Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Paul Vrbik
University of Western Ontario

July 8, 2009

ORC[@Y

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

L Lazy Computations

Delayed / Lazy Computation

Lazy computation is an environment where calculations are made
only when absolutely necessary.

@ The functional language Haskell is a “lazy” language which
allows for the creation of infinite lists.

@ Stephen Watt used delayed computation to work with power
series in scratchpad.

ORC[@Y

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

L Lazy Computations

How to make a polynomial lazy:
@ Impose some ordering on the polynomial's terms.
@ Only allow access to a single term of the polynomial.

@ Do the as little work as possible to calculate that term.

f=x'y +x°y*+34+04+0+--
=ht+hth+htft
= #f=3

Our ordering is actually some monomial ordering . When | say
“largest term” or “in order” | mean the “>-largest term” or
“>—-order" (respectively).

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

L Lazy Computations

What is the goal of lazy polynomial arithmetic?

@ To calculate the n-th term of f x g, f + g or f + g using as
few terms of f and g as possible.

ORC[@Y

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

L Lazy Computations

Polynomial Multiplication

Classical Multiplication

fxg=(fxg+fxg)+fxg)+---+fxgmwhere
additions are done using a simple merge (requires all of g!l).
Cost : O(#f+#g?) =-comparisons for sparse polynomials.

Sort method

Sort L = [fig1,...,fng1,1182, - a8, ,F1&m,- .., m&m] and
collect like terms.

Cost : Space to store O(#f+#g) terms.

Merge method

Do a simultaneous m-ary merge on the set of sorted sequences
S:{(f1g17"'7fngl)u"'7(figm7"'7fngm)}' m

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

L Lazy Computations

Heap Multiplication

Johnson's Heap Multiplication

Use a heap, initialized to contain f1g1,fig, ..., 1&m to merge the
m sequences (still uses all of g!).

Cost : O(#f+#glog #g) =-comparisons for sparse polynomials.

Our Heap Multiplication

Use a heap, initialized to contain f1, and a replacement scheme to
merge the m sequences.

ORC[@Y

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

L Lazy Computations

Generalizing this idea we get a replacement scheme for the heap.
i+ o+ fo+ fo+ ..

g3 e——»>e——po———po——»

+

Figure: Points represent the terms of f x g, arrows indicate the next
>—-largest term.

ORC[@Y

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

L Lazy Computations

Generalizing this idea we get a replacement scheme for the heap.
i+ o+ fo+ fo+ ..

g3 e——»>e——po———po——»

+

Figure: Points represent the terms of f x g, arrows indicate the next
>—-largest term.

@ Heap can only get as big as O(#g).

ORC[@Y

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

L Lazy Computations

Generalizing this idea we get a replacement scheme for the heap.
i+ o+ fo+ fo+ ..

g3 e——»>e——po———po——»

+

Figure: Points represent the terms of f x g, arrows indicate the next
>—-largest term.

@ Heap can only get as big as O(#g).
@ Product has at most #f - #g terms.

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

L Lazy Computations

Generalizing this idea we get a replacement scheme for the heap.
i+ o+ fo+ fo+ ..

gl e——>e——poe——peo——»
+
g2 e—»e——po——po—»
+

g3 e——»>e——po———po——»

+

Figure: Points represent the terms of f x g, arrows indicate the next
>—-largest term.

@ Heap can only get as big as O(#g).
@ Product has at most #f - #g terms.

= Worst-case space complexity for heap multiplication is

O(#f#g + #g). QECHl

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications
L Lazy Computations

Heap Division

For f =+ g construct the quotient g and remainder r such that
f —qg — r =0. We use a heap to store the sum f — gg by
merging the set of #qg + 1 sequences

{(fly ey fn)7 (_C/lgh sy _qu1)7 sy (_qlgn"H ey _qum)}

Alternatively we may see the heap as storing the sum

m
f—zgix(qlJrCIererQk)
i=1

where #g = m, #q = k and the terms g; may be unknown. That
is, it possible that we remove —q;_1g; before g; is known, in which
case we would sleep the term —gq;g;. ORC[®

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

L Lazy Computations

Lazy Arithmetic

H = ADD(F, G)
@ O(#f + #g) monomial comparisons.
@ Space complexity is O(#h).
H = MULT(F, G)
o O(#f#g log #g)monomial comparisons.
@ Space complexity is O(#1#g + #g).
Q, R = DIVIDE(F, G)
o O((#f + #q+#g)log#g)) monomial comparisons.
@ Space complexity is O(1 + #g + #q + #r).

