
Lazy and Forgetful Polynomial Arithmetic and

Applications

Michael Monagan1 and Paul Vrbik2

1 Simon Fraser University, Department of Mathematics, Burnaby, B.C. Canada
2 The University of Western Ontario, Department of Computer Science, London, ON

Canada

Abstract. We present lazy and forgetful algorithms for multiplying and
dividing multivariate polynomials. The lazy property allows us to com-
pute the i-th term of a polynomial without doing the work required to
compute all the terms. The forgetful property allows us to forget earlier
terms that have been computed to save space. For example, given polyno-
mials A, B, C, D, E we can compute the exact quotient Q = A×B−C×D

E

without explicitly computing the numerator A×B−C×D which can be
much larger than any of A,B, C, D, E and Q. As applications we apply
our lazy and forgetful algorithms to reduce the maximum space needed
by the Bareiss fraction-free algorithm for computing the determinant of
a matrix of polynomials and the extended Subresultant algorithm for
computing the inverse of an element in a polynomial quotient ring.

1 Introduction

Lazy algorithms were first introduced into computer algebra systems by Burge
and Watt [3] where they were used in Scratchpad II for power series arithmetic.
But not all of the lazy power-series algorithms were efficient. For example, the
most obvious algorithm for computing exp(f(x)) to O(xn) requires O(n3) arith-
metic operations whereas the lazy algorithm in [3] required O(n4). In [9] Watt
showed how to reduce this to O(n2).

van der Hoeven considers lazy algorithms for multiplication of power series to
O(xn) which are asymptotically fast [8]. A lazy analogue of Karatsuba’s divide
and conquer algorithm is given which does O(nlog

2
3) arithmetic operations (the

same as the as non-lazy algorithm) but uses O(n log n) space, an increase of a
factor of log n. van der Hoeven also gives a lazy multiplication based on the
FFT which does O(n log2 n) arithmetic operations, a factor of log n more than
the non-lazy multiplication. However, all of these results assume dense power
series and our interest is the sparse case.

Let D be an integral domain and R = D[x1, x2, ..., xn] be a polynomial ring.
Let f = f1 + f2 + ... + fn be a polynomial in R where each term fi of f is of
the form fi = aiXi where ai ∈ D and Xi is a monomial in x1, ..., xn. Two terms
aiXi, ajXj are like terms if Xi = Xj. We say f is in standard form if ai 6= 0
and X1 ≻ X2 ≻ · · · ≻ Xn in a monomial ordering �. This form is often called

the sparse distributed form for polynomials in R. In what follows we use #f to
indicate the number of terms of f .

Let f, g be polynomials in the standard form. Johnson’s [5] multiplication
algorithm is based on the observation that multiplying f = f1 + · · · + fn by
g = g1 + · · ·+ gm can be done by executing a simultaneous m-ary merge on the
set of sorted sequences

S = {(f1g1, . . . , fng1), . . . , (f1gm, . . . , fngm)}.

Johnson used a heap H, initialized to contain the terms f1g1, f1g2, . . . , f1gm,
to merge the m sequences. The number of terms in this heap never exceeds
#g and inserting into and extracting terms from H costs O(log #g) mono-
mial comparisons per insertion/extraction. Therefore, since all #f#g terms are
eventually inserted and extracted from the heap, the algorithm does a total of
O(#f#g log #g) monomial comparisons and requires auxiliary space for at most
#g terms in the heap plus space for the output.

Monagan and Pearce [6] extended this heap algorithm to polynomial division.
Recall that when we do f ÷ g we are trying to construct the quotient q and
remainder r such that f − qg − r = 0. One could use a heap to store the sum
f − qg by merging the set of #g + 1 sorted sequences

{(f1, . . . , fn), (−q1g1, . . . ,−qkg1), . . . , (−q1gm, . . . ,−qkgm)}

where m = #g and k = #q. Alternatively we may see the heap as storing the
sum f −

∑m
i=1 gi × (q1 + q2 + · · ·+ qk).

These heap algorithms dealt only with the so-called zealous (non-lazy) poly-
nomials. Our contributions are the variations of these algorithms that enable us
to compute in a lazy and forgetful manner.

