
Inversion Modulo Zero-dimensional Regular

Chains

Marc Moreno Maza, Éric Schost, and Paul Vrbik

Department of Computer Science, Western University
moreno@csd.uwo.ca

eschost@csd.uwo.ca

pvrbik@csd.uwo.ca

Abstract. We consider the questions of inversion modulo a regular
chain in dimension zero and of matrix inversion modulo such a regu-
lar chain. We show that a well-known idea, Leverrier’s algorithm, yields
new results for these questions.

1 Introduction

Triangular sets, and more generally regular chains, constitute a useful data struc-
ture for encoding the solutions of algebraic systems. Among the fundamental
operations used by these objects, one finds a few low-level operations, such as
multiplication and division in dimension zero. Higher-level algorithms can then
be built upon these subroutines: for instance, the authors of [?] outline a proba-
bilistic and modular algorithm for solving zero-dimensional polynomial systems
with rational coefficients. Their algorithm requires matrix inversion modulo reg-
ular chains.

Despite a growing body of work, the complexity of several basic questions
remains imperfectly understood. In this article, we consider the question of in-
version modulo a triangular set in dimension zero, and by extension, matrix
inversion modulo such a triangular set. We show that a well-known idea, Lever-
rier’s algorithm, surprisingly admits new results for these questions.

Triangular sets. We adopt the following convention: a triangular set is a family
of polynomials T = (T1, . . . , Tn) in k[X1, . . . , Xn], where k is a field. We require
that for all i, Ti ∈ k[X1, . . . , Xi] is monic in Xi and reduced with respect to 〈T1,
. . . , Ti−1〉. Note that the slightly more general notion of a regular chain allows
for non necessarily monic Ti; in that case, the requirement is that the leading
coefficient of Ti be invertible modulo 〈T1, . . . , Ti−1〉. These regular chains may
be called “zero-dimensional”, since they encode finitely many points. Note that
we do not require that the ideal 〈T〉 be radical.

Multiplication modulo triangular sets. In the context of triangular sets, the
first non-trivial algorithmic question is modular multiplication. For this, and
for the question of inversion in the following paragraph, the input and output
are polynomials reduced modulo 〈T〉. We thus denote by RT the residue class



ring k[X1, . . . , Xn]/〈T1, . . . , Tn〉. For all i ≤ n, let us write di = deg(Ti, Xi); the
n-tuple (d1, . . . , dn) is the multi-degree of T. Then, the set of monomials

MT =
{

Xe1
1 · · ·Xen

n | 0 ≤ ei < di for all i
}

is the canonical basis of the k-vector space RT; its cardinality is the integer
δT = d1 · · · dn, which we call the degree of T. In all our algorithms, elements of
RT are represented on this basis.

As of now, the best known algorithm for modular multiplication features the
following running time [?]. For x ≥ 1, write lg(x) = log(max(x, 2)). Then, there
exists a universal constant K such that given A,B in RT, one can compute
AB ∈ RT using at most K4nδT lg(δT) lg lg(δT) operations in k.

Inversion modulo triangular sets. For inversion, several questions can be posed.
In this paper we consider the problem: given A ∈ RT, decide whether A is invert-
ible, and if so, compute its inverse. We are also interested in its the generalization
to matrices over RT: given a (d × d) matrix A ∈ Md(RT), decide whether it is
invertible, and if so, compute its inverse. We simply call this the problem of
invertibility test / inversion in RT (or in Md(RT)).

This question should be contrasted with the following one: given A ∈ RT,
decompose the ideal 〈T〉 into a product of pairwise coprime ideals of the form
〈T1〉 ∩ · · · ∩ 〈Tr〉, all Ti being triangular sets, such that for all i ≤ r, A is
either a unit modulo 〈Ti〉, or zero modulo 〈Ti〉; we also compute the inverse
of A modulo all 〈Ti〉 that are among the first category. A similar, albeit more
complex, question could be raised for matrices over RT. To distinguish it from
the previous problem, we call this question the quasi-inverse computation.

