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Verifying Baklava

Abstract
This report discusses a method of pseudo-formal verification of concurrency models gener-

ated by the Coconut[Ana05] compiler. These concurrency models, specified by a language

called Baklava1 as described in [ACHZ05], are translated to terms of the π-calculus. Cor-

rectness theorems are formed and proven using logical inference in an automated proving

environment built on an implementation of Rewriting Logic called Maude.

While the method can only verify finite Baklava code-sets, it lays the ground work for

verification of infinitely long code-sets by creating theorems and proving methods that

can be used on both finite and infinite Baklava code-sets. Verification of infinitely long

Baklava code-sets is equivalent to formal verification of the Geometer (the component of

the Coconut compiler which generates Baklava code-sets.)

1Previously known as Onion.
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1 Introduction

Formal verification has become an important step in software development and has grabbed

the much needed attention from the developer community as they can detect errors early

in the development process and thereby reduce the chances of or even avoid the release of

faulty software. It also provides assurance of correctness to the end-user.

Mathematics forms the basis of formal verification [Pan04]. It yields methods to model,

in a precise and non-ambiguous way, specification of systems. Furthermore, it provides

methods for analyzing such systems and thereby observing properties. Formal verification

is the process of observing desired properties.

There are two main methods for formal verification [Wik06]. Model checking is the method

where the system is modelled using a finite state machine and all the different states of

the system are explored. Model checking on its own can’t be generalized to work with

systems that work with infinite states. An alternative method is logical inference. This is

when the system is described on some abstract algebra and then reduced to a property

using equations and reduction rules. Such properties are theorems that can be proven using

automated proving systems.

There are many tools and software packages available to aid this formal verification pro-

cess. Spin is a popular open-source model checker developed at Bell Laboratories. It comes

with a specification language called PROMELA and supports the use of linear temporal

logic which is used to reason and describe time-based properties for specification of correct-

ness properties. While PROMELA is the only language supported by Spin, it is definitely

not the only process calculus available to us. ACP (Algebra of Communicating Processes),

CCS (Calculus of Communicating Systems), and the π-calculus are some alternative pro-

cess calculi that can be used to formally describe a concurrent system.

These languages can also be used to form correctness properties about such systems. Each

specification calculus comes with its own set of axioms and inference rules. The axioms
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are used as the basis for constructing terms in that calculus. The inference rules along

with equivalence relationships can be used to identify equivalent systems. Detecting the

existence (or the absence of) equivalence between two concurrent systems is at the heart

of verification by logical inference. When two systems are equivalent (or when one sys-

tem can be reduced to the other) then it means that one system, through computational

steps, can become the other system. Such equivalence statements are conjectures that can

be proven using automated theorem proving systems or alternatively even manually by

hand. HOL (stands for Higher Order Logic), Isabelle, and PVS (Prototype Verification Sys-

tem) are among the most popular automated proving systems.
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1.1 Baklava

The Geometer is the component of the Coconut compiler that generates Baklava code-sets

to handle the runtime concurrency of the compiled Coconut program [ACHZ05].

Informally, verification of Baklava is the process of verifying that Baklava code-sets are

parallelized correctly by the Coconut Geometer. That is, when executed on a computer

cluster they return the same results, independent of timing issues.

There are two approaches to such verification. The first approach is to verify each generated

Baklava code-set as a concurrent system on its own. This approach is independent of the

Geometer. That is, there is no need to know how the Geometer works. The second is to

verify that the current Geometer always generates correct Baklava code-sets which requires

a formal specification for the Geometer.

In this project the first approach was used. However heavy consideration for the second

motivated the implementation of easily generalized methods.

page 6



Verifying Baklava 2 Objectives and requirements

2 Objectives and requirements
The objective of this project was to build a system to serve in the formal verification of

Baklava code-sets. This was both to aid detect errors in the development of the Coconut

Geometer and also provide the Coconut end-user with assurance of correctness.

In an overview, this is to build a fast (section 2.2) and reliable tool to formally verify the

correct parallelization of Baklava code-sets (section 2.1) which can easily adapt to newly

added or modified components of the Geometer (section 2.3) and whose modules can be

reused for formal verification of other critical Coconut components.
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2.1 Verified Baklava

A “correct” Baklava code-set is one that returns the same results independent of timing

issues and without running into a deadlock.

Deadlock A system is in a state of deadlock if one or more of its processes are waiting on

something that will not come in a finite period of time.

Result variations A system has result variations if it can compute two or more different

results depending on the timing of its concurrent processes.

Note that these properties on a system will need to be precisely defined.

Formal definition requirement We will formally and precisely define the meaning of dead-

lock and result variations on a system. From that we will formally define what is considered

a “correct” Baklava parallelization.
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2.2 Performance

Coconut programs usually run long periods of time over large sets of data. This results

in large sets of Baklava code that will need to be verified. Slow and resource consuming

algorithms for verification of these Baklava code-sets can cause a bottle neck, especially if

the Baklava code-sets are to be verified on-the-fly as they are being sent to the cluster.

Performance requirement. The Baklava verifier needs to verify Baklava code-sets faster

than they can be executed on a potential computer cluster.

Of course this heavily depends on the size of the cluster and the platform the verifier is ran

on. Although we could not meet such a requirement, the formal verification of infinitely

long Baklava code-sets (for which we laid the groundwork) would satisfy such a require-

ment.
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2.3 Modular and Reusable

The Coconut project is in a development stage where new components are added often and

old components are replaced, rewritten, and modified frequently. We need to take this into

account if we expect our project to be of any use to Coconut in the near future.