2 Lazy Arithmetic

The intended purpose of working in a lazy way is to improve performance by
avoiding unnecessary calculations. To apply this to polynomial arithmetic we
restrict access to a polynomial to that of a single term. Furthermore, we save
intermediate results from this calculation so that the i-th term where i ≤ n will
be ‘calculated’ instantaneously.

Definition 1. A lazy polynomial, F , is an approximation of the polynomial
f = f1 + · · ·+ fn (in standard form), given by FN =

∑N
i=1 fi where N ≥ 0. To

ensure FN is always defined we let fi = 0 when i > n. This admits the useful
notation F∞ = f .

The terms F1, . . . , FN are called the forced terms of F and the nonzero terms
of f − FN are called the delayed terms of F . We denote the number of forced
terms of a lazy polynomial F by |F | (and to be consistent let #F = |F∞| = #f).

A lazy polynomial must satisfy two conditions regarding computation: all the
forced terms of F are cached for re-access and calculating a delayed term of F
should force as few terms as possible.

Let us refine our focus and address the problem of determining the n-th term
of a polynomial when it is the result of some operation. We will use the heap
methods for division and multiplication and a simple merge for addition. Since
these methods build the result in �-order anyway, we simply halt and return
once n non-zero terms are generated. But, in order to initially populate the heap
one polynomial must be fully forced. We give an optimization that avoids this.

Claim. Let f, g be polynomials in the standard form and S[j] = (f1gj , . . . , fngj).
If f1gj is in the heap H , then no term of the sequences S[j + 1], . . . , S[m] can
be the ≻-largest term of H .

Proof. By the definition of a monomial ordering we have: if gj ≻ gj+1 ≻ . . . ≻
gm, then f1gj ≻ f1gj+1 ≻ . . . ≻ f1gm. As f1gj+1, . . . , f1gm are (respectively) the
�-largest terms of S[j + 1], . . . , S[m], it follows that f1gj is �-larger than any
term of S[j + 1], . . . , S[m]. The claim is an immediate consequence of this.

This claim gives a natural replacement scheme that ensures no term is pre-
maturely calculated and put in the heap. For multiplication this is reflected in
lines (13)-(15) of Algorithm 2. For division we replace a term coming out of the
heap with the �-next largest term in the sequence it was taken from. That is,
we replace fi with fi+1 and −qigj with −qi+1gj (we also use the optimization
that says only add −q1gj+1 after removing −q1gj). However, it is possible that
we remove −qi−1gj before qi is known, in which case we would not be able to
insert the term −qigj. But, since −qigj can certainly not be required to calculate
qi, the terms needed to determine qi must already be in the heap. Therefore,
we can just remember the terms that should have been added to the heap, and
eventually add them once qi has been calculated. In the lazy division algorithm,
this is referred to as ‘sleeping’.

We also require no work to be repeated to calculate XN−1, . . . , X1 after
calculating XN . To achieve this we pass our algorithms the approximation XN ,
which must also record the state of the algorithm that generated it. Specifically,
it must remember the heap the calculation was using and local variables that
would otherwise get erased (we will assume that this information is associated
with XN in some way and can be retrieved and updated).

Lazy algorithms for doing multiplication and division are now presented.
Note that the algorithm for division returns terms of the quotient (while updat-
ing the remainder), but could easily be modified to instead return terms of the
remainder (while updating the quotient). Complexity results for multiplication
and division follow their respective algorithms.

Algorithm 2 - Lazy Multiplication

Input: The lazy polynomials F and G so that F∞ = f and G∞ = g, a positive integer
N (the desired term), and the lazy polynomial X so that X∞ = f × g.

