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Regular Chains

Consider a subset F = {f1,...,f,} C Q[xi,...,xn| which you would like to
“solve”.

A O-dimensional Regular Chain is another subset T = {Ty,..., Ty}
C Q[x1,- .-, xp] such that

o
{x‘fl(x):0,...,f,,(x):0}:{x|Tl(x):O,...,T,,(x):O}

zeros of F = zeros of T

© The equations of T admit trivial back substitution.
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Example (Regular Chain)
Consider the system of equations F = {f1,..., 3} C Q[x,y, Z]
x24+y?4+22-1=0
XP+z2—y=0

x—z=0.

A regular chain is given by T ={T1,..., T3} C Q[x, y, Z]

x—z=0 EQ[X,}/,Z]
—y+222=0 € Qly, 2]
2
4 Z 1
A+l - =0 € Qlz
i Ql]
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Zero Dimensional Regular Chains

The example on the previous slide was a zero dimensional regular chain.
Zero dimensional regular chains are:

o derived from “squares systems” (number of equations and unknowns
are equal) that have a finite number of zeros,

@ of great interest in practice because we can apply modular methods
to them,

@ well suited for defining algebraic rings.
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Polynomial Division

In high school we are taught how to divide polynomial f, g € Q[x] to
produce a quotient and remainder g and r so that f = qg + r.

To extend this to multivariates one just needs to specify a monomial
ordering (i.e. define the leading term).

q:x3z+y2—|—z T:x4y—z
222+ 1 )xd22 + 2ty + 22y22 + 232 + 1222 + 92
2522 + 232
m+$222 +y2 — :c4y

1:2y22 + SC22’2 + y2

;z:2y22 +y2

x2 22

2222 + 2

— — —z

0
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Polynomial Division (of sets)

It is also possible to take a set of divisors

G :{g17"'7gm} CQ[Xla"'axn]
and do f + G to produce {q1,...,qm} and r (in Q[x, ..., xs]) so that

f=aqe+-+dmgm+r.

(Just do the regular division algorithm but choose any divisor at each
step).

In general this operation is not well defined but when {g1,...,gn} is a
zero-dimensional regular chain the remainder is unique.

From now on assume f mod (G) returns the remainder when dividing f
by G.
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The Quotient Ring of a Regular Chain

Suppose we have a zero dimensional regular chain T C Q[xq, ..., x,]. We
can now create an equivalence in Q[xi, ..., x| that says f = g when

f mod (T)=g mod (T).

This means that all we really care about are all possible remainders.

The (finite) set of all possible remainders on =T is called the quotient
ring of T and is denoted

Qlx1, ..., xa)/(T) = {f mod (T) | f € Qlxq,...,xa]}
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Working in Quotient Rings

A ring is a set with multiplication and 1, addition and 0. There may be
some elements of the ring with multiplicative inverse, i.e.

fg mod (T) =1,

The extended euclidean algorithm (i.e. gcd algorithm) can calculate
inverses by finding successive polynomial remainders.

Example (Invertible Elements)

Let m= x3 — x+2, a=x? € Q[x]. The last row in the extended
euclidean algorithm is

1 1 1 1 1
<1x+§> (x3—x—|—2) T <_ZX2_§X+Z> x? =1,
SO (—x2 —2x + 1) /4 is the inverse of a modulo m.
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Linear Algebra In Quotient Rings

Our goal is to extend this inversion to Matrices.

Specifically, given a matrix A € Q[xq, ..., x,]/ (T)™*™ we want to find
B € Q[x1,...,xy)/ (T)™" so that

1 0 0
A-B=| g 0 | mod (T).
0 1

0

(Remember that 1 and 0 are obtained after dividing by T).
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Matrix Inversion Algorithms

Naive

Gauss-Jordan elimination does pivoting and requires many
inversions/divisions.

This inversion is a bottleneck, mainly due to memory consumption.

Leverrier-Faddeev

Is a scheme for finding a matrix inverse that requires only a single division.J
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Leverrier-Faddeev Algorithm

Consider the characteristic polynomial of the n x n matrix A,

p(A) =det Al —A) = A" —a A"t — - —a, 1\ — a,
Evaluating p(A), multiplying by A1 and re-arranging terms gives,
0=A"—a A"l ... — a3, _A—a,
A la, =A"1 A2 ... a4

n—1
Al = (A”_l — Z a,-A”_"_1> al.
i=1

The ax's can be obtained in a successive manner by

where s, = trace(A¥) and a; = s1.
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Optimizing Calculating the si's

We can reduce the n* multiplications required to calculate A%, ... A"~!
by doing something like repeated squaring. Let d = |\/n], if we instead

store the sequence
1 A2 d
Mo, My, Mo, ..., My =A° AL, A% ... A
and generate the sequence