Modularity requirement. Both the tools and the methods we develop should be con-

structed modularly so that changes made to the Geometer and the definition of Baklava

can only effect a small component of our tools and methods, rather than effecting the entire

project.

Reusability requirement. Both the tools and the methods we develop should be con-

structed in a manner to allow portions of our project to be reused in formal verification of

other (even non-concurrent) components of the coconut.
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2.4 Two end-users

This project was aimed to serve two distinct end-user groups.

Geometer developer: First, it was designed to aid in the development process of the Co-

conut Geometer. The Geometer is still under development and it needs to be tested as new

components are developed for it. The Geometer can also generate run-time code for differ-

ent types of computer clusters. As an example, it currently generates code for a cluster of

Apple Macintosh computers with dual G5 processors. In the near future, it will be gener-

ating code for the IBM Cell processor as well. Newer components can always be added to

the Geometer and they also need to be tested and formally verified.

Coconut Compiler user: Second, Coconut being a tool used for performance-requiring

scientific applications, it will be tackling problems that will most likely have heavy resource

requirements (time, computation, etc.) If a compiled Coconut program returns no results

or incorrect results due to bad parallelization it would be a waste of resources. A Coconut

end-user will need to be assured of the correct parallelization of their compiled program.

Developer documentation requirement. As mentioned in the section Modular and Reusable

(2.3) portions of our methods and implementations will need to be modified as the Geome-

ter is modified. So we shall document our tools and methods so that they can be easily

modified by the Coconut developers.

Coconut developer interface requirement. We shall provide the Coconut developer

with an interface to the Baklava verifier, which with only a minimum understanding of

the verification process provides the developer with logical reasoning as to why a given

Baklava code-set is parallelized correctly or incorrectly. “Logical reasoning” here means a

human-readable set of sentences that try to justify our results (as opposed to the formal

logical reasoning expressed mathematically.)
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Coconut user interface requirement. We shall provide the Coconut end-user with an

interface to the Baklava verifier, which without requiring an understanding of the verifica-

tion process provides the end-user with the certification of correct or incorrect paralleliza-

tion of Baklava.
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3 Design
The goal of this project is to formally verify certain properties of a given Baklava code-

set. It is very easy to write programs that can informally check for deadlocks and result

variations. It is immensely more difficult to form methods of formally verifying a system

against its properties. More difficult yet is to develop such formal methods that verify an

entire class of such systems (i.e. those Baklava code-sets generated by the Geometer).

To start we needed to be able to formally and thereby precisely express properties as given

in the Verified Baklava subsection of the Requirements section. From here on we will use

the axioms and the common notations of the Zermelo-Fraenkel set theory for our mathe-

matical formalizations.

What is a property? Let x ∈ Baklava∗ represent a Baklava code-set, where Baklava∗

is the set of all Baklava code-sets. Let P (x) be a predicate (as in the first-order predicate

calculus or as a function relationship P ⊆ Baklava∗×{true, false}) so that it is either true

or false. P is a property on Baklava.

Before we can form properties on the set of all Baklava code-sets, Baklava∗, we need to be

able to form the members of such a set. That is, we need a language to express a Baklava

code-set. Considering how Baklava was intended to express concurrent systems, we turned

to process calculi (also referred to as process algebra). Process calculi are languages for mod-

eling concurrent systems.

Using a mathetical notation of the Baklava language itself to describe Baklava code-sets

was also an option, but this makes it more difficult to express properties about Baklava

without somehow formally specifying the semantics of Baklava. Using a process calculus

also has given us the advantage of being able to formally specify the semantics of Baklava

via a translation scheme between Baklava and that process calculus.

We looked at two process calculi, CCS (Calculus of Communicating Systems) and the π-
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calculus, both developed by Robbin Milner, and formally defined in [Mil82] and [Mil99]

respectively. It was decided that the π-calculus would be used since the π-calculus was

development as an improvement over the CCS and that the improvements did not seem to

convolute the intended meaning. One important notation in the π-calculus for us was the

notion of mobility; that is, the ability of the π-calculus to communicate names via channels

(which are names themselves,) and to evolve only through such communications. This fit

the model of a eynchronized computer cluster well for our purposes; we can not only use

it to describe the concurrency semantics of the model, but also, the concurrency semantics

of each machine on the cluster, and each action on each machine (such as reading from

memory, changing status, etc.).

Our time-frame did not allow for us to identify whether the improvements of the π-calculus

over CCS (such as mobility) could have been unneeded. Ideally we would have also liked

the chance to consider more calculi, although we did briefly look at PROMELA [Hol91] of

the Spin verification tool.

We turned to [Mil93] to gain a basic understanding of the π-calculus.
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3.1 Introduction The π-calculus

The π-calculus is a convenient method for describing concurrent systems like parallel pro-

cesses. As in any parallel process the most fundamental aspect of the system is the ability

to transmit information between nodes. Representation of this in the π-calculus is achieved

by using what we call a name. Names typically denoted by lower case letters x, y, . . . ∈ X ,

play dual roles as communication channels and variable names. More specifically we have

the atomic actions

Transmit — x(y) means input some variable along the channel x and call it y.

Receive — x̄y means output the variable y along the channel x.

A process, which we denote by upper case letters P,Q, . . . ∈ P , is the only other entity we

have in the π-calculus. A process is built by combining processes and atomic actions by the

following syntax

P ::=
∑

i∈I

πi.Pi

∣∣P |Q
∣∣!P

∣∣(vx)P

where I is a finite indexing set (in the case I = ∅ we write the sum as 0).