When the ideal 〈T〉 is maximal, so RT is a field, the two questions are the
same. Without this assumption the question of computing quasi-inverses is more
complex than the inversion problem: when A is a zero-divisor modulo 〈T〉, the
first approach would just return “not invertible”; the second approach would
actually require us to do some extra work.

As of now, most known algorithms naturally handle the second, more gen-
eral problem. Indeed, the natural approach is the following: to compute an in-
verse in the residue class ring RT = k[X1, . . . , Xn]/〈T1, . . . , Tn〉, we see it as
RT′ [Xn]/〈Tn〉, where T′ is the triangular set (T1, . . . , Tn−1) in k[X1, . . . , Xn−1].
Then, testing if A ∈ RT is invertible, and inverting it when possible, is usually
done by computing its extended GCD with Tn in RT′ [Xn], see [?,?,?,?]. This
approach requires several quasi-inverse computations in RT′ (namely those of
all leading terms that arise during the extended GCD algorithm). Even if A is
invertible in RT′ , some of these leading terms may be zero-divisors, thus we may
have to decompose T.

Main results. Our two main results concern the inversion problem, first for
elements of RT, then for matrices over RT.

In what follows, in addition to δT, let sT = max(d1, . . . , dn). Our theorems
also involve the quantity ω, which denotes the exponent of matrix multiplica-
tion [?, Ch. 15]: explicitly, this means that ω is such that over any ringA, matrices



of size d can be multiplied in dω operations (+,×) in A. We take 2 < ω ≤ 3, the
best known value being ω ≤ 2.3727 [?].

Theorem 1. There exists a constant C such that: If 1, . . . , sT are units in k,
then one can perform an invertibility test / inversion in RT using

C4nn δT s
(ω−1)/2
T

lg(δT) lg lg(δT)

operations in k.

Dropping logarithmic factors, we see that the cost of inversion modulo 〈T〉
grows like 4nδT s

(ω−1)/2
T

, whereas the cost of multiplication modulo 〈T〉 grows

like 4nδT. In other words, the overhead for inversion grows like s
(ω−1)/2
T

, which

is between s
1/2
T

and sT, depending on ω.
The second theorem describes the cost of matrix invertibility test and inver-

sion.

Theorem 2. There exists a constant C such that: If 1, . . . , sT are units in k,
then one can perform an invertibility test / inversion in Md(RT) using

C4nδT

(

dω+1/2 + ns
(ω−1)/2
T

)

lg(δT) lg lg(δT)

operations in k.

Previous work. As stated above, most previous works on the invertibility ques-
tion in RT actually give algorithms for quasi-inverses, using dynamic evaluation
techniques [?]. Unfortunately, managing the decompositions induced in quasi-
inverse computations in an efficient manner leads to very complex algorithms:
as of now, the fastest algorithm for quasi-inverse follows from [?,?], and features
a running time of the form λn

∏

i≤n di lg(di)
4 lg lg(di), for some non-explicit con-

stant λ (conservative estimates give λ ≥ 60).
Dynamic evaluation techniques carry over to matrix inversion, and make it

possible to implement Gaussian elimination with coefficients in RT, handling de-
compositions of T when zero-divisors are met. The complexity of such a process
seems quite complex to analyze; to our knowledge, this has not been done yet.

The algorithms from [?,?] apply half-GCD techniques in a recursive man-
ner, together with fast Chinese remaindering techniques to handle splitting. We
mention here another approach from [?]: using evaluation / interpolation tech-
niques, the Authors extend it in [?] to an algorithm with cost growing like
2n
∑n

i=1

(

i2d1 · · · didi+1
i

)

.
The main ingredient in our theorems is Leverrier’s algorithm [?], a method

for computing the characteristic polynomial of a matrix by means of the compu-
tation of the traces of its powers. Once the characteristic polynomial is known,
it can be used to express the inverse of a matrix A as a polynomial in A —
we still refer to this extension to inverse computation as Leverrier’s algorithm,
somewhat inappropriately.



This algorithm has been rediscovered, extended and improved in work by
(among others) Souriau [?], Faddeev [?], Csanky [?], and Preparata and Sar-
wate [?]. The latter reference introduces the “baby steps / giant steps” techniques
that are used herein; note on the other hand that the focus in these references
is on the parallel complexity of characteristic polynomial or the inverse, which
is not our main interest here.

