Practice Problems For Mathematics 4B03

Question 1 : (Carmo page 61)

An n-dimensional differentiable manifold with (regular) boundary is a set M and a family of
injective maps f, : U, C H"™ — M of open sets of H" into M such that:

1. U, fa(Us) =M
2. For all pairs a, 8 with fo(U,) N f5(Ug) = W # ¢ the sets f, (W) and f/gl(W) are open
sets in H™ and the maps fﬁ_1 o fa, [ o f5 are differentiable.

«

3. The family {(U,, f.)} is maximal relative to (1) and (2).

(i) S*is an example of a four-dimensional compact manifold with boundary.

(ii) The mobius band is an example of a non-orientable two-dimensional compact manifold
with boundary.

(iii) A cone with a point removed or H", the half plane with dimension n, are both examples
of an orientable non-compact manifold with boundary.

Question 2 : (Hitchin page 23)
A wvector field on a manifold M is a smooth map

X:M—TM= UTa

aeM

such that
po X =1idy.
e T, when a € M is the dual space of the quotient space T = C*(M)/Z,

e (M) is all the C* function on M. Recall that a function is C'* if it has derivatives
of all orders.

e p:TM — M is the projection map which assigns X, € T,M to a. p has the property
that it is smooth with surjective derivative.

(i) For a,b € H (the unit quaternions) with the regular definitions of 4, j and k the following
6 vector fields are everywhere linearly independent on S? x S3.

< ia,ib > < 1a,jb >
< ja,jb> < 1a, kb >
< ka, kb > < ja,kb>

(ii) Pictured on Camo page 101 for I = —2 where [ is the index.



(iii) By Gauss-Bonet theorem there are no vector fields on S? which have no zeros. The
explanation is as follows: Gauss Bonet Theorem states that

2rx (M) =27y " I(p;) = //Mk:dA

pi€A

where x is the Euler characteristic, A = {p: V(p) = 0} where V' is any vector field, and
I is the index of p;.

We know that x(S?) = 2 however in order to have a vector filed V' with no zeros we must
have that 27x(S5?) = 0 which is impossible.

Question 3 : (Garrity page 122)

Let M be a manifold. An exterior differential k-form on M is a map w such that
w: M — NF(T,M)x,

Written: | |
wip)= Y ai.i(p)(dz" A Adat),

11 <...<ig

for i; € {1...n}, where each a;, ;, is differentiable.

(i) There are no closed 2-forms on S* that are not exact.

(ii) A simple closed 1-form on the torus 72, using the canonical parametrization in euclidian
space, is:
w = db

(iii)
Question 4 : (mathworld)

A lie group is a differentiable manifold obeying the group properties and that satisfies the
additional condition that the group operations are differentiable.

The simplest examples of Lie groups are one-dimensional. Under addition, the real line is a
Lie group. After picking a specific point to be the identity element, the circle is also a Lie
group. Another point on the circle at angle 0 from the identity then acts by rotating the circle
by the angle # In general, a Lie group may have a more complicated group structure, such
as the orthogonal group O(n) (i.e., the orthogonal matrices), or the general linear group (i.e.,
the invertible matrices).

A Lie Group is a differentiable manifold G that is also a group in the algebraic sense, with
multiplication m : G x G — G and inversion i : G — G, both differentiable, given by:

m(g,h) = gh i(g) =g~

Look at SO(3) = {A € O(3) : det(A) = 1}:



This is clearly a group under matrix multiplication since I3 € SO(3), matrix multiplication is
associative, and for A, B € SO(3):

(AB)Y = BTAT = B'A™!' = (AB)™! det(AB) = det(A)det(B) = 1

and

A7t = AT € SO(3) since det(A) = det(AT) and AT € O(3).

In SO(3), multiplication is differentiable because the matrix entries of AB are linear polyno-
mials of the entries of A and B, and inversion is differentiable because Cramer’s rule expresses
entries of A~! as rational functions of entries of A.

Look at 73 = S! x St x S*:

We can easily see that S is a lie group by simply imbedding it in the complex plane. Then
St ={z € C: |z| = 1}. This is a group under complex multiplication, and m(e?*, %) =
e01762) and i(e®) = e~ are both clearly smooth maps.

Now, if G; and G are lie groups, G X G5 is also a lie group with componentwise multiplication,
so T? is a lie group.

Next, a basis for the tangent space of SO(3) at the identity is:

0 10 0
Ey=1|-1 00 Ey= 10
0 00 -1

o O O

1 0 0 0
0 Es=10 0 1
0 0 0

Since SO(3) is a lie group, we can use the group action through left multiplication to cycle
through the group, so our linearly independent vector fields are:

o(a) = ak v(a) = aFy o(a) = aFs.

NOT DONE

Question 5: (Hitchin page 53)

An n-dimensional manifold is said to be orientable if it has an everywhere non-vanishing
n-form w.

Rp™ is orientable if n is odd and nonorientable if n is even. There is a map ¢ : S™ — Rp”
defined as ¢ : x — [z] where [z] is the equivalency class of z ~ —z where the det ¢ = (—1)"*!
so S™ has an orientation which will carry over to Rp™ if the det ¢ = 1. This implies that if n
is odd Rp™ has an orientation.

Yes, all Lie groups have an orientation. Pick any orientation at the identity point and then
move this orientation to any point p by using the group operation.



Question 6: (mathworld)

Let f : M — N be a map between two compact, connected, oriented n-dimensional manifolds
without boundary. Then f induces a homomorphism f, from the homology groups H, (M)
to H,,(N), both canonically isomorphic to the integers, and so f. can be thought of as a
homomorphism of the integers. The integer d(f) to which the number 1 gets sent is called
the degree of the map f.

There is an easy way to compute d(f) if the manifolds involved are smooth. Let z € N,
and approximate f by a smooth map homotopic to f such that z is a "regular value” of
f (which exist and are everywhere by sard’s theorem). By the implicit function theorem,
each point in f~'(x) has a neighborhood such that restricted to it is a diffeomorphism. If
the diffeomorphism is orientation preserving, assign it the number —1, and if it is orientation
reversing, assign it the number —1. Add up all the numbers for all the points in f~!(z),
and that is the d(f), the degree of f. One reason why the degree of a map is important is
because it is a homotopy invariant. A sharper result states that two self-maps of the n-sphere
are homotopic iff they have the same degree. This is equivalent to the result that the n-th
homotopy group of the n-sphere is the set Z of integers. The isomorphism is given by taking
the degree of any representation.

One important application of the degree concept is that homotopy classes of maps from
n-spheres to n-spheres are classified by their degree (there is exactly one homotopy class of
maps for every integer n, and n is the degree of those maps).

A map F of degree one from the torus 72 = S! x S! to the sphere S? is given by:
F:(0,0)— (0,¢)

where
T? = S' x S' = ((a + bcos ¢) cos b, (a+ bcos ¢) sin 0, bsin ¢)
and
S% = (cos @' cos ¢, sin @ cos ¢/, sin ¢')

Where F~!(m,0) = (7,0) and sign(DF, ) = 1 which implies that degF = 1.

Question 7: Since there are no exact 0-forms on 72 or S?, and the closed forms on S? and T2 are
functions with df = 0 (constants). We have that

H°(T?) ~ H°(S*) =~ R

Since every circle on S? is contractible to a point and every 1-form on S? can be seen as a
1-form on a circle in S? because if you have a closed form w on S? by Poincare’s Lemma you
may take w = df, for some function f, on the upper half of w and w = df_ for some function

f— on the lower half. Since
/ w=2~0
the equator



we have that

fdf+:j§df20:>7{df+—dfzo

Which gives d(fy — f_) = 0so fy = f_ + C for some constant C. So for S? w = d(f,) for

some function f, so w is exact.

lemma: every closed 1-form is exact. So there are no closed non-exact 1-froms = H'(S?) =

{0}

T? on the other hand has 2-linenarly independent 1-froms df;, df, where T? is paramaterized
by (e, ez,

Any closed one-form on 72 differes from c;df; + codfy + ... ¢1,co € R by an exact form. So
{closed forms/exact forms} = R? = H'(T?) ~ R? and isomorphic to H(T?) and H°(S?), so

H*(T?) ~ R ~ H*(S?)

Now to show that every differentiable map f : S? — T2 has degree zero we do

Js fe
deg(f) = =5—
Jrw
so w is a closed form which is not exact because deg(f) = m =0.

Question 8: .

To prove that L£,¢ = 1,d¢ + diy¢ where 1 : QP — QP~L d - QP — QP and £, : O — QF we
only need to check the formula on functions and 1-forms of the form dz®. So we let

.....

So since « is a p-form a(vy, ..., v,1) = a(x, vy, ..., v,—1) and

f O] _ fos—f
t—0 t t

So the directional derivative of F' in the direction of z is given by (t,d + di,)f = wdf =
df () = z(f) = df (z). So L, = t,d+ di,which implies that L,¢ = (t,d+di,)p = t,dp+ di,¢.