Here π.P means do an atomic action π and then do P in sequence, where P + Q means

do either P or Q (but not both) and
∑

i∈I πi.Pi represents selecting one out of many pro-

cesses. P |Q, pronounced “P bar Q” denotes two processes being run concurrently and !P ,

pronounced “bang P” is short hand for P |P |P.... Finally, (vx)P , read ”new x in P” restricts

the usage of x to the process P . If we limit
∑

πi.Pi to only type of communication we have

what we call a normal process denoted by capital letters M,N, . . . ∈ N and given by

N := π.P |0|M + N
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3.1.1 Structural Congruence

Now that we have a defined processes it is natural ask when two processes are equivalent.

This is what we call structural congruence and it is given by first defining free names fn(P )

and bound names bn(P ) of a process P in the usual way. For example

bn(x(y)) = {y} , fn(x(y)) = {x}

bn(x̄y) = ∅ , fn(x̄y) = {x, y}

We define the structural congruence to be the ⊆-least congruence relation over P such that

1. Processes are congruent if they only differ by a change of bound names

2. The semi-group (N ,≡,+, 0) is a commutative monoid.

3. The semi-group (P,≡, |, 0) is a commutative monoid.

4. !P ≡ P |!P

5. (vx)0 ≡ 0, (vx)(vy)P ≡ (vy)(vx)P

6. If x &∈ fn(P ) then (vx)(P |Q) ≡ P |(vx)Q

Consequence (vx)P ≡ P when x &∈ fn(P )

(vx)P ≡ (vx)P |0 (by 3)

≡ p|(vx)0 (by 6)

≡ p|0 (by 5)

≡ p (by 3)

page 16



Verifying Baklava 3 Design

3.1.2 Reduction rules

We now finally discuss the most important part of π-calculus; simplifying a process by re-

ducing it. The reduction relation→ over processes; P → P ′ means that P can be transfomed

into P ′ by a single computational step. The main reduction rule which captures the ability

of processes to communicate through channels is the following:

COMM : (. . . + x(y).P )
∣∣(. . . + x̄z.Q) → P (z/y)

∣∣Q

COMM is the only axiom for →; otherwise we only have the inference rules:

• If P ≡ P ′ then also P
∣∣Q ≡ P ′

∣∣Q. Which means that parallel composition does not

inhibit computation. It is formally given as

PAR :
P → P ′

P
∣∣Q → P ′

∣∣Q

• If P ≡ P ′, then also (vx)P ≡ (vx)P ′ which ensures that computation can proceed

underneath a restriction. It is formally given as

RES :
P → P ′

(vx)P → (vx)P ′

• If Q ≡ P and P → P ′ and P ′ ≡ Q′, then also Q → Q′. In this rule, called the structural

rule,≡ denotes the structural congruence, which says that concurrency is commutative

and associative. It is the leas congruence such that:

– Q
∣∣Q′ ≡ Q′

∣∣Q, Q
∣∣ (

Q′
∣∣R

)
≡

(
Q

∣∣Q′)∣∣R and Q
∣∣0 ≡ Q

– (vx)(vy)Q = (vy)(vx)Q

– (vx)
(
Q

∣∣Q′) ≡ (vx)
(
Q

∣∣Q′), provided x is not a free name in Q′
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Which is formally given as

STRUCT :
Q ≡ P P → P ′ P ′ ≡ Q′

Q → Q′

3.1.3 Examples

Example 1 By the monoid property 0
∣∣P ≡ P

∣∣0 ≡ p we have trivially that

0
∣∣0 ≡ 0

Example 2 Using COMM we demonstrate a simple input and output channel in a concur-

rent system.

c̄.P
∣∣c.Q → P

∣∣Q

Example 3 An example of sending names through a channel.

c̄(x).P
∣∣c(y).ȳ.Q

∣∣x.R → P
∣∣x̄.Q

∣∣x.R

→ P
∣∣Q

∣∣R

Example 4 Using the ! (bang) operation we demonstrate how a system may reduce in

multiple ways.

1.

x̄.P
∣∣(!x + z).Q

∣∣z̄.R → P
∣∣Q

∣∣!(x + z).Q
∣∣z̄.R

→ P
∣∣Q

∣∣Q
∣∣!(x + z).Q

∣∣R
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2.

x̄.P
∣∣(!x + z).Q

∣∣z̄.R → x̄.P
∣∣Q

∣∣!(x + z).Q
∣∣

→ P
∣∣Q

∣∣Q
∣∣!(x + z).Q

∣∣R

Example 5 An example of a non-reducible (deadlocked) system

x.ȳ
∣∣y.x̄
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3.2 Correctness properties

Now that we can model concurrent systems using the π-calculus, we can define correctness

properties on such systems.

In the Requirements section of this report, we have already described what deadlocks and

result variations are. We now formally state the property of being deadlock-free and the

property of being result variation-free.

Before we can define a deadlock-free system, let us define what a deadlocked process is.

Finite process definition A process P is said to be finite if it is not defined recursively

and does not use the replication operator (“!”). P is not recursively defined if it can be

driven from the π-calculus grammar in a finite number of steps.

Let Π(N ) be the set of all terms of the π-calculus with names from N .

Nonreducible definition A process P ∈ Π(N ) is nonreducible if

∀X ∈ Π(N ), P &−→ X.

Note that P &−→ X is short for ¬(P −→ X).

Deadlock definition A finite process P is in a deadlocked state if P is nonreducible.

By the above definition 0 and all processes congruent to it are clearly in a deadlocked state.

