Inverse Fourier Transform, A Justification

Let n = 2%, w be a primitive n-th root of unity in Clx] and

a(r) = Z_:aixi € Clz].

Let A = [ag, a1, a9, ...,a,_1] and W = [a(1), a(w), a(w?),. ..
the “forward” discrete Fourier transform applied at w).
An alternate to the DFT would be to compute W naively:

,a(w™ )] € C" (W is the result of
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which requires n? multiplications (way worse then DFT). To be more explicit:
DFT(n,a(x),w) = calculating V,A.

(Note that V,, is the Vandermode matrix for w.)
To go in the opposite direction, that is to get A if W is known, we can just solve the corre-
sponding linear system: A = V'W.

Lemma 1.
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that is Vo,V -1 =n- 1.
Proof. 1f we let n = 4 then the product of V,, and V-1 looks like:
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From this it is straight forward to discern the general pattern. For any n, the polynomials at any
diagonal are given by 1+ w* + w? + ... + W=Dk = 5(k) for 0 < k < n.



As s(k) is a geometric series in wk
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(recall that & < n so 1 — wk # 0). Therefore we have that s(k) = 0 for all 0 < k < n if w is a
primitive n-th root of unity.
For n < k < 0 recall that 1/w is also a primitive n-th root of unity and apply the same proof.
For k = 0 (diagonal) we have that s(0) = n, this gives the desired result. O

An immediate consequence of Lemma 1 is that V3! = V1. So, to interpolate a(z) from W
we do

1 1
A =VI'W =~V W = —DFT(n, b(x), ")
n
where b(z) = W[1] + W[2]z + - - - + W [n]a" 1.



