ORC[¥Y

Ontario Research Centre for Computer Algebra

Zero Dimensional Regular Chains

Regular Chains play a fundamental role in polynomial system solving.
Namely, they can encode the generic points of the irreducible compo-

nents of algebraic varieties. [3].

Of particular interest in practice is when these varieties are zero dimensional (i.e. fi-

nite). For instance, the authors of [1] have developed a probabilistic and modular
algorithm for solving zero-dimensional polynomial systems with rational coefficients.
Their algorithm requires to invert polynomial matrices modulo regular chains.
For sufficiently large problems, this operation is a bottleneck, mainly due to memory
consumption when testing the invertibility of an element modulo a regular chain.

The Leverrier-Faddeev Algorithm

The Leverrier-Faddeev [2]| algorithm is a method for finding a ma-

trix inverse that only does one division but requires repeated matrix
multiplication.

Consider the characteristic polynomial of the m x m matrix A
pA) =det NI —A) =\ —a N ' — oo — X — ap,.

An expression for the inverse of A is given by evaluating p(A),
multiplying by A~! and re-arranging terms:

0=A"—aq A" ' —...—a, 1A —a,,
A_lam — Am_l — CblAm_z — = Um—1
m—1
Al = (Aml — Z aiA”il) a ' (1)
i=1
aj. can be obtained successively by a;, = % (sk — Zf:ll sk_iai) . Where

sp = trace(A¥) and a; = s;. Thus, in order to find the inverse of A, the only

ring division we must do is by det(A).

Optimizations

Calculate the s;.’s by “baby step giant step”.

Store My, M, M, ..., M, = A", A A% ... A’ where { = |\/m]|.

Generate Ny, Ni, N, ..., N, = A" AL A2 AR on the fly (repeat-
edly multiplying by A", without storing).

Get the traces in blocks by tr(M;N;) = tr(A'AD7) = tr(A7) taking 0 <
i, < £. For example if n = 8 with £ = |v/8] = 2 do {tr(A"A"), ... tr(A"A?)}
{tr(ASAY), .. tr(APA2)} {tr((ASADAY), ... tr((ASA%) A%}

The complexity is given by (NUMBER OF x’S FOR THE N’S AND M’S) +
(NUMBER OF X’S FOR THE TRACES) = 2m°y/m +m°® = m°(1 + 2,/m) X's.

Expand (1) by expressing p(A) in NESTED FORM as

PlA) = (- (((Z &thli) Ny +U(O)) Ny +U(1)) Ny +--) Ny +o (m _614——16 _ t)

with ¢ = m mod (f + 1) and O'(k‘) — Zfif_ﬁ;gi]f aiM(m—z’—l) mod (¢+1)

The complexity is given by the matrix multiplications required to do o(k) and

t—1 . _ . e
> iso @iMy—1—; which amounts to m* ("“-5=!) coefficient multiplications.

We express this as a function of m using s =m mod (d+ 1) < d and d < y/m.

- < -1) <O
P et (M) < (s (m*vm)

— Inverting Matrices Modulo Zero Dimensional Regular
Chains —

Marc Moreno Maza and Paul Vrbik

Acknowledgements

—
aplesoft

Mathematics « Modeling « Simulation

NSERC @I\Q

CRSNG =
MITACS

Using Leverrier-Faddeev Recursively

Use Leverrier-Faddeev algorithm to find a,;zl recursively. For T a zero

dimensional regular chain with coefficients in the field K, define the linear map:

T2 — (K, ..
a— fa

my: Koy, .. xnl/ (T T) [/ (T

. —T
such that m¢(|g|) = [f] - 9] = |fg] (or more simply: m¢(g) = fg).
Since K|z, ...,z,|/T is finite dimensional it has a finite monomial basis B. We can

thus represent m ¢ by its matrix with respect to this basis.

The multiplication matrix satisfies m¢ - m, = my, and thus we can find the
inverse of a,, by inverting its corresponding multiplication ma-
trix.

Space Complexity

For Leverrier-Faddeev. Let F'(m,|dy,...,d,|) be the number of field elements
required to invert an m X m matrix modulo a regular chain T' = (T3,...,T,) C

Klzi,...,z,) with d; = degree, (T;). Assuming completely dense input we have

F(m,[dy,...,d,]))=+m-m-m-d;---d, input and M;'s
+m-di---d, traces
+ F(dy, |di, ..., d,1])

“m-m-di---d,

recursive call

expansion

Letting 0 =) degree, (T;) and 0 = || degree, (1) we can bound the above recur-
rence by O(m?>°§ + do'°). Adding the space required for field multiplication gives a
space complexity of O(2"8 + m?°§ + do'-®) field elements.

For GCD based Algorithm. Here one follows the method of Bareiss testing
invertibility by using an Euclidean-like algorithm. In [4] the space complexity for
this is given by (setting 9, = szl d; and otherwise reusing the above notation)

2m28 + 0(2"n?) Y7, (d§—2 - 52-) field elements.

Experimental Results

We compare two approaches: recursive Leverrier-Faddeev algorithm and the existing (Bareiss based)
method. We choose a random dense regular chain T' C F,[xq,...,x,] with degree(T;) = 6,
varying i and p = 962592769. Our matrix is a random (invertible) m X mm matrix with dense
entries from F[xq1,...,x,]/ (T).

Recursive Lev-Fad Bareiss
Vars| Matrix Size] Time Trace Inv Exp| Space Time, Space
3 | 11 x 11 | 157.34s| 0.06% 2.74% 97.21% 0.10GB 1102.310s, 0.18GB
4 7T X7 | 408.15s 37.65% 10.56% 51.80% 0.11GB — | 4.0GB
5 1 X1 |800.43s 19.24% 60.91% 19.85% 0.41GB x| >4.0GB
The columns “Trace”, “Inv’ and “Exp” show the proportion of the time spent calculating the s;'s, the
inverses, and expansion of the nested form (respectively). “—" means computation was cut off (after

1 hour) due to over 90% memory usage. “*" means that MAPLE ran out of memory.

[1]X. Dahan, M. Moreno Maza, E. Schost, W. Wu, and Y. Xie. Lifting techniques for
triangular decompositions. In ISSAC05, pages 108-115. ACM Press, 2005.

2] D. K. Faddeev and V. N. Faddeeva. Computational Methods of Linear Algebra.

Freeman, San Francisco, 1963.

[3] M. Kalkbrener. A generalized Euclidean algorithm for computing triangular repre-
sentations of algebraic varieties. J. Symb. Comp., 15:143-167, 1993.

[4] Xin Li, Marc Moreno Maza, and Wei Pan. Computations modulo regular chains.
In Proceedings of the 2009 international symposium on Symbolic and algebraic

computation, ISSAC '09, pages 239-246, New York, NY, USA, 2009. ACM.