For our purposes, 0 represents “completion” of a task; so, 0 represents an acceptable dead-

lock.

Eventual reduction (−→∗) definition Let −→∗⊆ Π(N ) × Π(N ) such that P −→∗ R if

process P eventually reduces to R via a finite number of reductions; that is, for some n ∈ N,
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P −→ P1 −→ · · · −→ Pn and Pn ≡ R.

Deadlocked result set The deadlocked result set of a process P written as ∆(P ), is the set

of all nonreducible processes that P will eventually reduces to. More formally,

∆(P ) = {X|P −→∗ X and X is nonreducible}

For our purposes, a system defined using a process P is result variation and deadlock-free

if

A ∈ ∆(P ) and B ∈ ∆(P ) =⇒ A ≡ B, and R ∈ ∆(P ),

where R is a predefined expected resulting system. We talk more about such resulting sys-

tems in our implementation section.

We say, a system is correctly parallelized if it is free of result variations and deadlocks.

We can now theoretically detect correct or incorrect parallelization in a concurrent system

modelled by the π-calculus. The next step is to translate the Baklava code-sets to π-calculus

processes.
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3.3 Specification of semantics of Baklava

The translation scheme of Baklava to π-calculus processes is a formal specification of the

semantics of Baklava. This formal specification is our assumption of how Baklava is going

to be implemented on a cluster.

For the sake of modularity, we’ve divided this translation scheme into two separate schemes.

First, we translate a given Baklava code-set to an abstract Baklava code-set. The abstract

Baklava, is a simplified version of the Baklava language designed to be somewhat more in-

dependent of the type of the cluster Baklava is going to be ran on. Second, we represent the

generated abstract Baklava code-set as a π-calculus process. See that the second translation

is independent of the type of Baklava (or the type of the cluster Baklava is going to be ran

on.)

We define abstract Baklava as a data structure in a module of its own, along with a defini-

tion for a class of all abstractable Baklava types (and clusters.)

In separate modules that will be importing the above module, we define an instance of

abstractable Baklava for each type of Baklava. This would mean that we’d come up with a

translation scheme from that type of Baklava to abstract Baklava.
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3.4 Rewriting Logic

Now that we have established correctness properties, we need a logical framework to rea-

son such correctness properties on. Rewriting logic is a natural choice for such a framework.

Rewriting Logic is a reflective logical and semantic framework [MOM93].

A rewrite theory is a tuple R = (Σ, E, LR, R) where the pair (Σ, E) is an Σ-theory (i.e. Σ is

an equational signature and E is a set of Σ-equations,) LR is a set of labels for such rewrite

rules, and R is a set of rewrite rules (axioms) of the form l : t −→ t′ where l ∈ LR and

t, t′ ∈ TΣ,E(X).

TΣ,E(X) is the set of all E-equivalence classes of terms on the set of variables X .

Provable sentence in such a rewrite theory R, written R + [t]E −→ [t′]E , where t and t′ are

Σ-terms, and can only be obtained using the following inference rules [MJeM01]:

Reflexivity For each [t] ∈ TΣ,E(X) we have
[t] −→ [t]

.

Congruence For each f ∈ Σn where n ∈ N, we have

[t1] −→ [t′1] · · · [tn] −→ [t′n]
[f(t1, · · · , tn)] −→ [f(t′1, · · · , t′n)]

.

Replacement For each rule l : [t(x1, · · · , xn)] −→ [t′(x1, · · · , xn)] in R, we have

[w1] −→ [w′
1] · · · [wn] −→ [w′

n]
[t(w̄/x̄)] −→ [t′(w̄′/x̄)]

.

Transitivity
[t1] −→ [t2] [t2] −→ [t3]

[t1] −→ [t3]
.

In Rewriting Logic, a rewrite rule t −→ t′ has a computational as well as logical meaning.
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Logically, it is an inference rule
t

t′
;

that is, if we have the premise t, we can draw the conclusion t′. Computationally, it roughly

means that in a concurrent system can go from a state t to the state t′.

Concurrent languages (among many other types of languages) can be naturually expressed

as a rewrite theory in the semantical framework of rewriting logic.

Using the π-calculus “COMM” axiom as a rewrite rule, we developed a model for the π-

calculus in rewriting logic. We eventually found a better model [TSMO02] for the π-calculus

in rewriting logic as well as the implementation of the model in Maude (a language based

on rewriting logic.) There are also other model checkers available for the π-calculus, such

as MMC [YRS04], most of which can probably be easily made to work with our π-calculus

output.
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4 Implementation
There are two main components to our implementation. The first component is the transla-

tion scheme from Baklava code-sets to the π-calculus and it consists of a module AbstractBaklava

that defines the structure of abstract Baklava, as well as classes that that define what ab-

stractability means. This module is imported by each abstraction implementation for a type

of Baklava. For example, we defined the abstraction for G5 Baklavas in the Abstractab-

leG5Baklava module. These were implemented using Haskell.

The second component of our implementation are the reduction algorithms. While the

reduction axiom of the π-calculus was easy to implement in Haskell, the inference rules

where more difficult to deal with than expected. As a result, we eventually decided to try

implementing the inference rules as a rewrite theory in Maude.

Due to a design error, our reduction system in Maude was insufficient. That is, our reduc-

tion rules implementation did not guarantee to capture every possible reduction. Fortu-

natly, there was a much better model and thereby a much better implementation of the

π-calculus semantics in Maude. We eventually found more tools for verification of systems

modelled in the π-calculus;
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4.1 Abstraction

We implement two modules to define the more abstract data structures, and the functions

to work with such data structures.