ORC[@Y

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications
L Lazy Computations
I—Fulfgetful Polynomials

Forgetful Polynomial

A forgetful polynomial is a variant of a lazy polynomial where
calculated terms are not stored. That is, unlike lazy polynomials,
we can not re-access terms.

Furthermore access is only given in >-order.

How to make a polynomial forgetful:
@ Impose ordering () on the polynomial’s terms

@ Only allow access to single terms of the polynomial by way of
a next command.

ORC[@Y

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications
L Lazy Computations
I—Furgetful Polynomials

Forgetful Arithmetic

@ The forgetful operations are different as they may or may not
be able to return / accept forgetful polynomials.

@ Full generalization of forgetful polynomial arithmetic is
“impossible”.

Regardless of the scheme used to calculate f X g, it is necessary to
multiply every term of f with g. Since we are limited to single
time access to terms this task is impossible. If we calculate f;g» we
can not calculate f>g; and vice versa.

ORC[@Y

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications
L Lazy Computations
I—Furgetful Polynomials

Forgetful Arithmetic

H = ADD(F, G)
@ H,F,G can all be forgetful.
@ Space complexity is O(1).
H = MULT(F, G)
@ F and G can not be forgetful.
@ H can be forgetful. (Important!)
@ Space complexity is O(#g).
Q, R = DIVIDE(F, G)
@ G and Q can not be forgetful. (F— Q x G — R =0).
@ F.R can be forgetful. (Important!)

@ Space complexity is O(1 + #g + #q). ORCEY

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications
I—Appliu:ations

Why forget? Consider the division

A-B-C-D

£ = Q with R =0.

Why store the sub-expression A- B — C - D if you only care about
Q?
Space complexity using the heap algorithms classically

O(#A#B + #CH#D + #B + #D + #E + #Q)

multiplication for dividend division

4

Space complexity using forgetful algorithms

O(#A+#B+#C+#D+#B+#D+#E+#Q)

mu|t|p||cat|on for dividend d|V|S|on

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications
I—Applications
L Bariess’ Algorithm

Bareiss’ Algorithm for fraction free-determinant calculation.

Input: M an n-square matrix with entries in an integral domain D.
Output: det(M).

1: M0,0 — 1;

2. fork=1ton—1do

3 for i=k+1tondo

4 for j=k+1tondo

5: M« Ses= Mol (Exact division.}
6 end for

7 end for

8: end for

9: return (M), ,

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications
I—A|:u|:uli1:ations
L Bariess’ Algorithm

Bariess' Algorithm Weaknesses

Let

X1
X2
A=1| X3

X9

X2
X1
X2

X3
X2
X1

X3

X9
X3
X7

X2 X1

When calculating det(A) using Bareiss' algorithm the last division

will have:

@ A dividend of 128,530 terms.
@ A divisor of 427 terms.

@ A quotient of 6,090 terms (this is the determinant).

4

Paul Vrbik University of Western Ontario

Lazy Polynomial Arithmetic and Applications

ORCEY

Lazy Polynomial Arithmetic and Applications
I—A|:||:|Ii1:a1tions
L Bariess’ Algorithm

Let Q = W be the division of line 5 of the Bareiss
algorithm and « = max(#A, #B) + max(#C, #D). The following
is a measurement of memory used by our implementation of the
Bareiss algorithm using forgetful polynomials to calculate M, ,

when given the Toeplitz matrix generated by [x1, ..., x7].
n| #A | #B | #C | #D | #E | #A#B+#C#D | a+ #E + #Q
51 12 15 17 17 4 469 106
6| 35 51 55 55 12 4810 306
71 35 62 70 70 12 7070 326
8| 120 | 182 | 188 | 188 | 35 57184 832

For n = 8 the total space is reduced by a factor of 57184/832 = 68
(compared to a Bareiss implementation that explicitly stores the
quotient), which is significant.

ORC[@Y

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications
I—Applications
I—Suhresultants

Pseudo-remainders
For f =3x3 + x>+ x + 5,8 = 5x?> — 3x + 1 € Z[x], dividing f by
g would produce the quotient and remainder

3., 1 52, 111
=—x+— and r=—x+—.
9I=5%" 25 25 " 5

Whereas, if we premultiplied f by 5% and divided 5°f by g we
would get a pseudo-quotient and pseudo-remainder

g=15x+14 and 7 =52x+ 111.

Moreover, no fractions appear while executing the division
algorithm thereby avoiding calculations in Q.

