
Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Paul Vrbik
University of Western Ontario

July 8, 2009

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Lazy Computations

Delayed / Lazy Computation

Lazy computation is an environment where calculations are made
only when absolutely necessary.

Example

The functional language Haskell is a “lazy” language which
allows for the creation of infinite lists.

Stephen Watt used delayed computation to work with power
series in scratchpad.

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Lazy Computations

How to make a polynomial lazy:

Impose some ordering on the polynomial’s terms.

Only allow access to a single term of the polynomial.

Do the as little work as possible to calculate that term.

f = x4y + x2y2 + 3 + 0 + 0 + · · ·

= f1 + f2 + f3 + f4 + f5 + · · ·

⇒ #f = 3

Remark

Our ordering is actually some monomial ordering ≻. When I say
“largest term” or “in order” I mean the “≻-largest term” or
“≻-order” (respectively).

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Lazy Computations

What is the goal of lazy polynomial arithmetic?

To calculate the n-th term of f × g , f + g or f ÷ g using as
few terms of f and g as possible.

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Lazy Computations

Polynomial Multiplication

Classical Multiplication

f × g = ((f × g1 + f × g2) + f × g3) + · · ·+ f × gm where
additions are done using a simple merge (requires all of g !l).
Cost : O(#f #g2) ≻-comparisons for sparse polynomials.

Sort method

Sort L = [f1g1, . . . , fng1, f1g2, . . . , fng2, . . . , f1gm, . . . , fngm] and
collect like terms.
Cost : Space to store O(#f #g) terms.

Merge method

Do a simultaneous m-ary merge on the set of sorted sequences

S = {(f1g1, . . . , fng1), . . . , (f1gm, . . . , fngm)}.

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Lazy Computations

Heap Multiplication

Johnson’s Heap Multiplication

Use a heap, initialized to contain f1g1, f1g2, . . . , f1gm to merge the
m sequences (still uses all of g !).
Cost : O(#f #g log #g) ≻-comparisons for sparse polynomials.

Our Heap Multiplication

Use a heap, initialized to contain f1, and a replacement scheme to
merge the m sequences.

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Lazy Computations

Heap Multiplication

f1 f2 f3 f4 f5

g1

g2

g3

g4

g5

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Lazy Computations

Heap Multiplication

f1 f2 f3 f4 f5

g1

g2

g3

g4

g5

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Lazy Computations

Heap Multiplication

f1 f2 f3 f4 f5

g1

g2

g3

g4

g5

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Lazy Computations

Heap Multiplication

f1 f2 f3 f4 f5

g1

g2

g3

g4

g5

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Lazy Computations

Heap Multiplication

f1 f2 f3 f4 f5

g1

g2

g3

g4

g5

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Lazy Computations

Heap Multiplication

f1 f2 f3 f4 f5

g1

g2

g3

g4

g5

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Lazy Computations

Generalizing this idea we get a replacement scheme for the heap.

f1

g1

f2

g2

f3

g3

f4+ + + + . . .

+

+

+
.
.
.

Figure: Points represent the terms of f × g , arrows indicate the next
≻-largest term.

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Lazy Computations

Generalizing this idea we get a replacement scheme for the heap.

f1

g1

f2

g2

f3

g3

f4+ + + + . . .

+

+

+
.
.
.

Figure: Points represent the terms of f × g , arrows indicate the next
≻-largest term.

Heap can only get as big as O(#g).

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Lazy Computations

Generalizing this idea we get a replacement scheme for the heap.

f1

g1

f2

g2

f3

g3

f4+ + + + . . .

+

+

+
.
.
.

Figure: Points represent the terms of f × g , arrows indicate the next
≻-largest term.

Heap can only get as big as O(#g).
Product has at most #f ·#g terms.

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Lazy Computations

Generalizing this idea we get a replacement scheme for the heap.

f1

g1

f2

g2

f3

g3

f4+ + + + . . .

+

+

+
.
.
.

Figure: Points represent the terms of f × g , arrows indicate the next
≻-largest term.

Heap can only get as big as O(#g).
Product has at most #f ·#g terms.

⇒ Worst-case space complexity for heap multiplication is
O(#f #g + #g).

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Lazy Computations

Heap Division

For f ÷ g construct the quotient q and remainder r such that
f − qg − r = 0. We use a heap to store the sum f − qg by
merging the set of #q + 1 sequences

{(f1, . . . , fn), (−q1g1, . . . ,−qkg1), . . . , (−q1gm, . . . ,−qkgm)}.

Alternatively we may see the heap as storing the sum

f −

m∑

i=1

gi × (q1 + q2 + . . . + qk)

where #g = m, #q = k and the terms qi may be unknown. That
is, it possible that we remove −qi−1gj before qi is known, in which
case we would sleep the term −qigj .