4.1.1 Baklava Abstraction

The AbstractBaklava module defines data structures for abstract Baklava and thereby

the abstract cluster that it will work on.

module AbstractBaklava where

import qualified Data.Map as Map

In our first attempt, we represented the abstract cluster as an instance of the general cluster

classes (see Node, CPU, Status, Reference, and Computation classes of the Geometer

Cluster module). At first, we also tried making AbstractBaklava a subtype of the

more general Onion data type. At the end, we decided to represent both the abstract cluster

and Baklava as their own data types, without relying on the types already defined as part

of the Geometer.

It was decided that this module should remain completely independent of the Geome-

ter modules. As discussed in the design section, the definition of abstract Baklava and its

translation to the π-calculusshould not be effected by changes to the Geometer. However,

the functions that abstract a given Baklava (as defined in the AbstractableG5Baklava

module for the G5Baklava) do rely on data structures provided by the Geometer.

We now define the structure of an abstract Baklava. The provided descriptions here are

non-normative; the formal specification is the code that translates this to the π-calculus.

data AbstractBaklava =

• Globally record Status as the status of the node identified by NodeID
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SendStatus NodeID Status

• Wait for the globally recorded status of the node identified by NodeID to match

Status before executing the next abstract Baklava in the queue.

| WaitStatus NodeID Status

• Wait for the globally recorded status of the node identified by NodeID to match

Status before executing the abstract Baklavas in BaklavaQueue.

| GuardStatus NodeID Status BaklavaQueue

• Send data from the global reference Reference to the node identified by NodeID.

| SendData Reference NodeID

• Receive data into the global reference Reference and execute the second argument

on success as an abstract Baklava, or the third argument otherwise.

| ReceiveData Reference AbstractBaklava AbstractBaklava

• Copy data from the global reference first argument to the global reference second

argument.

| CopyData Reference Reference

• Send BaklavaQueue to the node identified by NodeID to be placed on its queue.

| SendCommand NodeID BaklavaQueue

• Execute Computation and set the appropriate Status.

| Execute Computation [Status]

Note some of the changes in the above data structure against the one defined by the Geome-

ter. For instance, we define statuses and references completely globally rather than locally.

All reference calls have to be made globally.
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type BaklavaQueue = [AbstractBaklava]

A baklava queue is executed as a sequence. That is, given a BaklavaQueue [x0, . . . , xn],

for all i ∈ {1, . . . , n}, xi can only be executed if execution of xi−1 has been completed.

We define each component of an abstract cluster, Nodes, Statuses, etc; and then we define

a cluster as a collection of such components.

See that some of these components don’t just define the cluster’s structure, they also define

its state.

data Node = Node {nodeBaklavaQueue :: BaklavaQueue}

A node is identified by a NodeID. That is, a cluster will consist of a mapping of such

NodeIDs to Nodes (which represent the current state of a node.)

data NodeID = NodeID Integer deriving (Eq, Ord)

A Status is used to define the current status state of Nodes for example.

data Status = Status {statusStatus :: Integer}

A Reference globally identifies an storage object. A LocalReference locally identifies

an storage object, usually on a Node.

data Reference = Reference {referenceNode :: NodeID, referenceReference :: LocalReference}

data LocalReference = LocalReference Integer

A Computation represents a signature for a function mapping References in computationInput

to References in computationOutput. That is, it is a data structure that describes which

references will be modified after a given computation, and also describes the references it

depends on.

data Computation = Computation {computationInput :: [Reference], computationOutput :: [Reference]}
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A Cluster is the representation of an abstract cluster’s state. It consists of a collection of

Nodes which are mapped from NodeIDs, which uniquely identify them.

data Cluster = Cluster {

clusterNodes :: ClusterNodes

}

type ClusterNodes = Map.Map NodeID Node

We now make our cluster, its components, and abstract Baklava showable. While this is

used for debugging, its more important purpose is to construct names to be used in the

π-calculustranslations.

instance Show Cluster where

show Cluster {clusterNodes = a} = "Abstract Cluster = {Nodes " ++ (show a) ++ "}"

instance Show Node where

show node = "Abstract Node {Queue=" ++ show (nodeBaklavaQueue node) ++ "}"

instance Show Status where

show (Status a) = "STATUS#" ++ (show a)

instance Show NodeID where

show (NodeID a) = "NODE#" ++ (show a)

instance Show Reference where

show (Reference nodeid local) = "REF{" ++ show nodeid ++ "/" ++ show local ++ "}"

instance Show LocalReference where

show (LocalReference a) = show a

instance Show Computation where

show Computation{computationInput = i, computationOutput = o}

= "COMP{" ++ show i ++ " → " ++ show o ++ "}"
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Showing AbstractBakavas is only for development purposes. It is not meant to be used

for π-calculusnamings.

instance Show AbstractBaklava where

show (SendStatus nodeID status)

= "Send Status {to " ++ (show nodeID)

++ ", " ++ show status ++ "}."

show (GuardStatus nodeid status baklavas)

= "Gaurd {for " ++ (show status)

++ " on " ++ show nodeid ++ ", then do "

++ show baklavas ++ "}."

show (WaitStatus nodeid status)

= "Wait {for " ++ (show status) ++ " on " ++ show nodeid ++ "}."

show (SendData from to)

= "Send Data {from " ++ show from ++ ", to "

++ show to ++ "}."

show (ReceiveData to _ _)

= "Receive Data {into " ++ show to ++ "}."

show (CopyData from to)

= "Copy Data {from " ++ show from ++ ", to " ++ show to ++ "}."

show (SendCommand to baklavas)

= "Send Command {tell " ++ show to ++ ", to do "

++ show baklavas ++ "}."

show (Execute comp status)

= "Execute {function:" ++ show comp

++ ", then set status " ++ show status ++ "}."
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AbstracableCluster is the class of clusters that are translated to AbstractClusters.