ORC[@Y

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

L Applications

L Subresultants

The Extended Subresultant algorithm.

Input: The polynomials u, v € D[x] where deg, (u) > deg, (v).

Output: r = Res(u, v, x) and s, t € D[x] satisfying

R ol
oMo

CoOoNA RN

s-u+t-v=Res(u,v,x)= u!=5s/Res(u,v,x) mod v in
D/p[x]/v.

(g, h) — (1, —1); (So, s1, to, tl) — (1, 0,0, 1);
while deg, (v) # 0 do

d «— deg, (u) — deg,(v);

7« prem(u, v, x); {Fis big.} § < pquo(u,v,x);
U<+ v, o« lcoeff, (v)dH;
(Sat)<—(04'50—51'Ela0¢'t0—t1'57);

v« F+ (—g - h?); {Exact division.}

(507 tO) — (513 t]_),

(s, t1) < (s (g h),t = (—g - h?));

g «— lcoeff, (u);

h—(-g)"+h"

. end while
c(rys,t) — (v,s1,t1);

return v, sy, ty;
Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

ORC[@Y

Lazy Polynomial Arithmetic and Applications
I—A|:u|:uli1:ations
I—Subresultants

Consider the two polynomials;

8
f:xf—FZ(x,-—Fx,-?’)

i=1
8
g=x+Y X
i=1
Z|x1,...,x9]. When we apply the extended subresultant algorithm

to these polynomials we find that in the last iteration, the
pseudo-remainder ¥ has 427,477 terms but the quotient v has only
15,071 (v is the resultant in this case).

ORC[@Y

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications
I—A|:||:|Ii1:a1tions
I—Suhresultants

Let 7, g be from line 5 and v, —g - h¥ be from line 10 of Algorithm
7. The following is a measurement of the memory used by our
implementation of the extended subresultant algorithm using
forgetful polynomials to calculate Res(f, g, x1) where

5 5
f:xf—l—Z(x;—i—x?),g:xf—FZx,-z € Zlxi, ..., x5
i=1 i=1
at iteration n.
n| #r #a | #v | #(—g-h7)
1 29 7 29 1
2 108 6 108 1
3 634 57 634 1
4 | 14,692 | 2412 | 2,813 70

ORC[@Y

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

L Implementation

Implementation

@ Implementation was done in C and then interfaced with Maple
by way of a custom wrapper.

@ Uses a “packed representation” for monomials which yields
fast monomial comparisons and multiplications.

ORC[@Y

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

L Implementation

Benchmarks

Table: Benchmarks for Maple's SDMP package, Maple 11, and our Lazy

package.
f x g mod 503 (fg) ~ f mod 503
SDMP | Maplell | Lazy | SDMP | Maplell | Lazy
f=(1+x+y3)00 0.5 12.3 4.9 0.6 18.3 4.9
g=(1+x3+y)1®
f=Q+x+y>+2%% | 026 6.26 1.2 0.28 12.6 1.4
g=1+z+y%+x3)2
f=0Q+x+y3+2%5%0 | 035 8.19 1.3 0.38 12.6 1.4
g:(1+z+y3+xs)20

Paul Vrbik University of Western Ontario

Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

L Implementation

data structure for lazy polynomial.

1 | struct poly {

2 int N;

3 TermType xterms;

4

5 struct poly xF1;

6 struct poly xF2;

7 TermType (xMethod)(int n, struct poly x*F,
8 struct poly %G, struct poly *H);
9

10 int state [6];

11 HeapType xHeap;

2 |}

13

14 |typedef struct poly PolyType;

ORC[@Y

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

L Implementation

o 0 hr W N R

TermType Term (int n, PolyType *F) {
if (n>F—>N) {
return F—>Method (n,F—>F1,F—>F2,F);
}

return F—>terms[n];

}i

This procedure would be invoked like this:

Term(1,F).mono;
Term(1,F). coeff;

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

ORC[@Y

Lazy Polynomial Arithmetic and Applications

L Implementation

Conclusion

Contributions:
@ Development of the lazy / forgetful algorithms.
@ Proofs for space complexities of lazy / forgetful algorithms.

@ Reducing space complexity of Bareiss' algorithm from
quadratic to linear.

@ A subresultant algorithm where explicitly storing large
pseudo-remainders is not necessary.

(]

High performance C-implementation of these ideas.

ORC[@Y

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Thanks!

a

ORC()
«O)» «F» =

	Lazy Computations
	Forgetful Polynomials

	Applications
	Bariess' Algorithm
	Subresultants

	Implementation
	

