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Question 12.3 Let γ =
√

2 +
√

2. Show that Q(γ) : Q is normal, with cyclic Galois group. Show
that Q(γ, i) = Q(σ) where σ4 = i.

Let γ =
√

2 +
√

2 where we have that γ4 − 4γ2 + 2 = 0 ⇒ γ is a root of f(x) = x4 − 4x2 + 2
which is irreducible by Eisenstein. It is also the case that f(−γ) = f(β) = f(−β) = 0 where

β =
√

2−
√

2.

Trivially γ,−γ ∈ Q(γ) and since
√

2 =
√

2 +
√

2
√

2−
√

2 where
√

2 = γ2 − 2 ∈ Q(γ) we have

that β =
√

2−
√

2 =
√

2√
2+
√

2
∈ Q(γ).

Since all the roots of f are in Q(γ) we may conclude that Q(γ) is a splitting field for f(x) over
the fixed field Q such that it is normal over Q.

This implies that, since the extension is normal that [Q(γ) : Q] = |Gal(Q(γ)/Q)| = 4
We have the any automorphism σ ∈ Gal(Q(γ)/Q) satisfies:

σ2

(√
2 +

√
2

)
= σ

(√
2−

√
2

)
=

σ(γ2 − 2)

σ(γ)
=

β2 − 2

β
=

−
√

2√
2−

√
2

= −
√

2 +
√

2

σ3

(√
2 +

√
2

)
=

σ
(
−
√

2
)

σ
(√

2 +
√

2)
) =

√
2

−
√

2√
2−

√
2

= −
√

2−
√

2

σ4

(√
2 +

√
2

)
= σ

(
−
√

2−
√

2

)
=

√
2 +

√
2

Since σ4(γ) = γ we have that γ is an element of order 4 which would imply that Gal(Q(γ)/Q)
is cyclic. Where:

[Q(γ, i) : Q(γ)] = 2

[Q(γ) : Q] = 4

[Q(γ, i) : Q] = 2

Now take φ4 = i then φ8 = −1 so φ is a zero of f(x) = x8 + 1 and [Q(φ) : Q] = 8.
Since Q ⊂ Q(φ)(γ, i) when the extensions have the same degree we have that Q(φ) = Q(φ, i).
Consdier γ + βi ∈ Q(γ, i)

(γ + βi)4 = γ4 + 4γ3βi− 6γ2β2 − 4γβ3i + β4

= 4
√

2i(2 +
√

2− 2 +
√

2)

= 16i

Therefore φ ∈ Q(γ, i) so Q(φ) ⊂ Q(γ, i) and so Q(φ) = Q(γ, i).
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Question 12.4 Find the Galois group of t6 − 7 over Q

By Eisenstein t6 − 7 is irreducible over Q.
Since t = ± 6

√
7 we let:

α ∈ { 6
√

7, ζ3α, ζ2
3α}

β ∈ {− 6
√

7, ζ3β, ζ2
3β}

We know that [Q(α) : Q] = 6 (because α is not a root of the irreducible polynomial of degree
6) and that [Q(α, ζ3) : Q(α)] = 2 which means that [Q(α) : Q] = 2× 6 = 12.

We create the twelve automorphisms σij that follow the properties:

σij(α) → x ∈ {α, ζ3α, ζ2
3α, β, ζ3β, ζ2

3β}
σij(ζ3) → x ∈ {ζ3, ζ

2
3}

We say σ11 is the automorphism that takes α → α and ζ3 → ζ3, σ21 is the automorphism that
takes α → ζ3α and ζ3 → ζ3 and so on.

Investigating the order of each σ we find that:

|ζ11| = 1 |ζ12| = 2

|ζ21| = 3 |ζ22| = 2

|ζ31| = 2 |ζ32| = 2

|ζ41| = 2 |ζ42| = 2

|ζ51| = 6 |ζ52| = 3

|ζ61| = 2 |ζ62| = 4

Where the only group with elements of these orders is the dihedral group of order 4, D4.
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Question 13.1 (a) Find the Galois group of Q(
√

2,
√

5) : Q

[Q(
√

2) : Q] = 2 because
√

2 has ma(x) = x2 − 2 over Q and [Q(
√

5,
√

2) : Q(
√

2)] = 2 becuse√
5 /∈ Q(

√
2) and

√
5 has ma(x) = x2 − 5 over Q(

√
2).

So our Galois group has order 4

σ
(√

(2)
)
→
√

2 σ
(√

(5)
)
→
√

5 |σ| = 1

σ
(√

(2)
)
→ −

√
2 σ

(√
(5)
)
→
√

5 |σ| = 2

σ
(√

(2)
)
→
√

2 σ
(√

(5)
)
→ −

√
5 |σ| = 2

σ
(√

(2)
)
→ −

√
2 σ

(√
(5)
)
→ −

√
5 |σ| = 2

Where the only group with four elements satisfying these orders is Z2 × Z2.

Question 13.1 (b) Find the Galois group of Q(α) : Q where α = exp(2πi/3)

α = ζ3 which is a solution to x3−1. But we know 1 is a root of x3−1 so the minimal polynomial
becomes ma(x) = x2 + x + 1. So ma(x) has roots ζ3 and ζ2

3 over Q.
So the Galois group has order 2 and the elements are σ1(ζ3) → ζ3 and σ2(ζ3) → ζ2

3 . This is Z2.

Question 13.1 (c) Find the Galois group of K : Q where K is the splitting filed over Q for
t4 − 3t2 + 4.

Let x = t2 so we have x2 − 3x + 4 and x = 3±
√
−7

2
which implies that

t =
±
√

3±
√
−7

2

so letting α =

√
3+
√
−7

2
, β =

√
3−
√
−7

2
where α · β = 2.

Thus [Q(α) : Q] = 4 and Q(α) is a splitting field for our polynomial.

σ1(α) = α |σ| = 1

σ2(α) = − α |σ| = 2

σ3(α) = β |σ| = 2

σ4(α) = − β |σ| = 4

Where the only group with four elements satisfying these orders is Z4.
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Question 13.10 Find the Galois group of t8 + t4 + 1 over Q(i).

We have that
t8 + t4 + 1 = (t4 − t2 + 1)(t2 + t + 1)(t2 − t + 1)

where t2 + t + 1 has roots −1±i
√

3
2

, t2 − t + 1 has roots 1±i
√

3
2

, and t4 − t2 + 1 has roots
√

1±i
√

3
2

.

The roots of t2+t+1 and t2−t+1 can be found from
√

1+i
√

3
2

. Also 1±i
√

3
2

are roots of unity equal

to exp(2πi
3

) and exp(4πi
3

). The square roots of these are exp(πi
3
) and exp(2πi

3
). Thus

√
1−i

√
3

2
can be

formed from

√
1+i

√
3

2
which shows that the splitting field is Q

(√
1+i

√
3

2

)
and Q

(√
1+i

√
3

2

)
: 4] = 4

because ma(t) = t4 − t2 + 1. Our four automorphisms have the following form:

σ1

(√
1 + i

√
3

2

)
=

√
1 + i

√
3

2
|σ1| = 1

σ2

(√
1 + i

√
3

2

)
= −

√
1 + i

√
3

2
|σ2| = 2

σ3

(√
1 + i

√
3

2

)
=

√
1− i

√
3

2
|σ3| = 2

σ4

(√
1 + i

√
3

2

)
= −

√
1− i

√
3

2
|σ4| = 2

Where the only group with four elements satisfying these orders is Z2 × Z2.