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Lazy Computations

Lazy Arithmetic

H = ADD(F ,G)

O(#f + #g) monomial comparisons.

Space complexity is O(#h).

H = MULT(F ,G)

O(#f #g log #g)monomial comparisons.

Space complexity is O(#f #g + #g).

Q,R = DIVIDE(F ,G)

O((#f + #q#g) log #g)) monomial comparisons.

Space complexity is O(1 + #g + #q + #r).

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Lazy Computations

Forgetful Polynomials

Forgetful Polynomial

A forgetful polynomial is a variant of a lazy polynomial where
calculated terms are not stored. That is, unlike lazy polynomials,
we can not re-access terms.
Furthermore access is only given in ≻-order.

How to make a polynomial forgetful:

Impose ordering (≻) on the polynomial’s terms

Only allow access to single terms of the polynomial by way of
a next command.

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Lazy Computations

Forgetful Polynomials

Forgetful Arithmetic

The forgetful operations are different as they may or may not
be able to return / accept forgetful polynomials.

Full generalization of forgetful polynomial arithmetic is
“impossible”.

Why?

Regardless of the scheme used to calculate f × g , it is necessary to
multiply every term of f with g . Since we are limited to single
time access to terms this task is impossible. If we calculate f1g2 we
can not calculate f2g1 and vice versa.

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Lazy Computations

Forgetful Polynomials

Forgetful Arithmetic

H = ADD(F ,G)

H,F ,G can all be forgetful.

Space complexity is O(1).

H = MULT(F ,G)

F and G can not be forgetful.

H can be forgetful. (Important!)

Space complexity is O(#g).

Q,R = DIVIDE(F ,G)

G and Q can not be forgetful. (F − Q × G − R = 0).

F ,R can be forgetful. (Important!)

Space complexity is O(1 + #g + #q).

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Applications

Why forget? Consider the division

A · B − C · D

E
= Q with R = 0.

Why store the sub-expression A · B − C · D if you only care about
Q?

Space complexity using the heap algorithms classically

O(#A#B + #C#D + #B + #D
︸ ︷︷ ︸

multiplication for dividend

+ #E + #Q
︸ ︷︷ ︸

division

)

Space complexity using forgetful algorithms

O(#A + #B + #C + #D + #B + #D
︸ ︷︷ ︸

multiplication for dividend

+ #E + #Q
︸ ︷︷ ︸

division

)

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Applications

Bariess’ Algorithm

Bareiss’ Algorithm for fraction free-determinant calculation.

Input: M an n-square matrix with entries in an integral domain D.
Output: det(M).
1: M0,0 ← 1;
2: for k = 1 to n− 1 do

3: for i = k + 1 to n do

4: for j = k + 1 to n do

5: Mi ,j ←
Mk,kMi,j−Mi,kMk,j

Mk−1,k−1
{Exact division.}

6: end for

7: end for

8: end for

9: return (M)n,n

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Applications

Bariess’ Algorithm

Bariess’ Algorithm Weaknesses

Let

A =

x1 x2 x3 · · · x9

x2 x1 x2 · · · x8

x3 x2 x1 · · · x7
...

. . .
. . .

. . .
...

x9 · · · x3 x2 x1

.

When calculating det(A) using Bareiss’ algorithm the last division
will have:

A dividend of 128,530 terms.

A divisor of 427 terms.

A quotient of 6,090 terms (this is the determinant).

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Applications

Bariess’ Algorithm

Let Q = A×B−C×D
E

be the division of line 5 of the Bareiss
algorithm and α = max(#A,#B) + max(#C ,#D). The following
is a measurement of memory used by our implementation of the
Bareiss algorithm using forgetful polynomials to calculate Mn,n

when given the Toeplitz matrix generated by [x1, . . . , x7].

n #A #B #C #D #E #A#B + #C#D α + #E + #Q

5 12 15 17 17 4 469 106
6 35 51 55 55 12 4810 306
7 35 62 70 70 12 7070 326
8 120 182 188 188 35 57184 832

For n = 8 the total space is reduced by a factor of 57184/832 = 68

(compared to a Bareiss implementation that explicitly stores the

quotient), which is significant.

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Applications

Subresultants

Pseudo-remainders

For f = 3x3 + x2 + x + 5, g = 5x2 − 3x + 1 ∈ Z[x], dividing f by
g would produce the quotient and remainder

q =
3

5
x +

14

25
and r =

52

25
x +

111

25
.

Whereas, if we premultiplied f by 52 and divided 52f by g we
would get a pseudo-quotient and pseudo-remainder

q̃ = 15x + 14 and r̃ = 52x + 111.

Moreover, no fractions appear while executing the division
algorithm thereby avoiding calculations in Q.