Similar “baby steps / giant steps” techniques have been discovered in other
contexts (algorithms on polynomials and power series) by Brent and Kung [?]
and Shoup [?,?]. In these references, though, no mention was made of applica-
tions to modular inversion.

Acknowledgments.We acknowledge the support of the Canada Research Chairs
Program and of NSERC.

2 Leverrier’s algorithm

In this paper, we are interested in inversion algorithms which:

1. invert dense (d× d) matrices with entries in a ring A;
2. invert elements in the A-algebra A[X ]/〈T 〉, for some degree d monic polyno-

mial T in A[X ].

When we use these results, we take A of the form RT, for some triangular set T.
Our goal is to perform as little invertibility tests / inversions in A as possible:
we thus rely on Leverrier’s algorithm, which only does one. With A of the form
RT, this allows us to avoid unnecessary splittings of T.

Since both scenarios share many similarities, we strive to give a unified pre-
sentation, at the cost of a slight increase in notational burden.

2.1 Setup and main result

The following setup enables us to handle both cases above at once. Let A be
our base ring and let Md(A) be the free A-algebra of (d × d) matrices over A.
We consider an A-algebra B that is free of rank e as an A-module, and which
admits an A-algebra embedding φ : B → Md(A); we assume d ≤ e. The two
above scenarios fit into this description:

1. In the first case, B is the whole A-algebra Md(A) and φ is the identity; here,
e = d2;

2. In the second case, B is the A-algebra A[X ]/〈T 〉. It can be identified to a sub-
algebra of Md(A) by means of the mapping φ that maps A ∈ B = A[X ]/〈T 〉
to the (d × d) matrix of multiplication by A. In this case, the rank of B is
e = d.

To any element A ∈ B, we associate its trace tr(A) ∈ A, defined as the trace of the
matrix φ(A) ∈ Md(A), and its characteristic polynomial χA ∈ A[X ], defined as
the characteristic polynomial of the matrix φ(A); the latter is a monic polynomial



of degree d in A[X ]. Finally, the determinant det(A) of A is defined similarly, as
the determinant of φ(A).

For our computations, we suppose that a basis B of the A-module B is known.
In both cases above, we have a canonical choice: matrices with a single non-zero
entry, equal to one, in the first case, and the monomial basis 1, X, . . . , Xd−1 in
the second case.

An addition in B then takes e operations (+,×) in A. For multiplication,
things are less straightforward: we let M(B) be such that one multiplication in
B can be done using M(B) operations (+,×) in A. The other black-box we need
is for determining the trace: we let T(B) be such that the traces of all basis
elements of B can be computed in T(B) operations (+,×) in A. We give details
below on M(B) and T(B) for our two main cases of interest.

Then, Leverrier’s algorithm, combined with baby steps / giant steps tech-
niques, yields the following result.

Proposition 1. Suppose that 1, . . . , d are units in A. Given A ∈ B, one can
decide whether A is invertible, and if so compute its inverse, using

T(B) + O
(√

dM(B) + d(ω−1)/2e
)

operations (+,×) in A, and one invertibility test / inversion in A.

We will prove this result explicitly. Still, although this result may not have ap-
peared before in this exact form, its specializations to our two cases of interest are
not exactly new. As we said in the introduction, when B = Md(A), this approach
is essentially Preparata and Sarwate’s algorithm [?]. When B = A[X ]/〈T 〉, this
is in essence a combination of results of Brent and Kung [?] and Shoup [?,?],
although these references do not explicitly discuss inverse computation, but re-
spectively modular composition and minimal polynomial computation.