No, Ny, No, ..., N = A%, Ad+L A2(d+1)  pA2k(d+1)

on the fly (using repeated multiplying by A9*+!, without storing). Then we
can compute the required traces by

tr(Mify) = tr(ATACH) = tr(ATHEHDT)

taking 0 < i,j < d.
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Spatial Optimization for Calculating the s;'s

That is, we are calculating the traces in “blocks”, i.e. for n = 8 with
d=|v8] =2 wedo

{tr(A°A?), ... tr(A°A%)}
{tr(A3AD), ... tr(AA?)}
{tr((A3A3AY), ... tr((A3A%)A?)}

2n%\/n x's to get the M's and N's

n? x's n times to get the traces (we assume some optimization has

been done to calculate tr(AB) by only calculating the
diagonal of AB).

Therefore we only require n® + 2n3\/n = n3(1 + 2,/n) multiplications to
calculate the si's.
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Spatial Optimization for the Expansion.

The final step requires us to do

n—1
A—l — <An—1 _ ZaiAn—i—l) 3;1’
i=1
which makes it look like we are required to either recalculate or store
AO An—l
e .

This better not be the case because it would render our last optimization
useless!

Observe that any polynomial can be re-written in Horner (or nested) form,
p(x) = apx" + -+ 4+ ap_1x + ap
=(---((aox + a1)x + a2)x + -+ + ap—1)x + an.

Now think of the indeterminate x as a linear combination of the M'’s.
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Spatial Optimization for the Expansion.

Now to express this in the our modified Horner form let

s+kd+k+d

s=nmod (d+1) and o(k)= Z aiM(n—i-1) mod (d-+1)
i=s+kd+k

then

s—1
p(A) = < (((ZaiMs—1—i> /V1+0(0)> Ny +U(1)> Ny +> Ny
i=0
n—1—d-—s
+0< d+1 >

(Yes, | do indeed have an inductive proof for this. Yes, it's ugly).
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Spatial Optimization for the Expansion.

The complexity is given by the matrix multiplications needed to do o(k)
and Y7 0 aiMs_1_;.

So, n® many multiplications (%)—times.

To express this as a function in n recall that s = n mod (d +1) < d and

d < n.

3 ntl+d—s  s/nt+1+4+/n s n 3
e < <71—|—\/ﬁ <n \/ﬁ—kl < 0 (n3y/n).
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Using Lev-Fad Recursively

We can do the single inversion required by the Lev-Fad algorithm using the
Lev-Fad algorithm.

In order to do this we need to build a mapping between elements in
Qlx1, - -, xn]/ (T) and matrices in (Q[x, ..., x|/ (T))™".

mg 2 Q[x1, ..., xn] = Q[x1, ..., xp]
a— fa

Thatis m¢(g) =1 - g.

If Q[x1,...,xn]/(T) is finite so it will have a finite monomial basis B. We
can thus represent mys by its matrix with respect to this basis.
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Example

Let T = <y2 — 1l s — 1> monomial basis B = {1, y}. The multiplication

matrix for the element a = x — y is

Todo atimesl=1-1+0-y we calculate

S HICR

or to do atimes y =0-1+ 1.y we calculate

[—Xl _xl”g][l }/]ny—y%
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Using Lev-Fad Recursively

The multiplication matrix satisfies
mg - Mg = Mg

and thus we can find the inverse of f by inverting it's corresponding
multiplication matrix because

memgy = mg = my =T = (mg) - (mg)™ = me2 = (mg) 7
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Space Complexity

Let F(m,[di,...,d,]) be the number of field elements required to invert

an m x m matrix modulo a regular chain T = (T1,..., T,)
C Zplx, - .., xn] with d; = degree, (T;). Assuming completely dense input

we have

F(m,[d1,....,dp])=m-m-d;---d, input
+m-di---d, traces
+ F(dn, [d1,---,dn-1]) recursive call
+m-m-dy---dn expansion

Letting 0 = [] degree,.(T;) and 0 = > degree, (T;) we can bound the
above recurrence by O(2™3 + m?25 + &) field elements.
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Experimental Results

Random dense regular chain T C Zp[x, ..

., Xn] with degree(T;) = 6,

varying n and p = 962592769. Our matrix is a random (invertible) m x m

matrix with dense entries from Zp[x1,...,xa]/ (T).

Recursive Lev-Fad
Vars | Matrix Size | Time Trace Inv Expand | Space
3 11 x 11 157.34s | 0.06% | 2.74% | 97.21% | 0.10GB
4 7x7 408.15s | 37.65% | 10.56% | 51.80% | 0.11GB
5 1x1 800.43s | 19.24% | 60.91% | 19.85% | 0.41GB

GCD Based

Vars | Matrix Size Time Space

3 11 x 11 1102.310s | 0.18GB

4 7Tx7T — 4.0GB

5 1x1 * >4.0GB
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