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Applications

Subresultants

The Extended Subresultant algorithm.

Input: The polynomials u, v ∈ D[x] where degx(u) > degx(v).
Output: r = Res(u, v , x) and s, t ∈ D[x] satisfying

s · u + t · v = Res(u, v , x)⇒ u−1 ≡ s/Res(u, v , x) mod v in
D/D[x]/v .

1: (g , h)← (1,−1); (s0, s1, t0, t1)← (1, 0, 0, 1);
2: while degx(v) 6= 0 do

3: d ← degx(u)− degx(v);
4: r̃ ← prem(u, v , x); {r̃ is big.} q̃ ← pquo(u, v , x);

5: u ← v ; α← lcoeffx (v)
d+1

;
6: (s, t)← (α · s0 − s1 · q̃, α · t0 − t1 · q̃);
7: v ← r̃ ÷ (−g · hd); {Exact division.}
8: (s0, t0)← (s1, t1);
9: (s1, t1)← (s ÷ (−g · hd), t ÷ (−g · hd));

10: g ← lcoeffx (u);
11: h ← (−g)d ÷ hd−1;
12: end while

13: (r , s, t)← (v , s1, t1);
14: return v , s1, t1;

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Applications

Subresultants

Example

Consider the two polynomials;

f = x6
1 +

8∑

i=1

(
xi + x3

i

)

g = x4
1 +

8∑

i=1

x2
i

Z[x1, . . . , x9]. When we apply the extended subresultant algorithm
to these polynomials we find that in the last iteration, the
pseudo-remainder r̃ has 427, 477 terms but the quotient v has only
15, 071 (v is the resultant in this case).

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Applications

Subresultants

Let r̃ , q̃ be from line 5 and v ,−g · hd be from line 10 of Algorithm
7. The following is a measurement of the memory used by our
implementation of the extended subresultant algorithm using
forgetful polynomials to calculate Res(f , g , x1) where

f = x8
1 +

5∑

i=1

(
xi + x3

i

)
, g = x4

1 +

5∑

i=1

x2
i ∈ Z[x1, . . . , x5]

at iteration n.

n #r̃ #q̃ #v #
(
−g · hd

)

1 29 7 29 1
2 108 6 108 1
3 634 57 634 1
4 14,692 2412 2,813 70

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Implementation

Implementation

Implementation was done in C and then interfaced with Maple
by way of a custom wrapper.

Uses a “packed representation” for monomials which yields
fast monomial comparisons and multiplications.

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Implementation

Benchmarks

Table: Benchmarks for Maple’s SDMP package, Maple 11, and our Lazy
package.

f × g mod 503 (fg) ÷ f mod 503
SDMP Maple11 Lazy SDMP Maple11 Lazy

f = (1 + x + y3)100 0.5 12.3 4.9 0.6 18.3 4.9

g = (1 + x3 + y)100

f = (1 + x + y2 + z3)20 0.26 6.26 1.2 0.28 12.6 1.4

g = (1 + z + y2 + x3)20

f = (1 + x + y3 + z5)20 0.35 8.19 1.3 0.38 12.6 1.4

g = (1 + z + y3 + x5)20

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Implementation

data structure for lazy polynomial.

1 s t r u c t po l y {
2 i n t N;
3 TermType ∗ te rms ;
4

5 s t r u c t po l y ∗F1 ;
6 s t r u c t po l y ∗F2 ;
7 TermType (∗Method) (i n t n , s t r u c t po l y ∗F ,
8 s t r u c t po l y ∗G, s t r u c t po l y ∗H) ;
9

10 i n t s t a t e [6] ;
11 HeapType ∗Heap ;
12 } ;
13

14 typedef s t r u c t po l y PolyType ;

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Implementation

1 TermType Term (i n t n , PolyType ∗F) {
2 i f (n>F−>N) {
3 r e tu rn F−>Method (n , F−>F1 , F−>F2 , F) ;
4 }
5 r e tu rn F−>te rms [n] ;
6 } ;

This procedure would be invoked like this:

1 Term (1 ,F) . mono ;
2 Term (1 ,F) . c o e f f ;

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Implementation

Conclusion

Contributions:

Development of the lazy / forgetful algorithms.

Proofs for space complexities of lazy / forgetful algorithms.

Reducing space complexity of Bareiss’ algorithm from
quadratic to linear.

A subresultant algorithm where explicitly storing large
pseudo-remainders is not necessary.

High performance C-implementation of these ideas.

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

Lazy Polynomial Arithmetic and Applications

Thanks!

Paul Vrbik University of Western Ontario Lazy Polynomial Arithmetic and Applications

	Lazy Computations
	Forgetful Polynomials

	Applications
	Bariess' Algorithm
	Subresultants

	Implementation
	

