
Practice Problems For Mathematics 4B03

Question 1 : (Carmo page 61)

An n-dimensional differentiable manifold with (regular) boundary is a set M and a family of
injective maps fα : Uα ⊂ Hn → M of open sets of Hn into M such that:

1.
⋃

α fα(Uα) = M

2. For all pairs α, β with fα(Uα)∩ fβ(Uβ) = W 6= φ the sets f−1
α (W ) and f−1

β (W ) are open

sets in Hn and the maps f−1
β ◦ fα, f−1

α ◦ fβ are differentiable.

3. The family {(Uα, fα)} is maximal relative to (1) and (2).

(i) S4 is an example of a four-dimensional compact manifold with boundary.

(ii) The mobius band is an example of a non-orientable two-dimensional compact manifold
with boundary.

(iii) A cone with a point removed or Hn, the half plane with dimension n, are both examples
of an orientable non-compact manifold with boundary.

Question 2 : (Hitchin page 23)

A vector field on a manifold M is a smooth map

X : M → TM =
⋃

a∈M

Ta

such that
p ◦X = idM .

• Ta when a ∈ M is the dual space of the quotient space T ∗
a = C∞(M)/Za

• C∞(M) is all the C∞ function on M . Recall that a function is C∞ if it has derivatives
of all orders.

• p : TM → M is the projection map which assigns Xa ∈ TaM to a. p has the property
that it is smooth with surjective derivative.

(i) For a, b ∈ H (the unit quaternions) with the regular definitions of i, j and k the following
6 vector fields are everywhere linearly independent on S3 × S3.

< ia, ib > < ia, jb >

< ja, jb > < ia, kb >

< ka, kb > < ja, kb >

(ii) Pictured on Camo page 101 for I = −2 where I is the index.



(iii) By Gauss-Bonet theorem there are no vector fields on S2 which have no zeros. The
explanation is as follows: Gauss Bonet Theorem states that

2πχ(M) = 2π
∑
pi∈A

I(pi) =

∫∫
M

kdA

where χ is the Euler characteristic, A = {p : V (p) = 0} where V is any vector field, and
I is the index of pi.

We know that χ(S2) = 2 however in order to have a vector filed V with no zeros we must
have that 2πχ(S2) = 0 which is impossible.

Question 3 : (Garrity page 122)

Let M be a manifold. An exterior differential k-form on M is a map ω such that

ω : M −→ ∧k(TpM)∗,

Written:
ω(p) =

∑
i1<...<ik

ai1...ik(p)(dxi1 ∧ ... ∧ dxik)p

for ij ∈ {1...n}, where each ai1...ik is differentiable.

(i) There are no closed 2-forms on S3 that are not exact.

(ii) A simple closed 1-form on the torus T 2, using the canonical parametrization in euclidian
space, is:

ω = dθ

(iii)

Question 4 : (mathworld)

A lie group is a differentiable manifold obeying the group properties and that satisfies the
additional condition that the group operations are differentiable.

The simplest examples of Lie groups are one-dimensional. Under addition, the real line is a
Lie group. After picking a specific point to be the identity element, the circle is also a Lie
group. Another point on the circle at angle θ from the identity then acts by rotating the circle
by the angle θ In general, a Lie group may have a more complicated group structure, such
as the orthogonal group O(n) (i.e., the orthogonal matrices), or the general linear group (i.e.,
the invertible matrices).

A Lie Group is a differentiable manifold G that is also a group in the algebraic sense, with
multiplication m : G×G −→ G and inversion i : G −→ G, both differentiable, given by:

m(g, h) = gh i(g) = g−1

Look at SO(3) = {A ∈ O(3) : det(A) = 1}:



This is clearly a group under matrix multiplication since I3 ∈ SO(3), matrix multiplication is
associative, and for A, B ∈ SO(3):

(AB)T = BT AT = B−1A−1 = (AB)−1 det(AB) = det(A)det(B) = 1

and

A−1 = AT ∈ SO(3) since det(A) = det(AT ) and AT ∈ O(3).

