Lazy Polynomial Arithmetic and Applications

Paul Vrbik University of Western Ontario

July 8, 2009

イロメ イ押メ イヨメ イヨメ

Paul Vrbik University of Western Ontario [Lazy Polynomial Arithmetic and Applications](#page-34-0)

Delayed / Lazy Computation

Lazy computation is an environment where calculations are made only when absolutely necessary.

Example

- The functional language Haskell is a "lazy" language which allows for the creation of infinite lists.
- **•** Stephen Watt used delayed computation to work with power series in scratchpad.

イロメ イ何 メラモン イラメ

How to make a polynomial lazy:

- **IMPODE** some ordering on the polynomial's terms.
- Only allow access to a single term of the polynomial.
- Do the as little work as possible to calculate that term.

$$
f = x4y + x2y2 + 3 + 0 + 0 + \cdots
$$

= f₁ + f₂ + f₃ + f₄ + f₅ + \cdots

$$
\Rightarrow \# f = 3
$$

Remark

Our ordering is actually some monomial ordering \succ . When I say "largest term" or "in order" I mean the "≻-largest term" or "≻-order" (respectively).

a mills.

- 4 m +

 \rightarrow \pm \rightarrow

What is the goal of lazy polynomial arithmetic?

• To calculate the *n*-th term of $f \times g$, $f + g$ or $f \div g$ using as few terms of f and g as possible.

 4 ロ) 4 何) 4 ミ) 4 (=)

Polynomial Multiplication

Classical Multiplication

 $f \times g = ((f \times g_1 + f \times g_2) + f \times g_3) + \cdots + f \times g_m$ where additions are done using a simple merge (requires all of $g($!). Cost : $O(\#f\#g^2)$ ≻-comparisons for sparse polynomials.

Sort method

Sort $L = [f_1g_1, \ldots, f_ng_1, f_1g_2, \ldots, f_ng_2, \ldots, f_1g_m, \ldots, f_ng_m]$ and collect like terms.

Cost : Space to store $O(\#f\#g)$ terms.

Merge method

Do a simultaneous *m*-ary merge on the set of *sorted* sequences

$$
S = \{ (f_1g_1,\ldots,f_ng_1),\ldots,(f_1g_m,\ldots,f_ng_m) \}.
$$

Lazy Computations

Heap Multiplication

Johnson's Heap Multiplication

Use a heap, initialized to contain $f_1g_1, f_1g_2, \ldots, f_1g_m$ to merge the *m* sequences (*still* uses all of g !). Cost : $O(\#f\#g \log \#g)$ ≻-comparisons for sparse polynomials.

Our Heap Multiplication

Use a heap, initialized to contain f_1 , and a replacement scheme to merge the *m* sequences.

イロト イ押ト イチト イチト

Lazy Computations

Heap Multiplication

a mills. ← ← 一 \equiv \mathbf{y} $\rightarrow \equiv$

B

E

Lazy Computations

Heap Multiplication

E

Generalizing this idea we get a replacement scheme for the heap.

Figure: Points represent the terms of $f \times g$, arrows indicate the next ≻-largest term.

a mills.

Generalizing this idea we get a replacement scheme for the heap.

Figure: Points represent the terms of $f \times g$, arrows indicate the next ≻-largest term.

• Heap can only get as big as $O(\#g)$.

 $AB = 4B + 4B +$

へのへ

Generalizing this idea we get a replacement scheme for the heap.

Figure: Points represent the terms of $f \times g$, arrows indicate the next ≻-largest term.

- Heap can only get as big as $O(\#g)$.
- Product has at most $\#f \cdot \#g$ terms.

 $A \cap B$ $A \cap A \cap B$ $B \cap A \cap B$ B

へのへ

Generalizing this idea we get a replacement scheme for the heap.

Figure: Points represent the terms of $f \times g$, arrows indicate the next ≻-largest term.

- Heap can only get as big as $O(\#g)$.
- Product has at most $\#f \cdot \#g$ terms.
- \Rightarrow Worst-case space complexity for heap multiplication is $O(\# f \# g + \# g)$. イロト イ押ト イチト イチト

Heap Division

For $f \div g$ construct the quotient q and remainder r such that $f - qg - r = 0$. We use a heap to store the sum $f - qg$ by merging the set of $\#q + 1$ sequences

$$
\{(f_1,\ldots,f_n),(-q_1g_1,\ldots,-q_kg_1),\ldots,(-q_1g_m,\ldots,-q_kg_m)\}.
$$

Alternatively we may see the heap as storing the sum

$$
f-\sum_{i=1}^mg_i\times(q_1+q_2+\ldots+q_k)
$$

where $\#g = m$, $\#q = k$ and the terms q_i may be unknown. That is, it possible that we remove $-q_{i-1}\mathbf{g}_j$ before q_i is known, in which case we would sleep the term $-q_i$ gj.