Our first case of interest is B = Md(A), with rank e = d2. In this case,
computing the traces of all basis elements is straightforward, so T(B) takes linear
time O(e) = O(d2). Matrix multiplication takes time M(B) = dω, so that we end
up with a total of

O
(

dω+1/2
)

operations (+,×) in A, as is well-known.
Our second case of interest is B = A[X ]/〈T 〉, with rank e = d. In this

case, computing the traces of all basis elements requires some work (namely,
computing the Taylor series expansion of a rational function), and can be done
in O(M(d)) operations (+,×) in A, see [?] — here, and in what follows, M(d) is
a multiplication time function, such that we can multiply degree d polynomials
in M(d) base ring operations [?, Ch. 9]. Multiplication in B takes time O(M(d))
as well, so we end up with a total of

O
(√

dM(d) + d(ω+1)/2
)

= O
(

d(ω+1)/2
)

operations (+,×) in A.



Other cases could be considered along these lines, such as taking B of the
form A[X1, X2]/〈T1, T2〉, with 〈T1, T2〉 a triangular set of degree d, but we do
not need this here.

2.2 Outline of the algorithm

In essence, Leverrier’s algorithm relies on two facts: for A in B, (i) the traces of
the powers of A are the Newton sums of χA (A’s characteristic polynomial) and
(ii) Cayley-Hamilton’s theorem, which says that A cancels χA.

Fact (i) above is made explicit in the following folklore lemma; see e.g. [?]
for essentially the same arguments, in the case where B = Md(A).

Lemma 1. Let rev(χA) = XdχA(1/X) be the reverse polynomial of χA. Then
the following holds in A[[X ]]:

rev(χA)
′

rev(χA)
= −

∑

i≥0

tr(Ai+1)X i. (1)

Proof. This equality is well-known when A is a field and when B = Md(A). We
use this fact to prove the lemma in our slightly more general setting.

Let µ1,1, . . . , µd,d be d2 indeterminates over Z, and let µ be the (d×d) matrix
with entries (µi,j). It is sufficient to prove we have

rev(χµ)
′

rev(χµ)
= −

∑

i≥0

tr(µi+1)X i, (2)

where tr(µ), χµ and rev(χµ) are defined as previously. Indeed, starting from the
equality for µ, we can deduce it for A ∈ B by applying the evaluation morphism
µi,j 7→ φ(A)i,j , where φ(A)i,j is the (i, j)-th entry of the matrix φ(A) ∈ Md(A).

To prove our equality for µ, we can see the variables µi,j over Q, so that
we are left to prove (2) over the field L = Q(µ1,1, . . . , µd,d). Since L is a field,
it is sensible to introduce the roots γ1, . . . , γd of χµ in L, which are thus the
eigenvalues of µ. Then, (2) is a well-known restatement of the Newton-Girard
identities (see for instance Lemma 2 in [?]). �

Let us write
χA = Xd − a1X

d−1 − · · · − ad.

Then, extracting coefficients in (1) shows that knowing the values sk = tr(Ak),
for k = 1, . . . , d, enables us to obtain the coefficients ak in a successive manner
using the formula

ak =
1

k

(

sk −
k−1
∑

i=1

sk−iai

)

. (3)

(Note our assumption that 1, . . . , d are units in A makes this identity well-
defined.) Computing all ak in this manner takes a quadratic number of opera-
tions in A. Using Newton iteration to solve the differential equation (1), which



essentially boils down to computing a power series exponential, one can compute
a1, . . . , ad from s1, . . . , sd in O(M(d)) operations (+,×) in A [?,?].

Thus, we now assume we know the characteristic polynomial χA of A. Fact
(ii) above then amounts to the following. Cayley-Hamilton’s theorem implies
that χA(φ(A)) = 0 in Md(A), and thus that χA(A) = 0 in B; in other words,

Ad − a1A
d−1 − · · · − ad−1A− ad = 0.

This can be rewritten as

A(Ad−1 − a1A
d−2 − · · · − ad−1) = ad.

Thus, if ad = det(A) is invertible in A, A is invertible in B, with inverse

A−1 = a−1
d (Ad−1 − a1A

d−2 − · · · − ad−1); (4)

conversely, if A is invertible in B, φ(A) is invertible in Md(A), and thus ad is
invertible in A.

To summarize this outline, Leverrier’s algorithm can decide if A is invertible
(and if so compute its inverse) by means of the following steps:

1. compute the traces s1, . . . , sd of the powers of A
2. deduce χA using (1), using O(M(d)) operations (+,×) in A

3. A is invertible in B if and only if ad is invertible in A; if so, we deduce A−1

by means of (4).

