
–— Inverting Matrices Modulo Zero Dimensional Regular
Chains —

Marc Moreno Maza and Paul Vrbik

Zero Dimensional Regular Chains

Regular Chains play a fundamental role in polynomial system solving.
Namely, they can encode the generic points of the irreducible compo-
nents of algebraic varieties. [3].

Of particular interest in practice is when these varieties are zero dimensional (i.e. fi-

nite). For instance, the authors of [1] have developed a probabilistic and modular

algorithm for solving zero-dimensional polynomial systems with rational coefficients.

Their algorithm requires to invert polynomial matrices modulo regular chains.

For sufficiently large problems, this operation is a bottleneck, mainly due to memory

consumption when testing the invertibility of an element modulo a regular chain.

The Leverrier-Faddeev Algorithm

The Leverrier-Faddeev [2] algorithm is a method for finding a ma-
trix inverse that only does one division but requires repeated matrix
multiplication.
Consider the characteristic polynomial of the m×m matrix A:

p(λ) = det (λI−A) = λm − a1λ
m−1 − · · · − am−1λ− am.

An expression for the inverse of A is given by evaluating p(A),

multiplying by A−1 and re-arranging terms:

0 = Am − a1A
m−1 − · · · − am−1A− am

A−1am = Am−1 − a1A
m−2 − · · · − am−1

A−1 =

(

Am−1 −
m−1
∑

i=1

aiA
n−i−1

)

a−1
m . (1)

ak can be obtained successively by ak = 1
k

(

sk −
∑k−1

i=1 sk−iai

)

, where

sk = trace(Ak) and a1 = s1. Thus, in order to find the inverse of A, the only

ring division we must do is by det(A).

Optimizations

Calculate the sk’s by “baby step giant step”.

Store M0,M1,M2, . . . ,Mℓ = A0,A,A2, . . . ,Aℓ where ℓ = ⌊√m⌋.
Generate N0, N1, N2, . . . , Nk = A0,Aℓ+1,A2(ℓ+1), . . . ,A2k(ℓ+1) on the fly (repeat-

edly multiplying by Aℓ+1, without storing).

Get the traces in blocks by tr(MiNj) = tr(AiA(ℓ+1)·j) = tr(Ai+(ℓ+1)·j) taking 0 ≤
i, j ≤ ℓ. For example if n = 8 with ℓ = ⌊

√
8⌋ = 2 do {tr(A0A0), . . . , tr(A0A2)}

{tr(A3A0), . . . , tr(A3A2)} {tr((A3A3)A0), . . . , tr((A3A3)A2)}.

The complexity is given by (number of ×’s for the N ’s and M ’s) +

(number of ×’s for the traces) = 2m3
√
m +m3 = m3(1 + 2

√
m) ×’s.

Expand (1) by expressing p(A) in Nested Form as

p(A) =

(

· · ·
(((

t−1
∑

i=0

aiMt−1−i

)

N1 + σ(0)

)

N1 + σ(1)

)

N1 + · · ·
)

N1 + σ

(

m− 1− ℓ− t

ℓ + 1

)

with t ≡ m mod (ℓ + 1) and σ(k) =
∑t+kℓ+k+ℓ

i=t+kℓ+k aiM(m−i−1) mod (ℓ+1)

The complexity is given by the matrix multiplications required to do σ(k) and
∑t−1

i=0 aiMt−1−i which amounts to m3
(

m+1+d−t
d+1

)

coefficient multiplications.

We express this as a function of m using s = m mod (d + 1) ≤ d and d ≤ √
m.

m3 · m + 1 + d− t

d + 1
< m3

(

m + 1 +
√
m

1 +
√
m

)

< m3

(

m√
m

+ 1

)

< O
(

m3
√
m
)

Acknowledgements

Using Leverrier-Faddeev Recursively

Use Leverrier-Faddeev algorithm to find a−1
m recursively. For T a zero

dimensional regular chain with coefficients in the field K, define the linear map:

mf : K[x1, . . . , xn−1][xn] 7→ (K[x1, . . . , xn−1]/ 〈T1, . . . , Tn−1)〉 [xn]/ 〈Tn〉
α 7→ fα

such that mf([g]) = [f ] · [g] = [fg] (or more simply: mf(g) = fg
T
).

Since K[x1, . . . , xn]/T is finite dimensional it has a finite monomial basis B. We can

thus represent mf by its matrix with respect to this basis.

The multiplication matrix satisfies mf · mg = mfg and thus we can find the
inverse of am by inverting its corresponding multiplication ma-
trix.

Space Complexity

For Leverrier-Faddeev. Let F (m, [d1, . . . , dn]) be the number of field elements

required to invert an m × m matrix modulo a regular chain T = 〈T1, . . . , Tn〉 ⊂
K[x1, . . . , xn] with di = degreexi(Ti). Assuming completely dense input we have

F (m, [d1, . . . , dn]) =
√
m ·m ·m · d1 · · · dn input and Mi’s

+m · d1 · · · dn traces

+ F (dn, [d1, . . . , dn−1]) recursive call

+m ·m · d1 · · · dn expansion

Letting σ =
∑

degreexi(Ti) and δ =
∏

degreexi(Ti) we can bound the above recur-

rence by O(m2.5δ + δσ1.5). Adding the space required for field multiplication gives a

space complexity of O(2nδ + m2.5δ + δσ1.5) field elements.

For GCD based Algorithm. Here one follows the method of Bareiss testing

invertibility by using an Euclidean-like algorithm. In [4] the space complexity for

this is given by (setting δi =
∏i

j=1 di and otherwise reusing the above notation)

2m2δ + O(2nn2)
∑n

i=2

(

di−2
i · δi

)

field elements.

Experimental Results

We compare two approaches: recursive Leverrier-Faddeev algorithm and the existing (Bareiss based)

method. We choose a random dense regular chain T ⊂ Fp[x1, . . . , xn] with degree(Ti) = 6,

varying n and p = 962592769. Our matrix is a random (invertible) m × m matrix with dense

entries from Fp[x1, . . . , xn]/ 〈T 〉.

Recursive Lev-Fad Bareiss

Vars Matrix Size Time Trace Inv Exp Space Time Space

3 11 × 11 157.34s 0.06% 2.74% 97.21% 0.10GB 1102.310s 0.18GB

4 7 × 7 408.15s 37.65% 10.56% 51.80% 0.11GB − 4.0GB

5 1 × 1 800.43s 19.24% 60.91% 19.85% 0.41GB ∗ >4.0GB

The columns “Trace”, “Inv” and “Exp” show the proportion of the time spent calculating the sk’s, the

inverses, and expansion of the nested form (respectively). “−” means computation was cut off (after

1 hour) due to over 90% memory usage. “∗” means that Maple ran out of memory.

[1]X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and Y. Xie. Lifting techniques for

triangular decompositions. In ISSAC’05, pages 108–115. ACM Press, 2005.

[2]D. K. Faddeev and V. N. Faddeeva. Computational Methods of Linear Algebra.

Freeman, San Francisco, 1963.

[3]M. Kalkbrener. A generalized Euclidean algorithm for computing triangular repre-

sentations of algebraic varieties. J. Symb. Comp., 15:143–167, 1993.

[4]Xin Li, Marc Moreno Maza, and Wei Pan. Computations modulo regular chains.

In Proceedings of the 2009 international symposium on Symbolic and algebraic

computation, ISSAC ’09, pages 239–246, New York, NY, USA, 2009. ACM.