イロメ イタメ イチメ イチメ

റെ റ

Lazy Arithmetic

$H = ADD(F, G)$

- \bullet $O(\#f + \#g)$ monomial comparisons.
- Space complexity is $O(\#h)$.
- $H = \text{MULT}(F, G)$
	- \bullet $O(\#f\#g \log \#g)$ monomial comparisons.
	- Space complexity is $O(\#f\#g + \#g)$.
- $Q, R = DIVIDE(F, G)$
	- \bullet $O((\#f + \#q \#g) \log \#g))$ monomial comparisons.
	- Space complexity is $O(1 + \#g + \#q + \#r)$.

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

へのへ

Lazy Computations

Forgetful Polynomials

Forgetful Polynomial

A forgetful polynomial is a variant of a lazy polynomial where calculated terms are not stored. That is, unlike lazy polynomials, we can not re-access terms.

Furthermore access is only given in \succ -order.

How to make a polynomial forgetful:

- Impose ordering (\succ) on the polynomial's terms
- Only allow access to single terms of the polynomial by way of a next command.

イロメ イ押メ イヨメ イヨメ

Lazy Computations

Forgetful Polynomials

Forgetful Arithmetic

- The forgetful operations are different as they may or may not be able to return / accept forgetful polynomials.
- Full generalization of forgetful polynomial arithmetic is "impossible".

Why?

Regardless of the scheme used to calculate $f \times g$, it is necessary to multiply every term of f with g . Since we are limited to single time access to terms this task is impossible. If we calculate f_1g_2 we can not calculate f_2g_1 and vice versa.

イロメ イ押メ イヨメ イヨメ

Lazy Computations

Forgetful Polynomials

Forgetful Arithmetic

$H = ADD(F, G)$

- \bullet H, F, G can all be forgetful.
- Space complexity is $O(1)$.

 $H = \text{MULT}(F, G)$

- F and G can not be forgetful.
- \bullet H can be forgetful. (Important!)
- Space complexity is $O(\#g)$.

$Q, R = DIVIDE(F, G)$

- \bullet *G* and *Q* can *not* be forgetful. ($F Q \times G R = 0$).
- \bullet F, R can be forgetful. (Important!)
- Space complexity is $O(1 + \#g + \#q)$.

イロト イ押ト イチト イチト

Applications

Why forget? Consider the division

$$
\frac{A \cdot B - C \cdot D}{E} = Q \text{ with } R = 0.
$$

Why store the sub-expression $A \cdot B - C \cdot D$ if you only care about Q?

Paul Vrbik University of Western Ontario [Lazy Polynomial Arithmetic and Applications](#page-0-0)

L Applications

Bariess' Algorithm

Bareiss' Algorithm for fraction free-determinant calculation.

Input: M an *n*-square matrix with entries in an integral domain D . Output: det(M).

 4 ロ) 4 何) 4 ミ) 4 (=)

 Ω

L Applications

Bariess' Algorithm

Bariess' Algorithm Weaknesses

Let

.

When calculating $det(A)$ using Bareiss' algorithm the last division will have:

- A dividend of 128,530 terms.
- A divisor of 427 terms
- A quotient of 6,090 terms (this is the determinant).

L Applications

Bariess' Algorithm

Let $Q = \frac{A \times B - C \times D}{F}$ be the division of line 5 of the Bareiss algorithm and $\alpha = \max(\#A, \#B) + \max(\#C, \#D)$. The following is a measurement of memory used by our implementation of the Bareiss algorithm using forgetful polynomials to calculate $M_{n,n}$ when given the Toeplitz matrix generated by $[x_1, \ldots, x_7]$.

For $n = 8$ the total space is reduced by a factor of $57184/832 = 68$ (compared to a Bareiss implementation that explicitly stores the quotient), which is significant.

 4 ロ) 4 何) 4 ミ) 4 (=)

L Applications

Subresultants

Pseudo-remainders

For $f = 3x^3 + x^2 + x + 5$, $g = 5x^2 - 3x + 1 \in \mathbb{Z}[x]$, dividing f by g would produce the quotient and remainder

$$
q = \frac{3}{5}x + \frac{14}{25}
$$
 and $r = \frac{52}{25}x + \frac{111}{25}$.

Whereas, if we premultiplied f by 5^2 and divided 5^2f by g we would get a pseudo-quotient and pseudo-remainder

$$
\tilde{q} = 15x + 14
$$
 and $\tilde{r} = 52x + 111$.

Moreover, no fractions appear while executing the division algorithm thereby avoiding calculations in Q.

