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Regular Chains

Consider a subset F = {f1, . . . , fn} ⊂ Q[x1, . . . , xn] which you would like to
“solve”.

A 0-dimensional Regular Chain is another subset T = {T1, . . . ,Tn}
⊂ Q[x1, . . . , xn] such that

1

{

x
∣

∣ f1(x) = 0, . . . , fn(x) = 0
}

=
{

x
∣

∣T1(x) = 0, . . . ,Tn(x) = 0
}

zeros of F = zeros of T

2 The equations of T admit trivial back substitution.
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Example (Regular Chain)

Consider the system of equations F = {f1, . . . , f3} ⊂ Q[x , y , z ]

x2 + y2 + z2 − 1 = 0

x2 + z2 − y = 0

x − z = 0.

A regular chain is given by T = {T1, . . . ,T3} ⊂ Q[x , y , z ]

x − z = 0 ∈ Q[x , y , z ]

−y + 2z2 = 0 ∈ Q[y , z ]

z4 +
z2

2
− 1

4
= 0 ∈ Q[z ]
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Zero Dimensional Regular Chains

The example on the previous slide was a zero dimensional regular chain.

Zero dimensional regular chains are:

derived from “squares systems” (number of equations and unknowns
are equal) that have a finite number of zeros,

of great interest in practice because we can apply modular methods
to them,

well suited for defining algebraic rings.
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Polynomial Division

In high school we are taught how to divide polynomial f , g ∈ Q[x ] to
produce a quotient and remainder q and r so that f = qg + r .

To extend this to multivariates one just needs to specify a monomial

ordering (i.e. define the leading term).

q = x3z + y2 + z

x2z + 1 )x5z2 + x4y + x2y2z + x3z + x2z2 + y2

x5z2 + x3z

x4y + x2y2z + x2z2 + y2

x2y2z + x2z2 + y2

x2y2z + y2

x2z2

x2z2 + z

−z

0

r = x4y − z

→ x4y

→ −z
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Polynomial Division (of sets)

It is also possible to take a set of divisors

G = {g1, . . . , gm} ⊂ Q[x1, . . . , xn]

and do f ÷ G to produce {q1, . . . , qm} and r (in Q[x1, . . . , xn]) so that

f = q1g1 + · · ·+ qmgm + r .

(Just do the regular division algorithm but choose any divisor at each
step).

In general this operation is not well defined but when {g1, . . . , gm} is a
zero-dimensional regular chain the remainder is unique.

From now on assume f mod 〈G 〉 returns the remainder when dividing f

by G .
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The Quotient Ring of a Regular Chain

Suppose we have a zero dimensional regular chain T ⊂ Q[x1, . . . , xn]. We
can now create an equivalence in Q[x1, . . . , xn] that says f = g when

f mod 〈T 〉 ≡ g mod 〈T 〉 .

This means that all we really care about are all possible remainders.

The (finite) set of all possible remainders on ÷T is called the quotient

ring of T and is denoted

Q[x1, . . . , xn]/ 〈T 〉 =
{

f mod 〈T 〉
∣

∣ f ∈ Q[x1, . . . , xn]
}

.
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Working in Quotient Rings

A ring is a set with multiplication and 1, addition and 0. There may be
some elements of the ring with multiplicative inverse, i.e.

fg mod 〈T 〉 = 1,

The extended euclidean algorithm (i.e. gcd algorithm) can calculate
inverses by finding successive polynomial remainders.

Example (Invertible Elements)

Let m = x3 − x + 2, a = x2 ∈ Q[x ]. The last row in the extended
euclidean algorithm is

(

1

4
x +

1

2

)

(

x3 − x + 2
)

+

(

−1

4
x2 − 1

2
x +

1

4

)

x2 = 1,

so
(

−x2 − 2x + 1
)

/4 is the inverse of a modulo m.
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Linear Algebra In Quotient Rings

Our goal is to extend this inversion to Matrices.

Specifically, given a matrix A ∈ Q[x1, . . . , xn]/ 〈T 〉m×m we want to find
B ∈ Q[x1, . . . , xn]/ 〈T 〉m×m so that

A · B ≡









1 0 0

0
. . . 0

0 0 1









mod 〈T 〉 .

(Remember that 1 and 0 are obtained after dividing by T ).
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Matrix Inversion Algorithms

Naive

Gauss-Jordan elimination does pivoting and requires many

inversions/divisions.

This inversion is a bottleneck, mainly due to memory consumption.

Leverrier-Faddeev

Is a scheme for finding a matrix inverse that requires only a single division.
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Leverrier-Faddeev Algorithm

Consider the characteristic polynomial of the n × n matrix A,

p(λ) = det (λI− A) = λn − a1λ
n−1 − · · · − an−1λ− an.

Evaluating p(A), multiplying by A−1 and re-arranging terms gives,

0 = An − a1A
n−1 − · · · − an−1A− an (1)

A−1an = An−1 − a1A
n−2 − · · · − an−1 (2)

A−1 =

(

An−1 −
n−1
∑

i=1

aiA
n−i−1

)

a−1
n . (3)

The ak ’s can be obtained in a successive manner by

ak =
1

k

(

sk −
k−1
∑

i=1

sk−iai

)

. (4)

where sk = trace(Ak) and a1 = s1.
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Optimizing Calculating the sk ’s

We can reduce the n4 multiplications required to calculate A1, . . . ,An−1

by doing something like repeated squaring. Let d = ⌊√n⌋, if we instead
store the sequence

M0,M1,M2, . . . ,Md = A0,A1,A2, . . . ,Ad

and generate the sequence

N0,N1,N2, . . . ,Nk = A0,Ad+1,A2(d+1), . . . ,A2k(d+1)

on the fly (using repeated multiplying by Ad+1, without storing). Then we
can compute the required traces by

tr(MiNj ) = tr(AiA(d+1)·j ) = tr(Ai+(d+1)·j )

taking 0 ≤ i , j ≤ d .
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Spatial Optimization for Calculating the sk ’s

That is, we are calculating the traces in “blocks”, i.e. for n = 8 with
d = ⌊

√
8⌋ = 2 we do

{tr(A0A0), . . . , tr(A0A2)}
{tr(A3A0), . . . , tr(A3A2)}
{tr((A3A3)A0), . . . , tr((A3A3)A2)}

2n3
√
n ×’s to get the M’s and N’s

n2 ×’s n times to get the traces (we assume some optimization has
been done to calculate tr(AB) by only calculating the
diagonal of AB).