This class isn’t general enough to include all ’abstractable’ clusters. It only includes those

that can be translated through independent node and status translations. For example, a

cluster whose status abstraction requires a knowledge about the nodes can’t be in this class.

Abstraction of a cluster is the process of mapping its nodes to the abstract ClusterNodes.

class AbstractableCluster clusternodes where

abstractNodes :: clusternodes → ClusterNodes

abstractNodes can usually be defined with one or two functors, one of which can be

defined using the functor provided over Data.Map.Map k for any k (namely for k being

clusternodes).

class AbstractableBaklava baklava where

abstractBaklava :: NodeID → baklava → AbstractBaklava

4.1.2 G5 Abstraction as an Example

Now that we have defined what it means to be abstract via the AbstractBaklava mod-

ule, we can define our first abstraction, the G5 abstraction.

The AbstractableG5Baklava module defines an abstraction of the G5 Baklava and the

G5 Cluster.

module AbstractableG5Baklava where

import qualified Data.Map as Map

import qualified Geometer

import qualified G5Cluster

import qualified Onion

import AbstractBaklava
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First, we make the G5 cluster abstractable by defining its abstraction.

instance AbstractableCluster (Map.Map G5Cluster.G5Node [Geometer.G5Onion]) where

Since the G5 cluster consists of nodes with two CPUs which can execute computations

concurrently, in our abstraction, we let each CPU be represented by a node of its own.

We do this by mapping each node of the G5 cluster to two abstract nodes. That is, nodeG5
i ,→

nodeabstract
2i , nodeabstract

2i+1 , where each abstract node represents a single computation thread

on a single CPU of the G5 cluster. We put all the work of executing the initial Baklava queue

assigned to the given G5 machine on the first CPU.

Of course, this assumption (our specification of Baklava), along with all the other assump-

tions can be changed to fit an implemented machine.

This abstraction is tricky, since both nodeabstract
2i and nodeabstraction

2i+1 can share resources

such as statuses and memory.

abstractNodes = Map.foldWithKey

(λnode bakQ curmap

→ Map.insert (translateID node 0)

(Node {nodeBaklavaQueue = fmap

(abstractBaklava $ translateID node 0) bakQ}) $

Map.insert (translateID node 1)

(Node {nodeBaklavaQueue = []})

curmap

)

Map.empty

We now make the G5Onion, the G5 Baklava, abstractable. That is, we provide a scheme for

translating G5 Baklava to abstract Baklava. This scheme, composed with the π-calculustranslation,

specifies G5 Baklava.

The Baklava commands act on the node they are being executed on; so, for some transla-
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tions we will need to know which node the Baklava command was going to be executed

on (see for example the translation for Execute.) So we carry the identification of the node

that the commands will be executed on through out our recursive translation. We refer to

that node as the ‘current node’ from here on. Mostly, the ‘current node’ node will stay the

same in our recursive calls; but, for commands that transfer the execution to another node

(such as SendCommand,) we need to change our ‘current node’ to that node.

instance AbstractableBaklava Geometer.G5Onion where

• Since we are going to be sharing statuses, and since abstract Baklava treats memory

and status as global objects, a status being sent to a nodeG5
i can be treated as being

a status sent to nodeabstract
2i and not nodeabstract

2i+1 . So, two G5 CPUs will be sharing

statuses on the first CPU. We also have to make sure WaitStatus and GuardStatus

are also aware of this.

This translation is not recursive, and so ‘current node’ isn’t carried forward.

abstractBaklava _

Onion.SendStatus{Onion.oNode = tonode, Onion.oStat = g5status}

= SendStatus (translateID tonode 0) (translateStatus g5status)

• Like the previous case, if either nodeabstract
2i nodeabstract

2i+1 are guarding or waiting, they

will check the status on nodeabstract
2i .

In the case of GuardStatus, we are also given a Baklava queue to guard. This will

also need to be translated.

Recall that nodeabstract
2i and nodeabstract

2i+1 both have their status on the former node. So

if we are guarding or waiting for an status on nodeabstract
2i+1 , we are really waiting for

the status from nodeabstract
2i+1 ; the roundDown function here takes care of this.

The translation of GuardStatus is recursive, and so we need to carry forward the

‘current node’. It will be carried unchanged, since the execution of the guarded Baklava

queue will still be on the same node.

abstractBaklava nodeid
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Onion.GuardStatus{Onion.oStat = g5status, Onion.oCmds = g5baklavas}

= GuardStatus (roundDown nodeid) (translateStatus g5status)

(fmap (abstractBaklava nodeid) g5baklavas)

abstractBaklava nodeid

Onion.WaitStatus{Onion.oStat = g5status}

= WaitStatus (roundDown nodeid) (translateStatus g5status)

• Sending and receiving data aren’t recursive translations, so ‘current node’ isn’t car-

ried forward; however, ‘current node’ is used since two CPUs represented by seperate

nodes actually share memory.

abstractBaklava nodeid

Onion.SendData{

Onion.oTo = G5Cluster.Ref toNode _,

Onion.oFrom = G5Cluster.Ref _ fromRef}

= SendData (Reference (roundDown nodeid)