イロメ イ押メ イヨメ イヨメ

L Applications

LSubresultants

The Extended Subresultant algorithm. **Input:** The polynomials $u, v \in \mathcal{D}[x]$ where $\text{deg}_x(u) > \text{deg}_x(v)$. **Output:** $r = \text{Res}(u, v, x)$ and $s, t \in \mathcal{D}[x]$ satisfying $s \cdot u + t \cdot v = \text{Res}(u, v, x) \Rightarrow u^{-1} \equiv s / \text{Res}(u, v, x) \mod v$ in $\mathcal{D}/\mathcal{D}[x]/v$. 1: (g, h) ← $(1, -1)$; (s_0, s_1, t_0, t_1) ← $(1, 0, 0, 1)$; 2: while $\text{deg}_x(v) \neq 0$ do 3: $d \leftarrow deg_x(u) - deg_x(v);$ 4: $\tilde{r} \leftarrow \text{prem}(u, v, x); \{\tilde{r} \text{ is big.}\} \tilde{q} \leftarrow \text{pquo}(u, v, x);$ 5: $u \leftarrow v$; $\alpha \leftarrow \texttt{loeff}_x \left(v \right)^{d+1}$; 6: $(s, t) \leftarrow (\alpha \cdot s_0 - s_1 \cdot \tilde{q}, \alpha \cdot t_0 - t_1 \cdot \tilde{q});$ 7: $v \leftarrow \tilde{r} \div (-g \cdot h^d);$ {Exact division.} 8: $(s_0, t_0) \leftarrow (s_1, t_1)$; 9: $(s_1, t_1) \leftarrow (s \div (-g \cdot h^d), t \div (-g \cdot h^d));$ 10: $g \leftarrow \text{loeff}_x(u)$; 11: $h \leftarrow (-g)^d \div h^{d-1}$; $12₁$ end while 13: $(r, s, t) \leftarrow (v, s_1, t_1)$; 14: **return** $v, s_1, t_1;$ → 伊 ▶ → ヨ ▶ → ヨ ▶ Paul Vrbik University of Western Ontario [Lazy Polynomial Arithmetic and Applications](#page-0-0)

L Applications

Subresultants

Example

Consider the two polynomials;

$$
f = x_1^6 + \sum_{i=1}^8 (x_i + x_i^3)
$$

$$
g = x_1^4 + \sum_{i=1}^8 x_i^2
$$

 $\mathbb{Z}[x_1,\ldots,x_9]$. When we apply the extended subresultant algorithm to these polynomials we find that in the last iteration, the pseudo-remainder \tilde{r} has 427, 477 terms but the quotient v has only 15, 071 (ν is the resultant in this case).

 4 ロ) 4 何) 4 ミ) 4 (=)

L Applications

Subresultants

Let \tilde{r},\tilde{q} be from line 5 and $v,-g\cdot h^d$ be from line 10 of Algorithm 7. The following is a measurement of the memory used by our implementation of the extended subresultant algorithm using forgetful polynomials to calculate Res(f, g, x_1) where

$$
f = x_1^8 + \sum_{i=1}^5 (x_i + x_i^3), g = x_1^4 + \sum_{i=1}^5 x_i^2 \in \mathbb{Z}[x_1, \ldots, x_5]
$$

at iteration n.

 $\mathcal{A} \left(\overline{m} \right) \leftarrow \mathcal{A} \left(\overline{m} \right) \leftarrow \mathcal{A} \left(\overline{m} \right) \leftarrow$

Implementation

- Implementation was done in C and then interfaced with Maple by way of a custom wrapper.
- Uses a "packed representation" for monomials which yields fast monomial comparisons and multiplications.

 4 ロ) 4 何) 4 ミ) 4 (=)

Benchmarks

Table: Benchmarks for Maple's SDMP package, Maple 11, and our Lazy package.

 4 ロ) 4 何) 4 ミ) 4 (=)

 000

扂

data structure for lazy polynomial.

```
1 struct poly {
2 int N:
3 TermType *terms;
4
5 struct poly *F1;
6 struct poly *F2;
7 TermType (* Method ) (int n, struct poly *F,
8 struct poly *G, struct poly *H ;
9
10 int state [6];
11 HeapType ∗Heap ;
12 \mid \};
13
14 typedef struct poly PolyType;
```


イロメ イ何 メラモン イラメ

 Ω

```
1 TermType Term (int n, PolyType *F) {
2 if (n > F \rightarrow N) {
\overline{3} return F->Method(n, F->F1, F->F2, F);
4 }
5 | return F->terms [n];
6 | };
```
This procedure would be invoked like this:

```
1 \mid Term(1, F). mono;
2 \mid Term(1, F). coeff;
```


イロメ イ押メ イヨメ イヨメ

Conclusion

Contributions:

- Development of the lazy / forgetful algorithms.
- \bullet Proofs for space complexities of lazy / forgetful algorithms.
- Reducing space complexity of Bareiss' algorithm from quadratic to linear.
- A subresultant algorithm where explicitly storing large pseudo-remainders is not necessary.
- **•** High performance C-implementation of these ideas.

イロト イ押ト イチト イチト

Thanks!

Paul Vrbik University of Western Ontario [Lazy Polynomial Arithmetic and Applications](#page-0-0)