2.3 Baby-steps / giant steps techniques

The direct implementation of Step 1 of Leverrier’s algorithm consists of com-
puting the powers A1, . . . , Ad, then taking their traces; this requires O(d) mul-
tiplications in B. Similarly, the direct approach to Step 3 by means of Horner’s
scheme requires O(d) multiplications in B. As is well-known, the baby steps /
giant steps techniques allows for the reduction of the number of multiplications
for both steps, from O(d) to O(

√
d). We review this idea here, and analyze it in

our general setup.

The dual of B. As a preliminary, we say a few words about linear forms over B.
Let B∗ = HomA(B,A) be the dual of B, that is, the set of A-linear forms B → A.
For instance, the trace tr : B → A is in B∗.

Since we assume we have an A-basis B of B, it is natural to represent elements
of B∗ by means of their values on the basis B. Since we assume that B has rank
e, its elements can be seen as column-vectors of size e, and the elements of B∗

as row-vectors of size e. Then, applying a linear form to an element takes O(e)
operations (+,×) in A.

There exists a useful operation on B∗, the transposed product. The A-module
B∗ can be turned into a B-module: to any A ∈ B, and to any λ ∈ B∗, we can
associate the linear form A◦λ : B → A defined by (A◦λ)(B) = λ(AB). A general
algorithmic theorem, the transposition principle [?, Th. 13.20], states that given



A and λ, one can compute the linear form A ◦ λ using M(B) operations in A

(that is, for the same cost as multiplication in B).

Step 1. Using transposed products, we now explain how to implement the first
step of Leverrier’s algorithm. As a preliminary, we “compute the trace”, that
is, its values on the basis B. As per our convention, this takes T(B) operations
(+,×) in A.

Let m = ⌊
√
d⌋ and m′ = ⌈(d + 1)/m⌉, so that both m and m′ are O(

√
d).

The baby steps / giant steps version of Step 1 first computes the sequence of
“baby steps”

M0,M1,M2, . . . ,Mm = A0, A1, A2, . . . , Am,

by means of repeated multiplications by A. Then, by repeated transposed mul-
tiplications by Mm, we compute the “giant steps” (which are here linear forms)

λ0, λ1, λ2, . . . , λm′ = tr, Mm ◦ tr, M2
m ◦ tr, . . . , Mm′

m ◦ tr.

Computing all Mi and λj takes O(
√
d) multiplications and transposed multipli-

cations in B, for a total of O(
√
dM(B)) operations (+,×) in A.

Knowing the Mi and λj , we can compute the required traces as λj(Mi), for
0 ≤ i < m and 0 ≤ j < m′, since they are given by

λj(Mi) = tr(MiM
j
m) = tr(AiAmj) = tr(Ai+mj),

and the exponent i+mj cover all of 0, . . . , d. As we saw above, computing each
λj(Mi) amounts to doing a dot-product in size e, so a direct approach would
give a cost of O(de) operations in A.

Better can be done, though. Consider the (e ×m) matrix Γ whose columns
give the coefficients of M0, . . . ,Mm−1 on the basis B, and the (m′ × e) matrix Λ
whose rows give the coefficients of λ0, . . . , λm′−1 on the dual basis of B. Then,
the (j, i)-th entry of ΛΓ is precisely the value λj(Mi). Since m and m′ are both

equivalent to
√
d, a naive matrix multiplication algorithm computes the product

ΛΓ in O(de) operations in A, as above. However, by doing a block product, with
O(e/

√
d) blocks of size O(

√
d), we obtain ΛΓ using O(d(ω−1)/2e) operations

(+,×) in A.

Step 3. In order to perform Step 3, we have to evaluate Ad−1 − a1A
d−2 −

· · · − ad−1I, then divide by ad if possible. Let us write a0 = −1, and define
αi = −ad−1−i for i = 0, . . . , d− 1; then, the quantity to compute is

p(A) =
d−1
∑

i=0

αiA
i.

We extend the sum, by adding dummy coefficients αi set to zero, to write

p(A) =

mm′−1
∑

i=0

αiA
i;



this is valid, since by construction mm′ − 1 ≥ d. For k ≥ 0, let us then define

σk =

(k+1)m−1
∑

i=km

αiMi−km =

m−1
∑

i=0

αi+kmMi;

then, we see that we have

p(A) = (· · · (σm′−1Mm + σm′−2)Mm + · · ·)Mm + σ0. (5)

Using this formula, the algorithm to compute p(A) first requires the computation
of all Mi, for i = 0, . . . ,m, using O(

√
dM(B)) operations (+,×) in A.

Next, we have to compute σ0, . . . , σm′−1. As for Step 1, let Γ denote the
(e×m) matrix whose columns give the coefficients of A0 = M0, . . . , A

m−1 = Mm.
Then, σk is obtained by right-multiplying the matrix Γ by the size m column
vector [αkm · · ·α(k+1)m−1]

t. Joining all these column vectors in a (m×m′) matrix
∆, we obtain all σk by computing the product Γ∆. As for Step 1, the cost is
O(d(ω−1)/2e) operations (+,×) in A.

Finally, once all σk are known, we obtain p(A) by means of m′ products and
additions in B; the cost is O(

√
dM(B)) operations (+,×) in A. Putting all costs

seen before together, we obtain the cost announced in Proposition 1.

3 Proof of the main theorems

Using Proposition 1, it becomes straightforward to prove Theorems 1 and 2. Let
T = (T1, . . . , Tn) be a triangular set of multidegree (d1, . . . , dn) in k[X1, . . . ,
Xn]. First, we deal with invertibility test and inversion in RT, assuming that all
integers from 1 to sT = max(d1, . . . , dn) are units in k.

Let A be in RT. As in the introduction, we view RT as RT′ [Xn]/〈Tn〉, where
T′ is the triangular set (T1, . . . , Tn−1) in k[X1, . . . , Xn−1]. Applying Proposi-
tion 1, and referring to the discussion just after it, we see that we can decide
whether A is invertible in RT, and if so compute its inverse, using

1. O
(

d
(ω+1)/2
n

)

operations (+,×) in RT′ ; and

2. one invertibility test / inversion in RT′ .

As recalled in the introduction, multiplications in RT′ can be done for the cost
of K4n−1δT′ lg(δT′) lg lg(δT′) operations in k, for some constant K. The same
holds for additions in RT′ , since additions can be done in optimal time δT′ .
Let K ′ be a constant such that the big-Oh estimate in the first item above is

bounded by K ′d
(ω+1)/2
n .

Notice δT′ = d1 · · · dn−1, and that it admits the obvious upper bound: δT′ ≤
δT. Then, the total running time I(d1, . . . , dn) of the invertibility test / inversion
algorithm follows the recurrence

I(d1, . . . , dn) ≤ KK ′4n−1d1 · · · dn−1d
(ω+1)/2
n lg(δT) lg lg(δT) + I(d1, . . . , dn−1),



which can be simplified as

I(d1, . . . , dn) ≤ C4nδTd
(ω−1)/2
n lg(δT) lg lg(δT) + I(d1, . . . , dn−1),

with C = KK ′/4. Unrolling the recurrence, we obtain

I(d1, . . . , dn) ≤ C4nδT

(

d
(ω−1)/2
1 + · · ·+ d(ω−1)/2

n

)

lg(δT) lg lg(δT).

With sT = max(d1, · · · , dn), this admits the upper bound

I(d1, . . . , dn) ≤ C4nn δT s
(ω−1)/2
T

lg(δT) lg lg(δT),

which proves Theorem 1.
Theorem 2 then follows from the combination of Proposition 1 and Theo-

rem 1. To invert a (d × d) matrix A with entries in RT, we apply Leverrier’s
algorithm in Proposition 1, over the ring A = RT. As explained after Proposi-
tion 1, the cost is O(dω+1/2) operations (+,×) in RT, followed by the invertibility
test / inversion of the determinant of A in RT. The cost reported in Theorem 2
then follows easily from the bounds on the cost of multiplication and invertibility
test in RT.

