

4 MatrixTools (Paul)

5 FastArithemeticTools (FFT stuff)

6 ChainTools (tool kit)

7 Triangularize (get a triangular decomposition)

8 SamplePoints (retrieve points from the affine space).
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Timings

Sys GL GS TL TK

4corps-1parameter-homog - - - 36.934

8-3-config-Li 108.738 - 25.853 5.968

Alonso-Li 3.476 - 2.192 0.432

Bezier - - - 88.217

Bjork60 62.627 - - -

Cheaters-homotopy-easy 2609.543 - - 0.744

Cheaters-homotopy-hard 3412.281 - - 0.352

childDraw-1 18.569 - - -

childDraw-2 19.301 - - -

Cinquin-Demongeot-3-3 63.643 - 7.144 0.640

Cinquin-Demongeot-3-4 - - - 3.108

collins-jsc02 - - 1.556 0.468
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Contributions

131 exported functions,

more than 300 internal functions,

67,000 lines of Maple source code,

10,000 lines of test programs,

3,000 lines of software development source code (C, LEX, scripts),

12,000 lines of documentation,
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