In SO(3), multiplication is differentiable because the matrix entries of AB are linear polyno-
mials of the entries of A and B, and inversion is differentiable because Cramer’s rule expresses
entries of A−1 as rational functions of entries of A.

Look at T 3 = S1 × S1 × S1:

We can easily see that S1 is a lie group by simply imbedding it in the complex plane. Then
S1 = {z ∈ C : |z| = 1}. This is a group under complex multiplication, and m(eiθ1 , eiθ2) =
ei(θ1+θ2) and i(eiθ1) = e−iθ1 are both clearly smooth maps.

Now, if G1 and G2 are lie groups, G1×G2 is also a lie group with componentwise multiplication,
so T 3 is a lie group.

Next, a basis for the tangent space of SO(3) at the identity is:

E1 =

 0 1 0
−1 0 0
0 0 0

 E2 =

 0 0 1
0 0 0
−1 0 0

 E3 =

0 0 0
0 0 1
0 −1 0

 .

Since SO(3) is a lie group, we can use the group action through left multiplication to cycle
through the group, so our linearly independent vector fields are:

ϕ(a) = aE1 ϕ(a) = aE2 ϕ(a) = aE3.

NOT DONE

Question 5: (Hitchin page 53)

An n-dimensional manifold is said to be orientable if it has an everywhere non-vanishing
n-form ω.

Rpn is orientable if n is odd and nonorientable if n is even. There is a map φ : Sn → Rpn

defined as φ : x 7→ [x] where [x] is the equivalency class of x ∼ −x where the det φ = (−1)n+1

so Sn has an orientation which will carry over to Rpn if the det φ = 1. This implies that if n
is odd Rpn has an orientation.

Yes, all Lie groups have an orientation. Pick any orientation at the identity point and then
move this orientation to any point p by using the group operation.



Question 6: (mathworld)

Let f : M → N be a map between two compact, connected, oriented n-dimensional manifolds
without boundary. Then f induces a homomorphism f∗ from the homology groups Hn(M)
to Hm(N), both canonically isomorphic to the integers, and so f∗ can be thought of as a
homomorphism of the integers. The integer d(f) to which the number 1 gets sent is called
the degree of the map f .

There is an easy way to compute d(f) if the manifolds involved are smooth. Let x ∈ N,
and approximate f by a smooth map homotopic to f such that x is a ”regular value” of
f (which exist and are everywhere by sard’s theorem). By the implicit function theorem,
each point in f−1(x) has a neighborhood such that restricted to it is a diffeomorphism. If
the diffeomorphism is orientation preserving, assign it the number −1, and if it is orientation
reversing, assign it the number −1. Add up all the numbers for all the points in f−1(x),
and that is the d(f), the degree of f . One reason why the degree of a map is important is
because it is a homotopy invariant. A sharper result states that two self-maps of the n-sphere
are homotopic iff they have the same degree. This is equivalent to the result that the n-th
homotopy group of the n-sphere is the set Z of integers. The isomorphism is given by taking
the degree of any representation.

One important application of the degree concept is that homotopy classes of maps from
n-spheres to n-spheres are classified by their degree (there is exactly one homotopy class of
maps for every integer n, and n is the degree of those maps).

A map F of degree one from the torus T 2 = S1 × S1 to the sphere S2 is given by:

F : (θ, φ) 7→ (θ′, φ′)

where
T 2 = S1 × S1 = ((a + b cos φ) cos θ, (a + b cos φ) sin θ, b sin φ)

and
S2 = (cos θ′ cos φ′, sin θ′ cos φ′, sin φ′)

Where F−1(π, 0) = (π, 0) and sign(DFπ,0) = 1 which implies that degF = 1.

