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Zero Dimensional Regular Chains

Regular Chains play a fundamental role in polynomial system solving.
Namely, they can encode the generic points of the irreducible compo-
nents of algebraic varieties. [3].

Of particular interest in practice is when these varieties are zero dimensional (i.e. fi-

nite). For instance, the authors of [1] have developed a probabilistic and modular

algorithm for solving zero-dimensional polynomial systems with rational coefficients.

Their algorithm requires to invert polynomial matrices modulo regular chains.

For sufficiently large problems, this operation is a bottleneck, mainly due to memory

consumption when testing the invertibility of an element modulo a regular chain.

The Leverrier-Faddeev Algorithm

The Leverrier-Faddeev [2] algorithm is a method for finding a ma-
trix inverse that only does one division but requires repeated matrix
multiplication.
Consider the characteristic polynomial of the m×m matrix A:

p(λ) = det (λI−A) = λm − a1λ
m−1 − · · · − am−1λ− am.

An expression for the inverse of A is given by evaluating p(A),

multiplying by A−1 and re-arranging terms:

0 = Am − a1A
m−1 − · · · − am−1A− am

A−1am = Am−1 − a1A
m−2 − · · · − am−1

A−1 =

(

Am−1 −
m−1
∑

i=1

aiA
n−i−1

)

a−1
m . (1)

ak can be obtained successively by ak = 1
k

(

sk −
∑k−1

i=1 sk−iai

)

, where

sk = trace(Ak) and a1 = s1. Thus, in order to find the inverse of A, the only

ring division we must do is by det(A).

Optimizations

Calculate the sk’s by “baby step giant step”.

Store M0,M1,M2, . . . ,Mℓ = A0,A,A2, . . . ,Aℓ where ℓ = ⌊√m⌋.
Generate N0, N1, N2, . . . , Nk = A0,Aℓ+1,A2(ℓ+1), . . . ,A2k(ℓ+1) on the fly (repeat-

edly multiplying by Aℓ+1, without storing).

Get the traces in blocks by tr(MiNj) = tr(AiA(ℓ+1)·j) = tr(Ai+(ℓ+1)·j) taking 0 ≤
i, j ≤ ℓ. For example if n = 8 with ℓ = ⌊

√
8⌋ = 2 do {tr(A0A0), . . . , tr(A0A2)}

{tr(A3A0), . . . , tr(A3A2)} {tr((A3A3)A0), . . . , tr((A3A3)A2)}.

The complexity is given by (number of ×’s for the N ’s and M ’s) +

(number of ×’s for the traces) = 2m3
√
m +m3 = m3(1 + 2

√
m) ×’s.

Expand (1) by expressing p(A) in Nested Form as

p(A) =

(

· · ·
(((

t−1
∑

i=0

aiMt−1−i

)

N1 + σ(0)

)

N1 + σ(1)

)

N1 + · · ·
)

N1 + σ

(

m− 1− ℓ− t

ℓ + 1

)

with t ≡ m mod (ℓ + 1) and σ(k) =
∑t+kℓ+k+ℓ

i=t+kℓ+k aiM(m−i−1) mod (ℓ+1)

The complexity is given by the matrix multiplications required to do σ(k) and
∑t−1

i=0 aiMt−1−i which amounts to m3
(

m+1+d−t
d+1

)

coefficient multiplications.

We express this as a function of m using s = m mod (d + 1) ≤ d and d ≤ √
m.

m3 · m + 1 + d− t

d + 1
< m3

(

m + 1 +
√
m

1 +
√
m

)

< m3

(

m√
m

+ 1

)

< O
(

m3
√
m
)
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Using Leverrier-Faddeev Recursively

Use Leverrier-Faddeev algorithm to find a−1
m recursively. For T a zero

dimensional regular chain with coefficients in the field K, define the linear map:

mf : K[x1, . . . , xn−1][xn] 7→ (K[x1, . . . , xn−1]/ 〈T1, . . . , Tn−1)〉 [xn]/ 〈Tn〉
α 7→ fα

such that mf([g]) = [f ] · [g] = [fg] (or more simply: mf(g) = fg
T
).

Since K[x1, . . . , xn]/T is finite dimensional it has a finite monomial basis B. We can

thus represent mf by its matrix with respect to this basis.

The multiplication matrix satisfies mf · mg = mfg and thus we can find the
inverse of am by inverting its corresponding multiplication ma-
trix.

Space Complexity

For Leverrier-Faddeev. Let F (m, [d1, . . . , dn]) be the number of field elements

required to invert an m × m matrix modulo a regular chain T = 〈T1, . . . , Tn〉 ⊂
K[x1, . . . , xn] with di = degreexi(Ti). Assuming completely dense input we have

F (m, [d1, . . . , dn]) =
√
m ·m ·m · d1 · · · dn input and Mi’s

+m · d1 · · · dn traces

+ F (dn, [d1, . . . , dn−1]) recursive call

+m ·m · d1 · · · dn expansion

Letting σ =
∑

degreexi(Ti) and δ =
∏

degreexi(Ti) we can bound the above recur-

rence by O(m2.5δ + δσ1.5). Adding the space required for field multiplication gives a

space complexity of O(2nδ + m2.5δ + δσ1.5) field elements.

For GCD based Algorithm. Here one follows the method of Bareiss testing

invertibility by using an Euclidean-like algorithm. In [4] the space complexity for

this is given by (setting δi =
∏i

j=1 di and otherwise reusing the above notation)

2m2δ + O(2nn2)
∑n

i=2

(

di−2
i · δi

)

field elements.

Experimental Results

We compare two approaches: recursive Leverrier-Faddeev algorithm and the existing (Bareiss based)

method. We choose a random dense regular chain T ⊂ Fp[x1, . . . , xn] with degree(Ti) = 6,

varying n and p = 962592769. Our matrix is a random (invertible) m × m matrix with dense

entries from Fp[x1, . . . , xn]/ 〈T 〉.

Recursive Lev-Fad Bareiss

Vars Matrix Size Time Trace Inv Exp Space Time Space

3 11 × 11 157.34s 0.06% 2.74% 97.21% 0.10GB 1102.310s 0.18GB

4 7 × 7 408.15s 37.65% 10.56% 51.80% 0.11GB − 4.0GB

5 1 × 1 800.43s 19.24% 60.91% 19.85% 0.41GB ∗ >4.0GB

The columns “Trace”, “Inv” and “Exp” show the proportion of the time spent calculating the sk’s, the

inverses, and expansion of the nested form (respectively). “−” means computation was cut off (after

1 hour) due to over 90% memory usage. “∗” means that Maple ran out of memory.
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