$ LocalReference

$ translateLocalReference fromRef) (translateID toNode 0)

abstractBaklava nodeid

Onion.ReceiveData{

Onion.oTo = G5Cluster.Ref _ localRef,

Onion.oOk = statok, Onion.oErr = staterr}

= ReceiveData

(Reference (roundDown nodeid)

$ LocalReference $ translateLocalReference localRef)

(SendStatus (roundDown nodeid) $ translateStatus statok)

(SendStatus (roundDown nodeid) $ translateStatus staterr)

• Copy data is a completely global command. That means, unlike its counterpart com-

mand in the Geometer it is not restricted to make copies of only local references.

abstractBaklava nodeid
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Onion.CopyData {Onion.oTo = G5Cluster.Ref _ toRef,

Onion.oFrom = G5Cluster.Ref _ fromRef}

= CopyData

(Reference nodeid $ LocalReference $ translateLocalReference fromRef)

(Reference nodeid $ LocalReference $ translateLocalReference toRef)

• Translation of commands that contain Baklava queues is recursive, so it needs to pass

a NodeID to the recursive translation procedure.

In case of SendCmd, this NodeID won’t be that of the current node, but the new node

that the queue will be passed to.

abstractBaklava nodeid

Onion.SendCmd {Onion.oNode=node, Onion.oCmds=g5baklavas}

= SendCommand

(translateID node 0)

(fmap (abstractBaklava $ translateID node 0) g5baklavas)

• The next translation, that of Execute, is the real reason why we needed to carry

through the current node’s NodeID.

The Execute defined in the Geometer specifies which CPU the computations should

be executed on. For G5, if we are asked to execute on CPU a, and if we are already

on it, we just translate as expected, ignoring the CPU. If we are however asked to

execute on CPU b, we need to wrap the execution with a send command to send the

execution request to the next odd node.

abstractBaklava nodeid

Onion.Execute {Onion.oCpu = G5Cluster.G5one,

Onion.oComps = comp, Onion.oStats = stats}

= Execute (translateComputation comp nodeid)

(fmap translateStatus stats)

abstractBaklava nodeid

Onion.Execute {Onion.oCpu = G5Cluster.G5two,
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Onion.oComps = comp, Onion.oStats = stats}

= SendCommand (NodeID $ (λ(NodeID x)→x+1) nodeid)

[Execute (translateComputation comp nodeid)

(fmap translateStatus stats)]

translateComputation :: Geometer.G5Comp → NodeID → Computation

Some of the G5 computations defined in the Geometer are abstracted as follows:

• StoreImage R x y : {R} ,→ Ø

translateComputation

(Geometer.G5StoreImage (G5Cluster.Ref _ ref) _ _)

nodeid

= Computation

[Reference nodeid $ LocalReference $ translateLocalReference ref]

[]

• DisplayImage R x y : Ø ,→ {R}

translateComputation

(Geometer.G5DisplayImage (G5Cluster.Ref _ ref) _ _)

nodeid

= Computation

[]

[Reference nodeid $ LocalReference $ translateLocalReference ref]

• FT R1 R2 x . . . : {R1} ,→ {R2} (Fourier transform)

translateComputation

(Geometer.G5FT2D (G5Cluster.Ref _ ref1) (G5Cluster.Ref _ ref2) _ _)

nodeid

= Computation

[Reference nodeid $ LocalReference $ translateLocalReference ref1]

[Reference nodeid $ LocalReference $ translateLocalReference ref2]
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• Not yet translated

With our test function, we only needed a translation of G5FT2d.

translateComputation a _ = error $ "No translation defined for " ++ show a ++ "."

Below, we define the help functions used above. Most of these functions translate cluster

components.

roundDown :: NodeID → NodeID

roundDown (NodeID x) | mod x 2 == 0 = NodeID x

roundDown (NodeID x) | mod x 2 == 1 = NodeID $ x-1

translateLocalReference :: Int → Integer

translateLocalReference = toEnum

translateReference :: G5Cluster.G5Ref → Reference

translateReference (G5Cluster.Ref nodeid localref)

= Reference {referenceNode = translateID nodeid 0,

referenceReference = LocalReference $ translateLocalReference localref}

translateID :: G5Cluster.G5Node → Integer → NodeID

translateID (G5Cluster.G5Node id) a = NodeID ((toEnum id) ∗ 2 + a)

The translation of Status requires that we encode all the components of the status (such

as counter and status number) into a single integer. We do this by assuming that there are

at most 1024 nodes on the cluster, and that the counter will never go higher than 1024.

translateStatus :: G5Cluster.G5Status G5Cluster.G5Node → Status

translateStatus G5Cluster.MRStatus

{G5Cluster.mrstNode = node, G5Cluster.mrstStatus = status,

G5Cluster.mrstCount = count} =

Status {statusStatus = ((λ(NodeID x) → x ∗ 1024 ∗ 1024)

(translateID node 0))

+ ((toEnum count) ∗ 1024) + (toEnum status) }
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4.2 The π-calculus translation

Next, we attempt to translate abstract Baklava code-sets to a π-calculus process. This is the

final step in our translation scheme. First, we must define a data structure for the π-calculus.

module AbstractBaklava2Pi where

import AbstractBaklava

import qualified Data.Map as Map

Our definition of a process does not include the replication operator. We do not need the

replication operator for most parts. The only components of the system that will need to use

the replication operator are those that can be hard-wired into the reduction system (such

as the model for retreiving and updating memory cells and statuses.)