Output: The N-th term of the product f × g.
1: if N ≤ |X| then {XN has already been calculated.} return XN ; end if

2: if |X| = 0 then

3: {X has no information.}

4: Initialize a heap H and insert (F1G1, 1, 1); {Order the heap by � on the mono-
mials in the first position.}

5: k← 1;
6: else

7: Let H be the heap associated with X;
8: k← number of elements in H ;
9: end if

10: while H is not empty do

11: t← 0;
12: repeat

13: Extract (s, i, j)← Hmax from the heap and assign t← t + s;
14: if Fi+1 6= 0 then Insert (Fi+1Gj , i + 1, j) into H ; end if

15: if i = 1 and Gj+1 6= 0 then Insert (F1Gj+1, 1, j + 1) into H ; end if

16: until (H is empty) or (t and Hmax are not like terms);
17: if t 6= 0 then (Xk, k)← (t, k + 1); end if

18: if k = N then Associate the heap H with X; return Xk; end if

19: end while

20: Associate the (empty) heap H with X;
21: return 0;

Theorem 1. To force every term of X (that is to completely determine the
standard form of f × g) in Algorithm 2, requires O(#f#g log #g) monomial
comparisons, space for a heap with at most #g terms, and space for O(#f#g)
terms of the product.

Proof. Proceeding as in [7], the size of the heap is not effected by line 14, as
this merely replaces the term coming out of the heap in line 13. The only place
the heap can grow is on line 15, which is bounded by the number of terms of g.
Therefore O(#g) space is required for the heap. Since the product f × g has at
most #f#g many terms it will require O(#f#g) space.

Extracting/inserting from/to a heap with #g elements does O(log #g) many
monomial comparisons. As every term of the product passes through the heap,
we do O(#f#g) extractions/insertions totaling O(#f#g log #g) monomial com-
parisons.

Remark 1. It is possible to improve multiplication so that the heap requires space
for only min(#f, #g) terms and the number of monomial comparisons done is
O(#f#g log min(#f, #g)). If #f < #g and we could switch the order of the
input (i.e. calculate g × f instead of f × g) then the heap would be of size #f .
But we we may not know #f and #g! So, we must quote the worst case scenario
in our complexities (in fact we will emphasize this by using max(#f, #g)).

Algorithm 3 - Lazy Division

Input: The lazy polynomials F and G so that F∞ = f and G∞ = g, a positive integer
N (the desired term), and the lazy polynomials Q and R so that f = g×Q∞+R∞.

Output: The N-th term of the quotient from f ÷ g.
1: if F1 = 0 then return 0; end if

2: if N ≤ |Q| then {QN has already been calculated.} return QN ;
3: if |Q| = 0 then

4: {Q has no information.}
5: Initialize a new heap H and insert F1 into H ;
6: s← 2;
7: else

8: Let H be the heap associated with Q;
9: end if

10: while H is not empty do

11: t← 0;
12: repeat

13: Extract x← Hmax from the heap and assign t← t + x;
14: if x = Fi and Fi+1 6= 0 then

15: Insert Fi+1 into H ;
16: else if x = GiQj and Qj+1 is forced then

17: Insert −GiQj+1 into H ;
18: else if x = GiQj and Qj+1 is delayed then

19: s← s + 1; {Sleep −GiQj+1}
20: end if

21: if x = GiQ1 and Gi+1 6= 0 then Insert −Gi+1Q1 into H ; end if

22: until (H is empty) or (t and Hmax are not like terms)
23: if t 6= 0 and g1|t then

24: Q|Q|+1 ← t/G1; {Now Q|Q|+1 is a forced term.}
25: for k from 2 to s do

26: Insert −Gk · t/G1 into H ; {Insert all terms that are sleeping into H}
27: end for

28: else

29: R|R|+1 ← t; {Now R|R|+1 is a forced term.}
30: end if

31: if |Q| = N then Associate the heap H with Q; return QN ; end if

32: end while

33: Associate the (empty) heap H with Q;
34: return 0;

Theorem 2. To force every term of Q and R (that is to completely determine
q and r such that f = g× q + r) in Algorithm 3 requires O((#f +#q#g) log #g)
many monomial comparisons, space for a heap with O(#g) terms, and space for
O(#q + #r) terms of the solution.

Proof. Proceeding as in [6], the size of the heap H , denoted |H | is unaffected
by lines 15 and 17 since these lines only replace terms coming out of the heap.
Line 19 merely increments s and does not increase |H |. The only place where
H can grow is line 21 in which a new term of g is added to the heap, this is
clearly bounded by #g. It is clear that we require O(#q + #r) space to store
the quotient and remainder.

All terms of f and q × g are added to the heap, which is #f + #q#g
terms. Passing this many terms through a heap of size #g requires O((#f +
#q#g) log #g) monomial comparisons.

3 Forgetful Arithmetic

We propose a variant to lazy polynomial arithmetic that has useful properties.
Consider that the operations from the previous section can be composed to form
polynomial expressions. For example, we could use lazy arithmetic to calculate
the n-th term of say, A × B − C × D. When we do this we store the interme-
diate terms But, if re-access was not required we could ‘forget’ these terms. A
‘forgetful’ operation is like a lazy operation but intermediate terms won’t be
stored. Forgetful operations are potentially useful when expanding compounded
polynomial expressions with large intermediate subexpressions.

We can make some straightforward modifications to our lazy algorithms to
accomplish this forgetful environment. Essentially all that is required is the re-
moval of lines that save terms to the solution polynomial (i.e. lines that look
like Xi ← �) and eliminating any references to previous terms (or even multiple
references to a current term). To emphasize this change we will limit our access
to a polynomial by way of a next command.

Definition 2. For some lazy polynomial F and monomial order �, the next

command returns the �-next un-calculated term of a polynomial (eventually re-
turning only zeros).

Remark 2. A forgetful polynomial F satisfies: next (F) ≻ next (F) ≻ · · · ≻
next (F) = 0 = next (F) = · · · and next (F)+next (F)+next (F)+ · · · = F∞.

Definition 3. A forgetful polynomial is a lazy polynomial that is accessed solely
via the next command. That is, intermediate terms of F are not stored and
can only be accessed once. If the functionality to re-access terms is restored in
any way (i.e. by caching any term but the current term in memory), F is no
longer considered to be a forgetful polynomial. Thus, for a forgetful polynomial
F , calculating Fn+1 forfeits access to the terms F1 through Fn, even if these
terms have never been accessed.

Although it would be ideal to have all of our forgetful routines take forgetful
polynomials as input and return forgetful polynomials as output, this is not
possible without caching previous results. Consider multiplication for instance.
Assuming that we must multiply each term of f by each term of g and we are
limited to single time access to terms, this task is impossible. For if we calculate
f1g2 we cannot then calculate f2g1 and vice versa.

For the same reason our division algorithm can not accept a forgetful divisor
as it must be repeatedly multiplied by terms of the quotient (thus the quotient
can not be forgetful either). However, the dividend can be forgetful which is a
highly desirable feature (see Section 5). The only ‘fully’ forgetful (forgetful input
and output) arithmetic operation we can have is addition (although polynomial
differentiation and scalar multiplication are also fully forgetful).

The variant of multiplication that takes as input lazy polynomials, returning
a forgetful polynomial, is a trivial change to Algorithm 2. In this case all that
must be done is to remove the ‘if’ statement on line 18 so that the �-next,

instead of the N -th, term is returned. As this is not a significant change, we
will not present an algorithm for forgetful multiplication. Division will take as
input a forgetful dividend and lazy divisor returning a fully forced quotient and
remainder.

Theorem 3. When multiplying f by g the worst case storage complexity for
forgetful multiplication is O(max(#f, #g)) (the storage required for the heap).

Proof. A quick inspection of Algorithm 2 will show that the only time a previous
term of the product is used is on line 2 and line 18. In both cases the term is
merely being re-accessed and is not used to compute a new term of the product.
Since we do not store nor re-access terms of a forgetful polynomial, we can
eliminate the storage needed to do this requiring only space for a heap with
max(#f, #g) terms.

Algorithm 5 - Forgetful Division

Input: A forgetful polynomial F and lazy polynomial G so that F∞ = f and G∞ = g.
Output: The lazy polynomials Q and R so that f = g ×Q∞ + R∞.
1: tF ← next (F);
2: if tF = 0 then Set Q and R to zero; return Q and R; end if

3: Initialize a new heap H and insert tF into H ;
4: s← 2;
5: while H is not empty do

6: t← 0;
7: repeat

8: Extract x← Hmax from the heap and assign t← t + x;
9: if x = tF then

10: tF = next (F)
11: if tF 6= 0 then

12: Insert tF into H ;
13: end if

14: else if x = GiQj and Qj+1 is forced then

15: Insert −GiQj+1 into H ;
16: else if x = GiQj and Qj+1 is delayed then

17: s← s + 1; {Sleep −GiQj+1}
18: end if

19: if x = GiQ1 and Gi+1 6= 0 then

20: Insert −Gi+1Q1 into H ;
21: end if

22: until (H is empty) or (t and Hmax are not like terms)
23: if t 6= 0 and g1|t then

24: Q|Q|+1 ← t/G1; {Now Q|Q|+1 is a forced term.}
25: for k from 2 to s do

26: Insert −Gk · t/G1 into H ; {Insert all terms that are sleeping into H}
27: end for

28: else

29: R|R|+1 ← t; {Now R|R|+1 is a forced term.}
30: end if

31: end while

32: return Q and R;

In its current form Algorithm 5 returns a fully forced quotient Q and re-
mainder R. It is straightforward to modify this algorithm to return a forgetful
remainder instead. We simply have line 29 return t instead of saving a term to
the remainder and change line 32 to return 0 (for when terms of R have been
exhausted). In the interest of space we will assume this modification has been
done as:

Algorithm 6 - Forgetful Division (with forgetful remainder)

Input: The forgetful polynomial F and lazy polynomial G so that F∞ = f and
G∞ = g.

Output: The lazy polynomial Q and forgetful polynomial R so that f = g×Q∞+R∞.

Theorem 4. In algorithm 6, when calculating f÷g the space required (including
space for the input) to force every term of the forgetful remainder R is:

1. Space for a heap with #g terms. 2. Space for #q terms of the quotient.
3. Space for #g terms of the divisor. 4. Space for one term of the dividend f .

Proof. .

1. As there has been no change to the division algorithm, Theorem 2 implies
the heap has #g many terms.

2. To fully force every term of a lazy polynomial Q requires storage for #q
many terms.

3. As G is a lazy polynomial that will be fully forced during the execution we
require space to store #g many terms for the divisor.

4. As F is a forgetful polynomial we are restricted to only accessing one term
from F at a time (where no previously calculated terms are cached). There-
fore we only require space to store one term of f .

4 Implementation

We have implemented a C-library for doing lazy (and forgetful) arithmetic for
polynomials with coefficients that are machine integers modulo p, for p some
machine prime. In our implementation we represent monomials as single machine
integers (which allows us to compare and multiply monomials in one machine
instruction). This representation, analyzed by Monagan and Pearce [6], is based
on Bachmann and Schönemann’s scheme [1]. The C-structure we are using to
represent a lazy polynomial is given below.

Listing 1.1. The lazy polynomial structure.

1 struct poly {
2 int N;
3 TermType ∗ terms ;
4 struct poly ∗F1 ;
5 struct poly ∗F2 ;
6 TermType (∗Method) (int n , struct poly ∗F,
7 struct poly ∗G, struct poly ∗H) ;
8 int s t a t e [6] ;
9 HeapType ∗Heap ;

10 } ;
11 typedef struct poly PolyType ;

The variable N is the number of forced terms, and F1 and F2 are two other
lazy polynomials which the procedure Method (among ADD, MULT, DIVIDE, and
DONE) is applied to. As previously discussed Method requires three inputs, two
lazy polynomials to operate on, and a third lazy polynomial where the solution
is stored (and where the current heap can be found). The array state[6] is a
place to put local variables that get erased but need to be maintained, and Heap

is the heap which the procedure Method uses.
The procedure Term produces the n-th term of the lazy polynomial F , calcu-

lating it if necessary, enabling us to follow the pseudo-code given more directly
as Term(i,F) = Fi.

Listing 1.2. Term.

1 TermType Term (int n , PolyType ∗F) {
2 i f (n>F−>N) {
3 return F−>Method(n ,F−>F1 ,F−>F2 ,F) ;
4 }
5 return F−>terms [n] ;
6 } ;

Many details about the implementation have been omitted but we note that
we have built a custom wrapper that interfaces the C-library with Maple (a
non-trivial technical feat). This allows us to manipulate polynomials in a lazy
way at the Maple level but do calculations at the C level.

Benchmarks are given in Table 1 where we see that calculating in a lazy/
forgetful manner is 3 − 5 times slower than calculating directly with Monagan
and Pearce’s SDMP package (see [7]) or Singular. Roman Pearce pointed out
that this is because we are not using chaining in our heap implementations.
Chaining is a technique where like terms are grouped together in a linked list
to dramatically reduce the number of monomial comparisons in the heap opera-
tions. In [7], Monagan and Pearce show that chaining improves the performance
of multiplication and division using heaps by a factor of 3− 5.

Table 1. Benchmarks for Maple’s SDMP package [7], Singular, and our lazy package
on sparse examples.

f × g mod 503 (fg)÷ f mod 503
SDMP Singular Lazy SDMP Singular Lazy

f = (1 + x + y2 + z3)20 0.26 0.28 1.2 0.28 0.38 1.4

g = (1 + z + y2 + x3)20

f = (1 + x + y3 + z5)20 0.35 0.67 1.3 0.38 0.65 1.4

g = (1 + z + y3 + x5)20

f = (1 + x + y3)100 2.2 1.1 10.8 2.5 2.04 11.1

g = (1 + x3 + y)100

5 Applications

We give two similar, but nonetheless independently important, applications of
forgetful polynomial arithmetic: the Bareiss algorithm and the Subresultant algo-
rithm. These algorithms both have a deficiency in that intermediate calculations
can become quite large with respect to the algorithms output. By using forgetful
operations we can bypass the need to explicitly store intermediate polynomials
and thus reduce the operating space of the each algorithm significantly.

5.1 The Bareiss Algorithm

The Bareiss algorithm is ‘fraction free’ approach for calculating determinants
due to Bareiss [2] who noted that the method was first known to Jordan. The
algorithm does exact divisions over any integral domain to avoid fractions.

The Bareiss algorithm is given below. In the case where Mk,k = 0 (which
prevents us from dividing by Mk,k in the next step) it would be straightforward
to add code (between lines 2 and 3) to find a non-zero pivot. For the purpose of
this exposition we assume no pivoting is required.

Algorithm 6 - Bareiss Algorithm

Input: M an n-square matrix with entries over an integral domain D.
Output: The determinant of M.
1: M0,0 ← 1;
2: for k = 1 to n− 1 do

3: for i = k + 1 to n do

4: for j = k + 1 to n do

5: Mi,j ←
Mk,kMi,j−Mi,kMk,j

Mk−1,k−1

; {Exact division.}

6: end for

7: end for

8: end for

9: return Mn,n

The problem is the exact division in line 5. In the final division where the
determinant Mn,n is obtained by dividing by Mn−1,n−1 the dividend must be
larger than the determinant. It is quite possible (in fact typical) that this cal-
culation (of the form A×B−C×D

E
) produces a dividend that is much larger than

the corresponding quotient and denominator. This final division can be the bot-
tleneck of the entire algorithm.

Example 1. Consider the symmetric Toeplitz matrix with entries from the poly-
nomial ring Z[x1, x2, . . . , x9] generated by [x1, . . . , x9],

x1 x2 x3 · · · x9

x2 x1 x2 · · · x8

x3 x2 x1 · · · x7

...
. . .

. . .
. . .

...
x9 · · · x3 x2 x1

.

When calculating the determinant of this matrix using Bareiss’ algorithm the
last division (in line 5 of Algorithm 6) will have a dividend of 128,530 terms,
whereas the divisor and quotient will only have 427 and 6,090 terms respectively.

To overcome this problem we use forgetful arithmetic to construct the quo-
tient of A×B−C×D

E
without explicitly storing A × B − C × D (the forgetful

algorithms were invented to do precisely this calculation).

Theorem 5. Calculating Q = A×B−C×D
E

(an exact division) with forgetful op-
erations requires space for at most O(max(#A, #B)+max(#C, #D)+#E+#Q)
terms at any one time.

Proof. We have from Theorem 3 that the products A × B and C × D require
at most max(#A, #B) and max(#C, #D) space, where the difference of these
products requires O(1) since it is merely a merge. As there is no remainder
because the division is exact, the division algorithm will use O(#E+#Q) storage
by Theorem 2. Summing these complexities gives the desired result.

The implications of this theorem can be observed in Table 2 where we have
measured the amount of memory used by our implementation of the Bareiss
algorithm with forgetful polynomials. The table shows a linear relationship with
the size of the input polynomials. For n = 8 the total space is reduced by a
factor of 57184/832 = 68 (compared to a Bareiss implementation that explicitly
stores the quotient), which is significant.

Table 2. Let Q = A×B−C×D
E

be the division of line 5 of the Bareiss algorithm and
α = max(#A,#B) + max(#C, #D). The following is a measurement of memory used
by our implementation of the Bareiss algorithm using forgetful polynomials to calculate
Mn,n when given the Toeplitz matrix generated by [x1, . . . , x7].

n #A #B #C #D #E #A#B + #C#D α + #E + #Q 32-bit words �-comparisons

5 12 15 17 17 4 469 106 426 2817
6 35 51 55 55 12 4810 306 944 45632
7 35 62 70 70 12 7070 326 1462 70028
8 120 182 188 188 35 57184 832 3468 720696

5.2 The Extended Subresultant Algorithm

Given a UFD D and non-constant polynomial m ∈ D[x], we can form the quo-
tient ring F [x]/ 〈m〉 where F is the fraction field of D. When m is an irreducible
element of D[x] (that is, there is no non-constant t ∈ D[x] such that t 6= m
and t divides m), this quotient ring will be a field. Of course, when working
in fields it is natural to ask if there is a systematic way of finding inverses.
The extended subresultant algorithm does this by finding s, t ∈ D[x] such that
s · u + t ·m = Res(u, m, x). In this case degx(s) < degx(m) and the inverse of
u ∈ F [x]/ 〈m〉 is s/Res(u, m, x).

Our interest is finding subresultants in D[x] and inverses in F [x] when D = Z

or D = Z[y, z, . . .]. The Subresultant algorithm uses pseudo-division instead of

ordinary division (which the regular Euclidean algorithm uses) to avoid com-
puting with fractions in the fraction field F of D. We recall the definition of
pseudo-remainder and pseudo-quotient.

Definition 4. Let f, g ∈ D[x]. The pseudo-quotient q̃ and pseudo-remainder
r̃ are the ordinary quotient and remainder of α × f divided by g where α =
lcoeffx (g)

δ+1
and δ = degx(f)− degx(g). Thus they satisfy α f = q̃ g + r̃.

One can show (e.g. see Ch. 2. of [4]) that q̃ and r̃ are elements of D[x]. The
extended Subresultant algorithm is given by Algorithm 7. The operations degx,
prem, pquo, and lcoeffx, stand for the degree in x, pseudo-remainder, pseudo-
quotient and leading coefficient in x (respectively).

Algorithm 7 - Extended Subresultant Algorithm

Input: The polynomials u, v ∈ D[x] where degx(u) ≥ degx(v) and v 6= 0.
Output: The resultant r = Res(u, v, x) ∈ D and s, t ∈ D[x] where s · u + t · v = r.
1: (g, h)← (1,−1);
2: (s0, s1, t0, t1)← (1, 0, 0, 1);
3: while degx(v) 6= 0 do

4: d← degx(u)− degx(v);
5: (r̃, q̃)← (prem(u, v, x),pquo(u, v, x)); {r̃, q̃ are computed simultaneously.}
6: u← v;
7: α← lcoeffx (v)d+1;
8: (s, t)← (α · s0 − s1 · q̃, α · t0 − t1 · q̃);
9: (s0, t0)← (s1, t1);

10: v ← r̃ ÷ (−g · hd);
11: (s1, t1)← (s÷ (−g · hd), t÷ (−g · hd))
12: g ← lcoeffx (u);
13: h← (−g)d ÷ hd−1;
14: end while

15: (r, s, t)← (v, s1, t1);
16: return r, s, t;

A bottleneck occurs when finding the pseudo-remainder on line 5. It can be
easily demonstrated, especially when u and v are sparse polynomials in many
variables, that r̃ is very large relative to the dividend and quotient given by the
division on line 10. In fact r̃ can be much larger than the resultant Res(u, v, x).

Example 2. Consider the two polynomials f = x6
1+

∑8

i=1

(

xi + x3
i

)

and g = x4
1+

∑8

i=1 x2
i in Z[x1, . . . , x9]. When we apply the extended subresultant algorithm

to these polynomials we find that in the last iteration, the pseudo-remainder r̃
has 427, 477 terms but the quotient v has only 15, 071 (v is the resultant in this
case).

To solve this problem we let the pseudo-remainder be a forgetful polynomial
so that the numerator on line 10 does not have to be explicitly stored. This is
accomplished by using Algorithm 5 since (when f and g regarded as univariate
polynomials in x) calculating prem(f, g, x) is equivalent to dividing α × f by g
using ordinary division with remainder. Table 3 shows the benefit of calculating

in this manner. In the final iteration only a max 634+2412=3046 terms will need
to be explicitly stored to calculate a pseudo-remainder with 14,692 terms. Note,
in order to implement this pseudo-division in the sparse distributed form, the
monomial ordering used must satisfy Y xn ≻ Zxn−1 for all monomials Y and Z
that do not involve x.

Table 3. Let r̃, q̃ be from line 5 and v,−g · hd be from line 10 of Algorithm 7. The
following is a measurement of the memory used by our implementation of the extended
subresultant algorithm using forgetful polynomials to calculate Res(f, g, x1) where f =
x8

1 +
P5

i=1

`

xi + x3
i

´

, g = x4
1 +

P5

i=1
x2

i ∈ Z[x1, . . . , x5] at iteration n.

n #r̃ #q̃ #v #
`

−g · hd
´

32-bit words ≻-comparisons

1 29 7 29 1 236 137
2 108 6 108 1 154 953
3 634 57 634 1 2,672 75,453
4 14,692 2412 2,813 70 83,694 25,801,600

Conclusion

We presented algorithms for lazy and forgetful polynomial arithmetic and two
applications. These applications have demonstrated that the space complexity of
the Bareiss algorithm and extended Subresultant algorithm can be significantly
improved by using forgetful arithmetic, as proposed in this paper.

Acknowledgement We wish to thank Dr. Jürgen Gerhard, Dr. Marc Moreno
Maza, Dr. Eric Schost, and Roman Pearce for their contributions to this work.

References

1. O. Bachman and H. Schönemann. Monomial representations for Gröbner bases
computations. In Proceedings of ISSAC, pages 309–316. ACM Press, 1998.

2. E. F. Bareiss. Sylvester’s identity and multisptep integer-preserving Gaussian elim-
ination. J. Math. Comp., 103:565–578, 1968.

3. W. H. Burge and S. M. Watt. Infinite structures in Scratchpad II. In EUROCAL
1987, page 378. Springer-Verlad, 1989.

4. K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for Computer Algebra.
Kluwer Academic Publishers, 1992.

5. S. C. Johnson. Sparse polynomial arithmetic. ACM SIGSAM Bulletin, 8(3):63–71,
1974.

6. M. Monagan and R. Pearce. Polynomial Division using Dynamic Arrays, Heaps,
and Packed Exponent Vectors, volume 4770 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2007.

7. M. Monagan and R. Pearce. Sparse polynomial arithmetic using a heap. Journal
of Symbolic Computation - Special Issue on Milestones In Computer Algebra, 2008.
Submitted.

8. J. van der Hoeven. Relax, but don’t be too lazy. J. Symbolic Computation, 11(1-
000), 2002.

9. S. M. Watt. A fixed point method for power series computation. In International
Symposium on Symbolic and Algebraic Computation (ISSAC), volume 358 of Lecture
Notes in Computer Science. Spinger Verlag, July 1989.