Question 7: Since there are no exact 0-forms on T 2 or S2, and the closed forms on S2 and T 2 are
functions with df = 0 (constants). We have that

H0(T 2) ≈ H0(S2) ∼= R

Since every circle on S2 is contractible to a point and every 1-form on S2 can be seen as a
1-form on a circle in S2 because if you have a closed form ω on S2 by Poincare’s Lemma you
may take ω = df+ for some function f+ on the upper half of ω and ω = df− for some function
f− on the lower half. Since ∫

the equator

ω = 0



we have that ∮
df+ =

∮
df− = 0 ⇒

∮
df+ − df− = 0

Which gives d(f+ − f−) = 0 so f+ = f− + C for some constant C. So for S2 ω = d(f+) for
some function f , so ω is exact.

lemma: every closed 1-form is exact. So there are no closed non-exact 1-froms ⇒ H1(S2) =
{0}

T 2 on the other hand has 2-linenarly independent 1-froms dθ1, dθ2 where T 2 is paramaterized
by (eiθ1 , eiθ2 .

Any closed one-form on T 2 differes from c1dθ1 + c2dθ2 + ... c1, c2 ∈ R by an exact form. So
{closed forms/exact forms} ∼= R2 ⇒ H1(T 2) ≈ R2 and isomorphic to H0(T 2) and H0(S2), so

H2(T 2) ≈ R ≈ H2(S2)

Now to show that every differentiable map f : S2 → T 2 has degree zero we do

deg(f) =

∫ 2

S
f ∗ω∫ 2

T
ω

so ω is a closed form which is not exact because deg(f) = 0
something

= 0.

Question 8: .

To prove that Lxφ = ιxdφ + dιxφ where ιx : Ωp → Ωp−1, d : Ωp → Ωp+1, and Lx : Ωp → Ωp we
only need to check the formula on functions and 1-forms of the form dxi. So we let

α =
∑

ai1,...,ikdxi1 ∧ ... ∧ dxik .

So since α is a p-form ιxα(v1, ..., vp−1) = α(x, v1, ..., vp−1) and

Lxf = lim
t→0

φ∗t (f)− f

t
=

f ◦ φt − f

t
.

So the directional derivative of F in the direction of x is given by (ιxd + dιx)f = ιdf =
df(x) = x(f) = df(x). So Lx = ιxd+dιxwhich implies that Lxφ = (ιxd+dιx)φ = ιxdφ+dιxφ.

To computer Lxφ for X = x ∂
∂x

+ y ∂
∂y

+ z ∂
∂z

and φ = e−x2−y2−z2
dx ∧ dy ∧ dz on R2 we realize

that

= Lx(f(x, y, z)dx ∧ dy ∧ dz)

= (Lxf)dx ∧ dy ∧ dz + fd(Lxx) ∧ dy ∧ dz + fdx ∧ d(Lxy) ∧ dz + fdx ∧ dy ∧ d(Lxz)

where Lxx = (x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
)x = x so

= Lxfdx ∧ dy ∧ dz + 3fdx ∧ dy ∧ dz



we also note that

= Lxf

= (x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
)e−x2−y2−z2

+ x(e−x2−y2−z2

)(−2x) + y(e−x2−y2−z2

)(−2y) + z(e−x2−y2−z2

)(−2z)

= −(2x2 + 2y2 + 2z2)e−x2−y2−z2

so we complete the computation by doing

= Lxfdx ∧ dy ∧ dz + 3fdx ∧ dy ∧ dz

= −(2x2 + 2y2 + 2z2)e−x2−y2−z2

dx ∧ dy ∧ dz + 3e−x2−y2−z2

dx ∧ dy ∧ dz

Question 9:

Question 10: (Garrity page 138)

Stoke’s Theory: Let M be an oriented k-dimensional manifold in Rn with boundary ∂M , a
smooth (k−1)-dimensional manifold with orientation induced from the orientation of M . Let
ω be a differential (k − 1)-form. Then:∫

M

dω =

∫
∂M

ω.

This is the quantitative version of the intuition that the

average of a function on boundary = average of a derivative on interior.