Therefore we only require n3 + 2n3
√
n = n3(1 + 2

√
n) multiplications to

calculate the sk ’s.
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Spatial Optimization for the Expansion.

The final step requires us to do

A−1 =

(

An−1 −
n−1
∑

i=1

aiA
n−i−1

)

a−1
n ,

which makes it look like we are required to either recalculate or store
A0, . . . ,An−1.

This better not be the case because it would render our last optimization
useless!

Observe that any polynomial can be re-written in Horner (or nested) form,

p(x) = a0x
n + · · ·+ an−1x + an

= (· · · ((a0x + a1)x + a2)x + · · ·+ an−1)x + an.

Now think of the indeterminate x as a linear combination of the M’s.
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Spatial Optimization for the Expansion.

Now to express this in the our modified Horner form let

s ≡ n mod (d + 1) and σ(k) =

s+kd+k+d
∑

i=s+kd+k

aiM(n−i−1) mod (d+1)

then

p(A) =

(

· · ·
(((

s−1
∑

i=0

aiMs−1−i

)

N1 + σ(0)

)

N1 + σ(1)

)

N1 + · · ·
)

N1

+ σ

(

n − 1− d − s

d + 1

)

.

(Yes, I do indeed have an inductive proof for this. Yes, it’s ugly).
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Spatial Optimization for the Expansion.

The complexity is given by the matrix multiplications needed to do σ(k)
and

∑s−1
i=0 aiMs−1−i .

So, n3 many multiplications
(

n+1+d−s
d+1

)

–times.

To express this as a function in n recall that s = n mod (d + 1) ≤ d and
d ≤ √

n.

n3 · n+ 1 + d − s

d + 1
< n3

(

n + 1 +
√
n

1 +
√
n

)

< n3
(

n√
n
+ 1

)

< O
(

n3
√

n
)

.
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Using Lev-Fad Recursively

We can do the single inversion required by the Lev-Fad algorithm using the
Lev-Fad algorithm.

In order to do this we need to build a mapping between elements in
Q[x1, . . . , xn]/ 〈T 〉 and matrices in (Q[x1, . . . , xn]/ 〈T 〉)m×m.

mf : Q[x1, . . . , xn] 7→ Q[x1, . . . , xn]

α 7→ f α

That is mf (g) = f · g .
If Q[x1, . . . , xn]/ 〈T 〉 is finite so it will have a finite monomial basis B . We
can thus represent mf by its matrix with respect to this basis.
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Example

Let T =
〈

y2 − 1, x2 − 1
〉

monomial basis B = {1, y}. The multiplication
matrix for the element a = x − y is

ma =

[

x −1

−1 x

]

.

To do a times 1 = 1 · 1 + 0 · y we calculate

[

x −1

−1 x

][

1

0

]

[

1 y

]

= x − y

or to do a times y = 0 · 1 + 1 · y we calculate

[

x −1

−1 x

][

0

1

]

[

1 y

]

= xy − y2.
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Using Lev-Fad Recursively

The multiplication matrix satisfies

mf ·mg = mfg

and thus we can find the inverse of f by inverting it’s corresponding
multiplication matrix because

mfmf −1 = mff −1 = m1 = I = (mf ) · (mf )
−1 ⇒ mf −1 = (mf )

−1 .
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Space Complexity

Let F (m, [d1, . . . , dn]) be the number of field elements required to invert
an m ×m matrix modulo a regular chain T = 〈T1, . . . ,Tn〉
⊂ Zp[x1, . . . , xn] with di = degreexi (Ti ). Assuming completely dense input
we have

F (m, [d1, . . . , dn]) = m ·m · d1 · · · dn input

+m · d1 · · · dn traces

+ F (dn, [d1, . . . , dn−1]) recursive call

+m ·m · d1 · · · dm expansion

Letting σ =
∏

degreexi (Ti ) and δ =
∑

degreexi (Ti ) we can bound the
above recurrence by O(2mδ + m2δ + δσ) field elements.
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Experimental Results

Random dense regular chain T ⊂ Zp[x1, . . . , xn] with degree(Ti ) = 6,
varying n and p = 962592769. Our matrix is a random (invertible) m ×m

matrix with dense entries from Zp[x1, . . . , xn]/ 〈T 〉.

Recursive Lev-Fad

Vars Matrix Size Time Trace Inv Expand Space

3 11× 11 157.34s 0.06% 2.74% 97.21% 0.10GB

4 7× 7 408.15s 37.65% 10.56% 51.80% 0.11GB

5 1× 1 800.43s 19.24% 60.91% 19.85% 0.41GB

GCD Based

Vars Matrix Size Time Space

3 11× 11 1102.310s 0.18GB

4 7× 7 − 4.0GB

5 1× 1 ∗ >4.0GB
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Paul Vrbik (UWO) Inverting Matrices Modulo 0-Dim Regular Chains April 8, 2011 22 / 22


	Preliminaries

