Inverting Matrices Modulo 0-Dim Regular Chains

Paul Vrbik¹

¹University of Western Ontario

April 8, 2011

Paul Vrbik (UWO) Inverting Matrices Modulo 0-Dim Regular Channel April 8, 2011 1 / 22

 \bullet

Consider a subset $F = \{f_1, \ldots, f_n\} \subset \mathbb{Q}[x_1, \ldots, x_n]$ which you would like to "solve".

A 0-dimensional Regular Chain is another subset $T = \{T_1, \ldots, T_n\}$ $\subset \mathbb{Q}[x_1,\ldots,x_n]$ such that

 $\{x \mid f_1(x) = 0, \ldots, f_n(x) = 0\} = \{x \mid T_1(x) = 0, \ldots, T_n(x) = 0\}$

zeros of $F =$ zeros of T

 \bullet The equations of T admit trivial back substitution.

Example (Regular Chain)

Consider the system of equations $F = \{f_1, \ldots, f_3\} \subset \mathbb{Q}[x, y, z]$

$$
x2 + y2 + z2 - 1 = 0
$$

$$
x2 + z2 - y = 0
$$

$$
x - z = 0.
$$

A regular chain is given by $T = \{T_1, \ldots, T_3\} \subset \mathbb{Q}[x, y, z]$

The example on the previous slide was a zero dimensional regular chain.

Zero dimensional regular chains are:

- **•** derived from "squares systems" (number of equations and unknowns are equal) that have a finite number of zeros,
- o of great interest in practice because we can apply modular methods to them,
- well suited for defining algebraic rings.

Polynomial Division

In high school we are taught how to divide polynomial $f, g \in \mathbb{Q}[x]$ to produce a quotient and remainder q and r so that $f = qg + r$.

To extend this to multivariates one just needs to specify a monomial ordering (i.e. define the leading term).

$$
q = x^{3}z + y^{2} + z
$$

\n
$$
x^{2}z + 1 \overline{\smash)x^{5}z^{2} + x^{4}y + x^{2}y^{2}z + x^{3}z + x^{2}z^{2} + y^{2}}
$$

\n
$$
\frac{x^{5}z^{2} + x^{3}z}{x^{4}y + x^{2}y^{2}z + x^{2}z^{2} + y^{2}}
$$

\n
$$
\frac{x^{2}y^{2}z + x^{2}z^{2} + y^{2}}{x^{2}y^{2}z + y^{2}}
$$

\n
$$
\frac{x^{2}y^{2}z + y^{2}}{x^{2}z^{2}}
$$

\n
$$
\frac{x^{2}z^{2} + z}{-z}
$$

\n
$$
\frac{-z}{0}
$$

\n
$$
\rightarrow -z
$$

Paul Vrbik (UWO) Inverting Matrices Modulo 0-Dim Regular Channel April 8, 2011 5 / 22

Polynomial Division (of sets)

It is also possible to take a set of divisors

$$
G=\{g_1,\ldots,g_m\}\subset\mathbb{Q}[x_1,\ldots,x_n]
$$

and do $f \div G$ to produce $\{q_1, \ldots, q_m\}$ and r (in $\mathbb{Q}[x_1, \ldots, x_n]$) so that

$$
f=q_1g_1+\cdots+q_mg_m+r.
$$

(Just do the regular division algorithm but choose any divisor at each step).

In general this operation is not well defined but when $\{g_1, \ldots, g_m\}$ is a zero-dimensional regular chain the remainder is unique.

From now on assume f mod $\langle G \rangle$ returns the *remainder* when dividing f by G.

Suppose we have a zero dimensional regular chain $T \subset \mathbb{Q}[x_1,\ldots,x_n]$. We can now create an equivalence in $\mathbb{Q}[x_1, \ldots, x_n]$ that says $f = g$ when

$$
f \text{ mod } \langle T \rangle \equiv g \text{ mod } \langle T \rangle.
$$

This means that all we really care about are all possible remainders.