We will define S− to be the sphere x2 + y2 + z2 ≤ 1 and S+ to be the sphere x2 + y2 + z2 ≤ 4.
and not that

∫
S2 Pdy ∧ dz + Qdz ∧ dx + Rdx ∧ dy =

∫
(P, Q, R) · ~n where ~n is the normal to

the sphere. Finally as given

ω =
xdy ∧ dz + ydz ∧ dx + zdx ∧ dy

x2 + y2 + z2

for S+ ∫
x2+y2+z2=1

(x, y, z)

4
· (x, y, z)

z
=

∫
S2(2)

1

2
=

1

2
vol(S2(2)) =

1

2
4π · 4 = 8π

for S− ∫
x2+y2+z2=1

(x, y, z) · (x, y, z) =

∫
S2

1 = 4π

So ∫
∂M

=

∫
S+

ω −
∫

S−
ω = 8π − 4π = 4π

Now it is necessary to check
∫

dω against Stokes Theorem.



dω = 3
dx ∧ dy ∧ dz

x2 + y2 + z2
− (2x2 + 2y2 + 2z2)dx ∧ dy ∧ dz

(x2 + y2 + z2)2

= 3
dx ∧ dy ∧ dz

x2 + y2 + z2
− 2

dx ∧ dy ∧ dz

x2 + y2 + z2

=
dx ∧ dy ∧ dz

x2 + y2 + z2

and to take the integral we use polar co-ordinates and since the angles don’t matter the
integral will be the volume of the sphere∫

S2

dθdφ =

∫ 2

1

1

r2
· r2dr = 4π

so we have that
∫

M
dω =

∫
∂M

ω as desired.

Question 11:

Question 12: (Hitchin page 61)

Brouwer’s fixed point theorem: Let B be the unit ball {x ∈ Rn : ||x|| ≤ 1} and let F : B → B
be a smooth map from B to itself. Then F has a fixed point, that is, there exists x such that
F (x) = x.

proof:

Step 1: Show that there does not exist a differentiable map f : Bn → Sn−1 = ∂Bn such
that f |∂Bn = identity. Since ∂Bn is a compact, orientalbe manifold there is a nowhere
vanishing n−1 form ω on Sn−1. If we assume such an f exists then d(f ∗(ω)) = f(d(ω)) =
0 since ω is an n− 1 form and dim(Sn−1) = n− 1, so dω = 0. Now by Stokes Theory we
have:

0 =

∫ n

B

d(f ∗(ω)) =

∫
∂Bn

f ∗(ω) =

∫
∂Bn

ω 6= 0

since ω is increasing. This serves as a contradiction.

Step 2: Assume there exists a differentiable g : Bn → Bn with g(p) 6= p for all p ∈ Bn. Then
the line through p and g(p) intersects ∂Bn at two points, so the ray starting at g(p) and
passing through p intersects ∂Bn at one point.

Let h : Bn → ∂Bn be the map given by p 7→ tp(p− g(p)) where tp is some non-negative
real number so that ||g(p) + tp(p− g(p))|| = 1.

Then h is a continuous differentiable map and well defined because g(p) 6= p and h|∂Bn =
identity which contradicts Step 1.

So it must be the case that the the Brouwer’s fixed point theorem is correct.

Question 13: (Clara)

Given σ(u, v) = (a cos u cos v, b cos u sin v, c sin u), the parameterization of the ellipsoid, the
calculation for the Gaussian curvature is as follows:



σu = (−a sin u cos v,−b sin usinv, c cos u) σv = (−a cos u sin v, b cos ucosv, 0)

σuu = (= a cos u cos v,−b cos u sin v,−c sin u) σuv = (a sin u sin v,−b sin u cos v, 0)

σvv = (−a cos u cos v,−b cos u sin v, 0)

n =
φu × φv

||φu × φv||
E =< σu, σu >= sin2 u(a2 cos2 v + b2 sin2 v) + c2 cos2 u

F =< σu, σv >= (a2 − b2) cos u cos v sin u sin v

G =< σv, σv >= cos2 u[(a2 − b2) sin2 v + b2]

L = φuu · n =
abc cos u√

b2c2 cos4 u cos2 v + a2c2 cos4 u sin2 v + a2b2 cos2 u sin2 u

M = φuv · n = 0

N = φvv · n =
abc cos3 u√

b2c2 cos4 u cos2 v + a2c2 cos4 u sin2 v + a2b2 cos2 u sin2 u

K =
LN −M2

EG− F 2
= gaussian curvature

Question 14:

Question 15:


