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Homotopy Continuation

Homotopy continuation, like Newton’s method, is an iterative
approach for finding the (approximate) isolated complex roots of a
polynomial (or solutions to a system of polynomials). But unlike
Newton’s method this process guarantees every isolated root will
be found if seeded by a finite number of appropriately chosen
starting points.
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One of the nicest (in my opinion) mathematical algorithms is:

n-dimensional Newtons Method

Let F ∈ Q[x1, . . . , xn]
n and x0 ∈ Cn. If we iterate as

xi = xi−1 −
[

Jac(F)|xi−1

]

−1
F (xi−1)

then we will eventually produce xN , N 6= ∞, such that

|F(xN) − F(RootOf(F ))| < ε

for ε > 0.

(This assumes a bunch of things, like infinite precision and
non-singular Jacobian, but let’s not get bogged down by details).
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However, the selection of the starting point x0 is (too) crucial.
Below is a density plot measuring speed of convergence for the
system F =

〈

x2 − 1

2
y2 − 2, 2x2 + xy − 3x − 1

〉

.
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Question.

Can we devise a method to generate better x0’s (initial guesses)?

Sure we can! Let p(z),q(z) ∈ Q[x1, . . . , xn]
n (now z = x, to stay

consistent with textbook) and t ∈ R, consider

H(z , t) = tq(z) + (1 − t)p(z).

Suppose that H(z , 1) = q(z) is exactly solvable and
H(z , 0) = p(z) = 〈f1, . . . , fn〉 is the system of polynomials we
would like to solve. Then H(z , t) is a homotopy relating
connecting roots of q with p.
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Now we would like to follow the homotopy paths from t = 1 to
t = 0 using:

The first order taylor expansion of H(z , t)

H(z + ∆z , t + ∆t) = H(z , t) + Hz(z , t)∆z + Ht(z , t)∆t.

Given (zi , ti) such that H(zi , ti ) ≈ 0 one can predict a new
approximate solution (zi+1, ti+1) = (zi + ∆z , ti + ∆t) by
substituting into the taylor expansion:

H(zi + ∆z , ti + ∆t) = H(zi , ti ) + Hz(zi , ti )∆z + Ht(zi , ti )∆t

and solving for ∆z (remember, we know the value ∆t and want
H(zi+1, ti+1) = 0).
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t=1 t=0

∆t

Predict (Euler's method)

Correct (Newton's
method)

z(t)

(set H(z+∆z,t+∆t)=0)

(set ∆t=0)

∆z = −H−1
z (z1, t1)Ht(z1, t1)∆t ⇒ zi+1 = zi + ∆z .

But remember Euler’s method is bad so H(zi+1, ti+1) could be
farther from zero than we would prefer. So we can refine the
solution (“correct”) by Newton’s method. Fortunately we have a
good starting point, (zi+1, ti+1)! We update:
z ′i+1

= −H−1
z (z1 + ∆z , t1)H(z1, t1)
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Some thoughts on implementation

Step length (∆t) Double on three to five success (of corrector),
half on a fail (of corrector).

Testing for explosions Monitor that ∆t isn’t too small. Divergent
paths may actually fix themselves. When to cut a
path off is a important question.

Refine Use Newton’s method to refine the solution at the
t ≈ 0.
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The bad news:

Start systems Choosing one is non-trivial because we can not tell
exactly how many roots the target system has. This
results in wasted computation.

Multiple roots Newton’s method converges slowly to such roots.

Intersecting paths* A tracker may actually jump paths and
converge to the wrong root.

Unlucky corrections* Newton’s method is not guaranteed to
converge to the root you want.
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path jumping

An example where path tracking fails:

−7x5 + 22x4 − 55x3 − 94x2 + 87x − 56

The brown and green paths
converge to the real root -1.6
whereas the blue and yellow
paths converge to the complex
root 0.4-0.5i . The red root
is escaping to infinity and is
(quickly) flagged as a failed
path. We do not find all roots.

Start roots on 

unit circle 

(ellipse due to 

scale).
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One can guarantee (with probability 1) that we find all roots.
Let’s introduce the random components, θ, φ ∈ [−π, π] and modify
our original homotopy to q(z) = te iθ(zd − e iφ).

The addition of φ allows us to place our roots along separate great
circles of the sphere S2 given by the co-ordinates (θ, φ). The paths
now travel through the interior of the sphere and can only collide
within a set of measure 0 (i.e. with probability one).
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Now we see that the paths are (more or less) well behaved. Note,
in the diagrams the paths start from the unit circle.
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unlucky corrections

Newton’s method will converge to different roots depending on
what initial value it is seeded. We say Basin of attraction of a

root = { initial points yielding the root }.

Thereby, Newton’s method can throw the path of course by
converging to the wrong root. Unfortunately it is hard to predict if
this is going to happen.

Why? Because...
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The basin of attraction for −7x5 + 22x4 − 55x3 − 94x2 + 87x − 56
and x7 − 1. In both cases we see that the boundaries are fractal in
nature, and therefore hard to study.
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Below is what we call a tube of attraction. For the brown path of
−7x5 + 22x4 − 55x3 − 94x2 + 87x − 56 we plot a small disc basin
for each time step. Notice how the path stabilized when the basin
is dominated by one root.
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To visualize the basin for the entire complex plane (because it
looks cool) we use a stereographic projection to plot it on the
Riemann sphere. From left to right is the basin of attraction for
x3 − 1 and x5 + 1.
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A phenomena we do not observe in the univariate case is diverging
paths. Consider the target system

p(z) =

[

x3y + xy2 + 1
x4 + xy2 + 1

]

Now ∂H
∂z

(the Jacobian) can become singular and our predictor will
point to infinity.
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To visualize this we again use stereographic projection to plot the
paths on a Riemann sphere so we may see paths converge to
infinity (the north pole).

The target system p(z) may have up to 16 roots so we must track
16 paths. This is illustrated on the next slide. All possible pairs
(xi , yj) with 0 ≤ i , j ≤ 3 constitute our 16 start points. Each
sphere represents a path that a single component of the solution
(x or y) takes. We will observe that half the paths diverge.
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x0 x2x1
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y1

y0

y3y2

Start
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The End.
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