The (finite) set of all possible remainders on $\div T$ is called the *quotient* ring of T and is denoted

$$
\mathbb{Q}[x_1,\ldots,x_n]/\langle T\rangle=\left\{f \text{ mod }\langle T\rangle \,\middle|\, f\in\mathbb{Q}[x_1,\ldots,x_n]\right\}.
$$

Working in Quotient Rings

A *ring* is a set with multiplication and 1, addition and 0. There may be some elements of the ring with multiplicative inverse, i.e.

fg mod $\langle T \rangle = 1$,

The extended euclidean algorithm (i.e. gcd algorithm) can calculate inverses by finding successive polynomial remainders.

Example (Invertible Elements)

Let $m = x^3 - x + 2$, $a = x^2 \in \mathbb{Q}[x]$. The last row in the extended euclidean algorithm is

$$
\left(\frac{1}{4}x + \frac{1}{2}\right)(x^3 - x + 2) + \left(-\frac{1}{4}x^2 - \frac{1}{2}x + \frac{1}{4}\right)x^2 = 1,
$$

so $(-x^2-2x+1)$ /4 is the inverse of a modulo m.

Our goal is to extend this inversion to Matrices.

Specifically, given a matrix $\mathbf{A} \in \mathbb{Q}[x_1,\ldots,x_n]/\left\langle T\right\rangle^{m \times m}$ we want to find $\mathbf{B} \in \mathbb{Q}[x_1, \ldots, x_n]/\langle T \rangle^{m \times m}$ so that

$$
\mathbf{A} \cdot \mathbf{B} \equiv \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \end{array} \right] \text{ mod } \langle T \rangle \,.
$$

(Remember that 1 and 0 are obtained *after* dividing by T).

Naive

Gauss-Jordan elimination does pivoting and requires many inversions/divisions.

This inversion is a bottleneck, mainly due to memory consumption.

Leverrier-Faddeev

Is a scheme for finding a matrix inverse that requires only a single division.

Leverrier-Faddeev Algorithm

Consider the characteristic polynomial of the $n \times n$ matrix **A**,

$$
p(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = \lambda^{n} - a_{1}\lambda^{n-1} - \cdots - a_{n-1}\lambda - a_{n}.
$$

Evaluating $p(\mathbf{A})$, multiplying by \mathbf{A}^{-1} and re-arranging terms gives,

$$
0 = \mathbf{A}^n - a_1 \mathbf{A}^{n-1} - \dots - a_{n-1} \mathbf{A} - a_n \tag{1}
$$

$$
\mathbf{A}^{-1}a_n = \mathbf{A}^{n-1} - a_1 \mathbf{A}^{n-2} - \dots - a_{n-1}
$$
 (2)

$$
\mathbf{A}^{-1} = \left(\mathbf{A}^{n-1} - \sum_{i=1}^{n-1} a_i \mathbf{A}^{n-i-1} \right) a_n^{-1}.
$$
 (3)

The a_k 's can be obtained in a successive manner by

$$
a_k = \frac{1}{k} \left(s_k - \sum_{i=1}^{k-1} s_{k-i} a_i \right).
$$
 (4)

where $s_k = \textsf{trace}(\mathsf{A}^k)$ and $s_1 = s_1.$

Paul Vrbik (UWO) Inverting Matrices Modulo 0-Dim Regular Channel April 8, 2011 11 / 22

Optimizing Calculating the s_k 's

We can reduce the n^4 multiplications required to calculate $\mathsf{A}^1,\ldots,\mathsf{A}^{n-1}$ by doing something like repeated squaring. Let $d=\lfloor\sqrt{n}\rfloor$, if we instead store the sequence

$$
M_0, M_1, M_2, \ldots, M_d = \mathbf{A}^0, \mathbf{A}^1, \mathbf{A}^2, \ldots, \mathbf{A}^d
$$

and generate the sequence

$$
N_0, N_1, N_2, \ldots, N_k = \mathbf{A}^0, \mathbf{A}^{d+1}, \mathbf{A}^{2(d+1)}, \ldots, \mathbf{A}^{2k(d+1)}
$$

on the fly (using repeated multiplying by A^{d+1} , without storing). Then we can compute the required traces by

$$
\mathrm{tr}(\mathit{M}_i\mathit{N}_j)=\mathrm{tr}(\mathbf{A}^i\mathbf{A}^{(d+1)\cdot j})=\mathrm{tr}(\mathbf{A}^{i+(d+1)\cdot j})
$$

taking $0 \le i, j \le d$.

Spatial Optimization for Calculating the s_k 's

That is, we are calculating the traces in "blocks", i.e. for $n = 8$ with $d = \lfloor \sqrt{8} \rfloor = 2$ we do

$$
\begin{aligned}\n\{\text{tr}(\mathbf{A}^0\mathbf{A}^0), \dots, \text{tr}(\mathbf{A}^0\mathbf{A}^2)\} \\
\{\text{tr}(\mathbf{A}^3\mathbf{A}^0), \dots, \text{tr}(\mathbf{A}^3\mathbf{A}^2)\} \\
\{\text{tr}((\mathbf{A}^3\mathbf{A}^3)\mathbf{A}^0), \dots, \text{tr}((\mathbf{A}^3\mathbf{A}^3)\mathbf{A}^2)\}\n\end{aligned}
$$

 $2n^3\sqrt{n} \times$'s to get the M 's and N 's

 $n^2 \times$'s *n* times to get the traces (we assume some optimization has been done to calculate $tr(AB)$ by only calculating the diagonal of AB).

Therefore we only require $n^3+2n^3\sqrt{n}=n^3(1+2\sqrt{n})$ multiplications to calculate the s_k 's.

Spatial Optimization for the Expansion.

The final step requires us to do

$$
\mathbf{A}^{-1}=\left(\mathbf{A}^{n-1}-\sum_{i=1}^{n-1}a_i\mathbf{A}^{n-i-1}\right)a_n^{-1},
$$

which makes it look like we are required to either recalculate or store $A^0, \ldots, A^{n-1}.$

This better not be the case because it would render our last optimization useless!

Observe that any polynomial can be re-written in Horner (or nested) form,

$$
p(x) = a_0 x^n + \cdots + a_{n-1} x + a_n
$$

= $(\cdots ((a_0 x + a_1) x + a_2) x + \cdots + a_{n-1}) x + a_n$.

Now think of the indeterminate x as a linear combination of the M's.

Spatial Optimization for the Expansion.

Now to express this in the our modified Horner form let

$$
s \equiv n \mod (d+1) \quad \text{and} \quad \sigma(k) = \sum_{i=s+kd+k}^{s+kd+k+d} a_i M_{(n-i-1) \mod (d+1)}
$$

then

$$
\rho(\mathbf{A}) = \left(\cdots \left(\left(\left(\sum_{i=0}^{s-1} a_i M_{s-1-i}\right) N_1 + \sigma(0)\right) N_1 + \sigma(1)\right) N_1 + \cdots\right) N_1 + \sigma\left(\frac{n-1-d-s}{d+1}\right).
$$

(Yes, I do indeed have an inductive proof for this. Yes, it's ugly).

Paul Vrbik (UWO) Inverting Matrices Modulo 0-Dim Regular Channel April 8, 2011 15 / 22

Spatial Optimization for the Expansion.

The complexity is given by the matrix multiplications needed to do $\sigma(k)$ and $\sum_{i=0}^{s-1} a_i M_{s-1-i}$.

So, n^3 many multiplications $\left(\frac{n+1+d-s}{d+1}\right)$ –times.

To express this as a function in *n* recall that $s = n \mod (d + 1) \leq d$ and $d \leq \sqrt{n}$.

$$
n^3 \cdot \frac{n+1+d-s}{d+1} < n^3 \left(\frac{n+1+\sqrt{n}}{1+\sqrt{n}}\right) < n^3 \left(\frac{n}{\sqrt{n}}+1\right) < \mathbf{O}\left(\mathbf{n}^3 \sqrt{\mathbf{n}}\right).
$$

We can do the single inversion required by the Lev-Fad algorithm using the Lev-Fad algorithm.

In order to do this we need to build a mapping between elements in $\mathbb{Q}[x_1,\ldots,x_n]/\langle T\rangle$ and matrices in $(\mathbb{Q}[x_1,\ldots,x_n]/\langle T\rangle)^{m\times m}$.

$$
m_f: \mathbb{Q}[x_1,\ldots,x_n] \mapsto \mathbb{Q}[x_1,\ldots,x_n]
$$

$$
\alpha \mapsto f\alpha
$$

That is $m_f(g) = f \cdot g$.

If $\mathbb{Q}[x_1,\ldots,x_n]/\langle T\rangle$ is finite so it will have a finite monomial basis B. We can thus represent m_f by its matrix with respect to this basis.

Example

Let $\mathcal{T} = \langle y^2 - 1, x^2 - 1 \rangle$ monomial basis $B = \{1, y\}$. The multiplication matrix for the element $a = x - y$ is

$$
m_a = \left[\begin{array}{cc} x & -1 \\ -1 & x \end{array} \right]
$$

.

To do a times $1 = 1 \cdot 1 + 0 \cdot y$ we calculate

$$
\left[\begin{array}{cc} x & -1 \\ -1 & x \end{array}\right] \left[\begin{array}{c} 1 \\ 0 \end{array}\right] \left[\begin{array}{cc} 1 & y \end{array}\right] = x - y
$$

or to do a times $y = 0 \cdot 1 + 1 \cdot y$ we calculate

$$
\left[\begin{array}{cc} x & -1 \\ -1 & x \end{array}\right] \left[\begin{array}{c} 0 \\ 1 \end{array}\right] \left[\begin{array}{cc} 1 & y \end{array}\right] = xy - y^2.
$$

The multiplication matrix satisfies

$$
m_f \cdot m_g = m_{fg}
$$

and thus we can find the inverse of f by inverting it's corresponding multiplication matrix because

$$
m_f m_{f^{-1}} = m_{ff^{-1}} = m_1 = \mathbb{I} = (m_f) \cdot (m_f)^{-1} \Rightarrow m_{f^{-1}} = (m_f)^{-1}.
$$

Space Complexity

Let $F(m, [d_1, \ldots, d_n])$ be the number of field elements required to invert an $m \times m$ matrix modulo a regular chain $T = \langle T_1, \ldots, T_n \rangle$ $\subset \mathbb{Z}_p[x_1,\ldots,x_n]$ with $d_i = \text{degree}_{x_i}(\mathcal{T}_i)$. Assuming completely dense input we have

$$
F(m, [d_1, ..., d_n]) = m \cdot m \cdot d_1 \cdots d_n
$$
 input
+ $m \cdot d_1 \cdots d_n$ traces
+ $F(d_n, [d_1, ..., d_{n-1}])$ recursive call
+ $m \cdot m \cdot d_1 \cdots d_m$ expansion

Letting $\sigma=\prod{\sf degree}_{\chi_i}({\mathcal T}_i)$ and $\delta=\sum{\sf degree}_{\chi_i}({\mathcal T}_i)$ we can bound the above recurrence by $O(2^m \delta + m^2 \delta + \delta \sigma)$ field elements.

Experimental Results

Random dense regular chain $T \subset \mathbb{Z}_p[x_1,\ldots,x_n]$ with degree $(T_i) = 6$, varying *n* and $p = 962592769$. Our matrix is a random (invertible) $m \times m$ matrix with dense entries from $\mathbb{Z}_p[x_1, \ldots, x_n]/\langle T \rangle$.

Paul Vrbik (UWO) Inverting Matrices Modulo 0-Dim Regular Channel April 8, 2011 21 / 22

Thanks

Dr Marc Moreno Maza and Dr Eric Shost. ´

Ontario Research Centre for Computer Algebra