To computer £,¢ for X = xa% + ya% + z(% and ¢ = e V= gy A dy A dz on R? we realize

that
= Ez(f(xa Y, Z)d%’ A dy N dZ)
= (Lyf)dx Ndy Ndz+ fd(Lyx) Ndy Ndz+ fde Nd(Lyy) ANdz + fde Ady A d(Ly2)
0 0 0
where L,z = (x% + ya—y + z&)x = T S0

=L, fdx Ndy Ndz + 3fde Ndy N\ dz



we also note that

= (o by e (e ) () (e ) () (e ) (22)
ox dy 0z

2

= — (227 + 2% + 22%)e "V
so we complete the computation by doing

=L fdx Ndy Ndz + 3fdx ANdy N dz
= —(22% + 2y + 222)6_$2_y2_32dx Ady Adz+3e V=" dz Ady A dz

Question 9:

Question 10: (Garrity page 138)

Stoke’s Theory: Let M be an oriented k-dimensional manifold in R™ with boundary OM, a
smooth (k — 1)-dimensional manifold with orientation induced from the orientation of M. Let
w be a differential (k — 1)-form. Then:

/dw:/ w.
M oM

This is the quantitative version of the intuition that the

average of a function on boundary = average of a derivative on interior.

We will define S~ to be the sphere 2% 4+ 3%+ 22 < 1 and ST to be the sphere 2% + 3% + 22 < 4.
and not that [o, Pdy A dz + Qdz A dx + Rdx ANdy = [(P,Q, R) - 7 where 7 is the normal to
the sphere. Finally as given

w_xdy/\dz+ydz/\d:v+zd:v/\dy

2 4y + 22
for ST O 1
/ (xayaz) . (l’,y,Z) :/ _:_,UOZ(S2(2)):_47T4:87T

x24+y2422=1 4 zZ 52(2) 2 2 2

for S~
/ (xvyvz)'(l‘yy,z):/ 1=4nr
x2+y2+22=1 52

So

/ :/ w—/ w=8mr —4r =4r
oM S+ -

Now it is necessary to check [ dw against Stokes Theorem.



de Ndy Ndz (222 + 2y* + 22%)dx A dy A dz
dw =3 —
ZL'Q _|_y2 +ZQ ([EQ +y2 +22)2

_ dr Ndy Ndz de Ndy N dz

I R P
dx ANdy Ndz
B 22 4 y2 + 22

and to take the integral we use polar co-ordinates and since the angles don’t matter the
integral will be the volume of the sphere

21
/d9d¢:/ — -ridr = 4x
52 1 T

so we have that fM dw = f@M w as desired.

Question 11:

Question 12: (Hitchin page 61)

Brouwer’s fized point theorem: Let B be the unit ball {z € R" : ||z|| < 1} and let F: B — B
be a smooth map from B to itself. Then F' has a fixed point, that is, there exists x such that
F(x) = .

proof:

Step 1: Show that there does not exist a differentiable map f : B® — S"~! = 9B" such
that f|sgn = identity. Since OB" is a compact, orientalbe manifold there is a nowhere
vanishing n—1 form w on S™~!. If we assume such an f exists then d(f*(w)) = f(d(w)) =
0 since w is an n — 1 form and dim(S"™') =n — 1, so dw = 0. Now by Stokes Theory we

o o= [Carn=[ re= | wro

since w is increasing. This serves as a contradiction.

Step 2: Assume there exists a differentiable g : B" — B™ with g(p) # p for all p € B". Then
the line through p and g(p) intersects dB™ at two points, so the ray starting at g(p) and
passing through p intersects 0B" at one point.

Let h : B" — 0B™ be the map given by p — t,(p — g(p)) where ¢, is some non-negative
real number so that ||g(p) +t,(p — g(p))|| = 1.

Then h is a continuous differentiable map and well defined because g(p) # p and h|spn =
tdentity which contradicts Step 1.

So it must be the case that the the Brouwer’s fixed point theorem is correct.

Question 13: (Clara)

Given o(u,v) = (acosucosv,bcosusinv, csinu), the parameterization of the ellipsoid, the
calculation for the Gaussian curvature is as follows:



0w = (—asinucosv, —bsinusinv, ccosu) 0y, = (—acosusinv, bcos ucosv,0)
0w = (= acosucosv, —bcosusinv, —csinu) Ouw = (asinusinv, —bsinucosv, 0)
0w = (—acosucosv, —bcosusinv, 0)

_ uX
n— ——
[P X &0l
E =< 0,,0, >= sin®u(a® cos® v + b sin® v) + ¢ cos® u
F =< 0,,0, >= (a® — b?) cos u cos v sin u sin v
G =< 04,0, >= cos’ u[(a® — b?) sin® v + b?]

L=y n— abccosu
O V22 costucos? v + a2c2 cost usin? v + a2b? cos? u sin? u
M=¢u -n=0
N = on— abc cos® u
O Vb2 costu cos? v 4 a2c? costusin v 4 a2b? cos? usin? u
K = —LN — M = gaussian curvature
- EG-F?

Question 14:

Question 15:



