MATH 4EE3 - Assignment 2

Greg Baril Geoff Williams Paul Vrbik

Brought to you by the [GEOFF] Williams school of awesome

April 5, 2006

Question 12.3 Let $\gamma = \sqrt{2 + \sqrt{2}}$. Show that $\mathbb{Q}(\gamma)$: Q is normal, with cyclic Galois group. Show that $\mathbb{Q}(\gamma, i) = \mathbb{Q}(\sigma)$ where $\sigma^4 = i$.

Let $\gamma = \sqrt{2 + \sqrt{2}}$ where we have that $\gamma^4 - 4\gamma^2 + 2 = 0 \Rightarrow \gamma$ is a root of $f(x) = x^4 - 4x^2 + 2$ which is irreducible by Eisenstein. It is also the case that $f(-\gamma) = f(\beta) = f(-\beta) = 0$ where $\beta=\sqrt{2-\sqrt{2}}.$

Trivially $\gamma, -\gamma \in \mathbb{Q}(\gamma)$ and since $\sqrt{2} = \sqrt{2 + \sqrt{2}}\sqrt{2 - \frac{1}{2}}$ $-\gamma \in \mathbb{Q}(\gamma)$ and since $\sqrt{2} = \sqrt{2 + \sqrt{2}}\sqrt{2 - \sqrt{2}}$ where $\sqrt{2} = \gamma^2 - 2 \in \mathbb{Q}(\gamma)$ we have that $\beta = \sqrt{2 - \sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2 + \sqrt{2}}} \in \mathbb{Q}(\gamma)$.

Since all the roots of f are in $\mathbb{Q}(\gamma)$ we may conclude that $\mathbb{Q}(\gamma)$ is a splitting field for $f(x)$ over the fixed field $\mathbb Q$ such that it is normal over $\mathbb Q$.

This implies that, since the extension is normal that $[\mathbb{Q}(\gamma) : \mathbb{Q}] = |Gal(\mathbb{Q}(\gamma)/\mathbb{Q})| = 4$ We have the any automorphism $\sigma \in Gal(\mathbb{Q}(\gamma)/\mathbb{Q})$ satisfies:

$$
\sigma^2 \left(\sqrt{2 + \sqrt{2}} \right) = \sigma \left(\sqrt{2 - \sqrt{2}} \right) = \frac{\sigma(\gamma^2 - 2)}{\sigma(\gamma)} = \frac{\beta^2 - 2}{\beta} = \frac{-\sqrt{2}}{\sqrt{2 - \sqrt{2}}} = -\sqrt{2 + \sqrt{2}}
$$

$$
\sigma^3 \left(\sqrt{2 + \sqrt{2}} \right) = \frac{\sigma(-\sqrt{2})}{\sigma(\sqrt{2 + \sqrt{2}})} = \frac{\frac{\sqrt{2}}{\sqrt{2}}}{\sqrt{2 - \sqrt{2}}} = -\sqrt{2 - \sqrt{2}}
$$

$$
\sigma^4 \left(\sqrt{2 + \sqrt{2}} \right) = \sigma \left(-\sqrt{2 - \sqrt{2}} \right) = \sqrt{2 + \sqrt{2}}
$$

Since $\sigma^4(\gamma) = \gamma$ we have that γ is an element of order 4 which would imply that $Gal(\mathbb{Q}(\gamma)/\mathbb{Q})$ is cyclic. Where:

$$
[\mathbb{Q}(\gamma, i) : \mathbb{Q}(\gamma)] = 2
$$

$$
[\mathbb{Q}(\gamma) : \mathbb{Q}] = 4
$$

$$
[\mathbb{Q}(\gamma, i) : \mathbb{Q}] = 2
$$

Now take $\phi^4 = i$ then $\phi^8 = -1$ so ϕ is a zero of $f(x) = x^8 + 1$ and $[\mathbb{Q}(\phi) : \mathbb{Q}] = 8$. Since $\mathbb{Q} \subset \mathbb{Q}(\phi)(\gamma, i)$ when the extensions have the same degree we have that $\mathbb{Q}(\phi) = \mathbb{Q}(\phi, i)$. Consdier $\gamma + \beta i \in \mathbb{Q}(\gamma, i)$

$$
(\gamma + \beta i)^4 = \gamma^4 + 4\gamma^3 \beta i - 6\gamma^2 \beta^2 - 4\gamma \beta^3 i + \beta^4
$$

= $4\sqrt{2}i(2 + \sqrt{2} - 2 + \sqrt{2})$
= 16*i*

Therefore $\phi \in \mathbb{Q}(\gamma, i)$ so $\mathbb{Q}(\phi) \subset \mathbb{Q}(\gamma, i)$ and so $\mathbb{Q}(\phi) = \mathbb{Q}(\gamma, i)$.

By Eisenstein $t^6 - 7$ is irreducible over \mathbb{Q} . By Eisenstein t° – t is
Since $t = \pm \sqrt[6]{7}$ we let:

$$
\alpha \in \{ \sqrt[6]{7}, \zeta_3 \alpha, \zeta_3^2 \alpha \}
$$

$$
\beta \in \{ -\sqrt[6]{7}, \zeta_3 \beta, \zeta_3^2 \beta \}
$$

We know that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 6$ (because α is not a root of the irreducible polynomial of degree 6) and that $[\mathbb{Q}(\alpha,\zeta_3) : \mathbb{Q}(\alpha)] = 2$ which means that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 2 \times 6 = 12$.

We create the twelve automorphisms σ_{ij} that follow the properties:

$$
\sigma_{ij}(\alpha) \to x \in \{\alpha, \zeta_3 \alpha, \zeta_3^2 \alpha, \beta, \zeta_3 \beta, \zeta_3^2 \beta\}
$$

$$
\sigma_{ij}(\zeta_3) \to x \in \{\zeta_3, \zeta_3^2\}
$$

We say σ_{11} is the automorphism that takes $\alpha \to \alpha$ and $\zeta_3 \to \zeta_3$, σ_{21} is the automorphism that takes $\alpha \rightarrow \zeta_3 \alpha$ and $\zeta_3 \rightarrow \zeta_3$ and so on.

Investigating the order of each σ we find that:

Where the only group with elements of these orders is the dihedral group of order $4, D_4$.

Question 13.1 (a) Find the Galois group of $\mathbb{Q}(\sqrt{\mathbb{Z}})$ 2, $\sqrt{5}$) : Q

 $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$ because $\sqrt{2}$ has $m_a(x) = x^2 - 2$ over \mathbb{Q} and $[\mathbb{Q}(\sqrt{2})]$ 5, $\sqrt{2}$) : $\mathbb{Q}(\sqrt{2})$ $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$ because $\sqrt{2}$ has $m_a(x) = x^2 - 2$ over \mathbb{Q} and $[\mathbb{Q}(\sqrt{5}, \sqrt{2}) : \mathbb{Q}(\sqrt{2})] = 2$ becuse $\mathbb{E}[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$ because $\sqrt{2}$ has $m_a(x) = x^2 - 5$
 $5 \notin \mathbb{Q}(\sqrt{2})$ and $\sqrt{5}$ has $m_a(x) = x^2 - 5$ over $\mathbb{Q}(\sqrt{2})$ 2).

So our Galois group has order 4

$$
\sigma\left(\sqrt{2}\right) \to \sqrt{2} \qquad \sigma\left(\sqrt{5}\right) \to \sqrt{5} \qquad |\sigma| = 1
$$

\n
$$
\sigma\left(\sqrt{2}\right) \to -\sqrt{2} \qquad \sigma\left(\sqrt{5}\right) \to \sqrt{5} \qquad |\sigma| = 2
$$

\n
$$
\sigma\left(\sqrt{2}\right) \to \sqrt{2} \qquad \sigma\left(\sqrt{5}\right) \to -\sqrt{5} \qquad |\sigma| = 2
$$

\n
$$
\sigma\left(\sqrt{2}\right) \to -\sqrt{2} \qquad \sigma\left(\sqrt{5}\right) \to -\sqrt{5} \qquad |\sigma| = 2
$$

Where the only group with four elements satisfying these orders is $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Question 13.1 (b) Find the Galois group of $\mathbb{Q}(\alpha)$: \mathbb{Q} where $\alpha = \exp(2\pi i/3)$

 $\alpha = \zeta_3$ which is a solution to $x^3 - 1$. But we know 1 is a root of $x^3 - 1$ so the minimal polynomial becomes $m_a(x) = x^2 + x + 1$. So $m_a(x)$ has roots ζ_3 and ζ_3^2 over \mathbb{Q} .

So the Galois group has order 2 and the elements are $\sigma_1(\zeta_3) \to \zeta_3$ and $\sigma_2(\zeta_3) \to \zeta_3^2$. This is \mathbb{Z}_2 .

Question 13.1 (c) Find the Galois group of $K : \mathbb{Q}$ where K is the splitting filed over \mathbb{Q} for $t^4 - 3t^2 + 4.$

Let $x = t^2$ so we have $x^2 - 3x + 4$ and $x = \frac{3 \pm \sqrt{-7}}{2}$ which implies that

$$
t = \frac{\pm\sqrt{3\pm\sqrt{-7}}}{2}
$$

so letting $\alpha =$ $\sqrt{3+\sqrt{-7}}$ $\frac{1}{2}^{\frac{1}{2}}$, $\beta =$ $\frac{\sqrt{3-\sqrt{-7}}}{2}$ where $\alpha \cdot \beta = 2$. Thus $[\mathbb{Q}(\alpha):\mathbb{Q}] = 4$ and $\mathbb{Q}(\alpha)$ is a splitting field for our polynomial.

$$
\sigma_1(\alpha) = \alpha \qquad |\sigma| = 1
$$

$$
\sigma_2(\alpha) = -\alpha \qquad |\sigma| = 2
$$

$$
\sigma_3(\alpha) = \beta \qquad |\sigma| = 2
$$

$$
\sigma_4(\alpha) = -\beta \qquad |\sigma| = 4
$$

Where the only group with four elements satisfying these orders is \mathbb{Z}_4 .

Question 13.10 Find the Galois group of $t^8 + t^4 + 1$ over $\mathbb{Q}(i)$.

We have that

$$
t^{8} + t^{4} + 1 = (t^{4} - t^{2} + 1)(t^{2} + t + 1)(t^{2} - t + 1)
$$

where $t^2 + t + 1$ has roots $\frac{-1 \pm i \sqrt{3}}{2}$ $\frac{\pm i\sqrt{3}}{2}$, $t^2 - t + 1$ has roots $\frac{1 \pm i\sqrt{3}}{2}$ $\frac{i\sqrt{3}}{2}$, and $t^4 - t^2 + 1$ has roots $\sqrt{\frac{1 \pm i\sqrt{3}}{2}}$ $\frac{i\sqrt{3}}{2}$. The roots of t^2+t+1 and t^2-t+1 can be found from $\sqrt{\frac{1+i\sqrt{3}}{2}}$ $\frac{i\sqrt{3}}{2}$. Also $\frac{1\pm i\sqrt{3}}{2}$ $\frac{i\sqrt{3}}{2}$ are roots of unity equal to $\exp(\frac{2\pi i}{3})$ and $\exp(\frac{4\pi i}{3})$. The square roots of these are $\exp(\frac{\pi i}{3})$ and $\exp(\frac{2\pi i}{3})$. Thus $\frac{\sqrt{1-i\sqrt{3}}}{2}$ √ $\frac{-i\sqrt{3}}{2}$ can be formed from µu∪ $\frac{1+i\sqrt{3}}{2}$ which shows that the splitting field is $\mathbb{Q} \left(\sqrt{\frac{1+i\sqrt{3}}{2}} \right)$ 2) and $\mathbb{Q} \left(\sqrt{\frac{1+i\sqrt{3}}{2}} \right)$ 2 : 4] = 4 because $m_a(t) = t^4 - t^2 + 1$. Our four automorphisms have the following form:

$$
\sigma_1 \left(\frac{\sqrt{1 + i\sqrt{3}}}{2} \right) = \frac{\sqrt{1 + i\sqrt{3}}}{2}
$$
\n
$$
\sigma_2 \left(\frac{\sqrt{1 + i\sqrt{3}}}{2} \right) = -\frac{\sqrt{1 + i\sqrt{3}}}{2}
$$
\n
$$
\sigma_3 \left(\frac{\sqrt{1 + i\sqrt{3}}}{2} \right) = \frac{\sqrt{1 - i\sqrt{3}}}{2}
$$
\n
$$
|\sigma_2| = 2
$$
\n
$$
|\sigma_3| = 2
$$

$$
\sigma_4\left(\frac{\sqrt{1+i\sqrt{3}}}{2}\right) = -\frac{\sqrt{1-i\sqrt{3}}}{2} \qquad |\sigma_4| = 2
$$

Where the only group with four elements satisfying these orders is $\mathbb{Z}_2 \times \mathbb{Z}_2$.