data Process =

Bar [Process]

| Sum [Process]

| Pi PiType Name [Name] Process

| Zero

data PiType = Input | Output

Names are represented as strings. This makes both the formation of the translation scheme

and debugging the outputted system a lot easier. If needs be, we can easily map the set of

String names to Integers.

data Name = Name String

We use the Show class to express our π-calculus data structure to notation readable by other

verifiers as needed.

instance Show Process where

show (Bar []) = ""
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show (Bar [x]) = show x

show (Bar (x:xs)) = "(" ++ (show x) ++ ")|" ++ (show $ Bar xs)

show (Sum []) = ""

show (Sum [x]) = show x

show (Sum (x:xs)) = "(" ++ (show x) ++ ")+" ++ (show $ Sum xs)

show (Pi Input channel vars p) =

show channel ++ "<" ++ show vars ++ ">." ++ show p

show (Pi Output channel vars p)

= show channel ++ "(" ++ show vars ++ ")." ++ show p

show Zero = "0"

instance Show Name where

show (Name name) = name

showList [] _ = ""

showList [name] _ = show name

showList (name:names) _ = show name ++ ", " ++ show names

First, we need to convert the abstract cluster to a process which consists of all the nodes

and the misc. systems running concurrently

System := Node1| · · · |Noden|M,

where M represents the misc. systems (memory and status update and retrieve.) While M

can be modelled in the π-calculus, due to its size (one concurrent process for each cell of

memory) it greatly improves performance (without loosing formality since its implemen-

tation can be verified manually) and use of resources.

abstractCluster2Pi :: Cluster → Process

abstractCluster2Pi Cluster {clusterNodes = nodes}
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= Bar $ Map.elems $ Map.mapWithKey (abstractNode2Pi) nodes

Translation of each node to a process is simply folding its Baklava queue using the func-

tion which translates each Baklava appropriately. See that this Baklava translation function

also takes as input a process. This process is the computed process so far. Whatever the

translation function does, it’ll append to this process.

abstractNode2Pi :: NodeID → Node → Process

abstractNode2Pi nodeid Node {nodeBaklavaQueue = []}

= Zero

abstractNode2Pi nodeid Node {nodeBaklavaQueue = b:bs}

= (abstractBaklava2Pi nodeid b $ abstractNode2Pi nodeid Node{nodeBaklavaQueue=bs})

Translation of Baklava to π-calculusprocesses requires knowledge of the ‘current node’ id.

This is because certain translations might be from Baklava commands that act on the ‘cur-

rent node’ (such as Execute,) and we will need to model that with the current node id in

mind.

abstractBaklava2Pi :: NodeID → AbstractBaklava → Process → Process

Sending statuses is the process of recording a status for a certain node on a certain node. The

three components of the status (the node, status value, and status counter) are all enconded

into a single entity Status (Integer in this case.) Showing such a status guarantees unique

names for distinct statuses, and same name for the same statuses.

At the end, our global status table is the mapping of node IDs to statuses. This table and the

operations on it are defined in M . To see that modelling such an M is possible, see [Tur96]

in which Turner builds a lot of usable machine and cluster structures within the π-calculus.

abstractBaklava2Pi _ (SendStatus (NodeID nodeid) status) p

= Pi Output (Name "Status") [Name $ show nodeid, Name $ show status] p

abstractBaklava2Pi _ (SendData ref (NodeID nodeid)) p
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= Pi Output (Name "RequestMemory") [Name $ show ref] (

Pi Input (Name $ "ReadMemory" ++ show ref) [Name "_x"] (

Pi Output (Name $ "DataTransfer" ++ show nodeid) [Name "_x"] p

))

Our most challenging translation is probably the translation of the Execute command.

This is because we need to properly model the semantics of a computation in order to be able

to detect result invariations. That is, we suppose every computation C : [R1, · · · , Rn] ,→

[R′
1, · · · , R′

m] uses the values from reference R1, · · · , Rn to unpredictably write to refer-

ences R′
1, · · · , R′

m; that is, we don’t want to know what a computation actually does to the

memory, we just need to know what it modifies and what it depends on.

For each input R1, · · · , Rn of the given computation, we will append the value of that refer-

ence to each of the outputs in R′
1, · · · , R′

m. So that’s a total of n memory reads and m × n

memory appends.

abstractBaklava2Pi _ (Execute Computation{computationInput=i,computationOutput=o} _) p

= foldr

(λx p1→Pi Output (Name "RequestMemory") [Name $ show x] (

Pi Input (Name "ReadMemory") [Name $ "_x" ++ show x] p1 (

foldr

(λx p2→Pi Output (Name "AppendMemory")

[Name $ show x, Name $ "_x" ++ show i] p2)

Zero

o)

))

p i

Some abstract Baklava commands are still not translated here.

abstractBaklava2Pi _ x _ = error $ "Errr... what is " ++ show x
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5 Evaluation and Future Work
When we started this project, we believed most of the work would be around creating an

automated proving system to prove theories formed about our systems. While we ended

up spending more time on reading about and implementing model checking systems as

we did reading about and doing formal specification of Baklava, it would seem as if at the

end, we obtained more visible results from our formal specification of Baklava.

In the future, one could use the same correctness properties formed in this paper as part of

invariants to be used to formally verify the correctness of the Geometer. While verifying the

invariants against the Geometer’s Haskell code might prove difficult, verifying it against a

translated version which generates π-calculus models instead might be easier.

If we are to continue verifying Baklavas on-the-fly, rather than verifying the Geometer,

some future work in creating an optimized verification system tailored to our needs (as

opposed to the generic π-calculusverifiers and model checkers) could be useful.
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