4 Experimental Results

In this section, we compare Maple implementations of two approaches: our own
recursive Leverrier algorithm and the existing (Gauss-Bareiss based) method
from the RegularChains Maple library [?]. Our implementation uses the Regu-
larChains library for normal forms, multiplication, etc, so we believe that this
is a fair comparison.

Letting p = 962592769, we choose a random dense regular chain T in Fp[X1,
. . . , Xn], with varying n, with and multidegree (d, . . . , d) for some varying d. We
invert a random (and thus invertible)m×mmatrix A with random entries in RT.
We compare our results to the MatrixInverse function from RegularChains.

Table 4 gives the results of our experiments on a AMD Athlon running Linux,
using Maple 15. For our algorithm, we detail the timings for trace computation
(Step 1 of the algorithm), reconstituting the characteristic polynomial χA (Step
2), the inverse of the determinant of A, and the computation of the inverse of A
itself (Step 3). As was to be expected, Step 1 and Step 3 take comparable times.
For n = 1, our algorithm behaves very similarly to the built-in MatrixInverse.
Already for n = 3, our implementation usually gives better results.



Leverrier MatrixInverse

n d δT m Traces CharPoly Inverse Horner Total Time

1 2 2 3 0.03 0.00 0.00 0.01 0.04 0.2

1 2 2 6 0.03 0.00 0.00 0.02 0.05 0.07

1 2 2 9 0.07 0.00 0.00 0.06 0.13 0.15

1 2 2 12 0.19 0.00 0.00 0.12 0.31 0.34

1 2 2 15 0.26 0.00 0.00 0.23 0.49 0.54

1 2 2 18 0.47 0.00 0.00 0.45 0.92 0.72

1 10 10 3 0.02 0.00 0.00 0.01 0.03 0.12

1 10 10 6 0.10 0.01 0.00 0.09 0.20 0.39

1 10 10 9 0.43 0.01 0.00 0.21 0.65 1.09

1 10 10 12 0.96 0.01 0.00 0.63 1.60 2.26

1 10 10 15 1.67 0.02 0.00 1.29 2.98 4.09

1 10 10 18 3.17 0.02 0.00 2.09 5.28 6.67

1 18 18 3 0.02 0.01 0.00 0.03 0.06 0.22

1 18 18 6 0.33 0.01 0.00 0.20 0.54 0.87

1 18 18 9 0.93 0.02 0.00 0.50 1.45 2.28

1 18 18 12 2.30 0.02 0.00 1.51 3.83 4.60

1 18 18 15 4.22 0.03 0.00 3.36 7.61 8.02

1 18 18 18 8.07 0.05 0.00 5.43 13.56 13.14

3 3 27 3 0.14 0.02 0.08 0.22 0.46 7.7

3 3 27 6 1.75 0.07 0.07 1.46 3.35 10.4

3 3 27 9 5.68 0.11 0.08 3.58 9.45 15.5

3 3 27 12 13.47 0.16 0.07 9.18 22.8 24

3 3 27 15 22.9 0.27 0.08 19.4 42.8 35.7

3 3 27 18 42.67 0.27 0.07 30 73 52.2

3 4 64 3 0.88 0.22 0.58 1.6 3.28 54.5

3 4 64 6 10.6 0.43 0.63 9.80 21.4 100

3 4 64 9 32.8 0.77 0.62 22.5 56.7 184

3 4 64 12 74.9 1.07 0.63 55.1 132 324

3 4 64 15 121 1.38 0.65 111 233 524

3 4 64 18 213 1.67 0.58 163 379 840

3 5 125 3 0.75 0.08 0.63 0.74 2.20 159

3 5 125 6 7.07 0.22 0.63 5.07 14 299

3 5 125 9 22.5 0.38 0.55 12.6 36.0 548

3 5 125 12 53.7 0.65 0.54 33.2 88.1 960

3 5 125 15 94.1 0.84 0.54 72.1 167 1582

3 5 125 18 175.08 1.08 0.57 112 288 2462

Table 1. Experimental results (in seconds).


