
ACM Communications in Computer Algebra, TBA TBA

Illustrated Introduction to the Truncated Fourier Transform

Paul Vrbik∗

Department of Computer Science

The University of Western Ontario

London, Ontario, N6A 5B7

pvrbik@csd.uwo.ca

December 13, 2011

Abstract

I summarize the univariate parts of two papers by Joris van der Hoeven’s. These papers
introduce the Truncated Fourier Transform (TFT) which is a variation of the Discrete Fourier
Transform (FFT) that allows one to work with input vectors that are not length some power
of two. I offer many illustrations to accompany the mathematics.

1 Introduction

Fundamentally, the Discrete Fourier Transform (DFT) is a process that allows for the rapid evalu-
ation of polynomials at points. The efficient implementation of the DFT as an algorithm is given
by the Fast Fourier Transform (FFT). These FFTs are so commonly used that the term “FFT”
is often mistakenly used for “DFT”. These FFTs have major applications in at least two (fairly
disjoint) research disciplines: Signal Processing and Computer Algebra.

For instance, let R be a ring of constants with 2 ∈ R a unit. If R has a primitive nth root of
unity ω with n = 2p (i.e. ωn/2 = −1) then the Fast Fourier Transform can be used to compute
the product of two polynomials P,Q ∈ R[x] with deg(PQ) < n in O(n logn) operations in R.
However, when deg(PQ) is sufficiently far from a power of two many computations are done to
establish evaluation points that are ultimately not needed.

This problem was solved by the signal processing community by using a method called FFT-
pruning [3]. However, the difficult inversion of this process, is due to van der Hoeven [4][5].

I outline the DFT, including a method for its non-recursive implementation, and then develop
the “pruned” variant — which we call the Truncated Fourier Transform (TFT). Finally I show how
the TFT can be inverted.

∗This work has been supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

1



Illustrated Introduction to the Truncated Fourier Transform TBA

2 The Discrete Fourier Transform

Let R, n, and ω be given as in the introduction. The Discrete Fourier Transform∗, with respect to
ω, of an n-tuple a = (a0, . . . , an−1) ∈ R

n is the n-tuple â = (â0, . . . , ân−1) ∈ R
n with

âi =

n−1∑

j=0

ajω
ij.

Alternatively we can see these n-tuples as containing the coefficients of polynomials from R[x] and
define the DFT wrt ω as the mapping which takes A = a0 + a1x + · · · + an−1x

n−1 to the n-tuple
(A(ω0), . . . , A(ωn−1)). We denote this by:

DFTω (a0, . . . , an) = (A(ω0), . . . , A(ωn−1)).

The DFT can be computed efficiently using binary splitting. This method requires that we
evaluate only at ω2i for i ∈ {0, . . . , p− 1}, rather than at all ω0, . . . , ωn−1. To compute the DFT of
a with respect to ω we write

(a0, . . . , an−1) = (b0, c0, . . . , bn/2−1, cn/2−1)

and recursively compute the DFT of (b0, . . . , bn/2−1) and (c0, . . . , cn/2−1) wrt ω
2:

DFTω2(b0, . . . , bn/2−1) = (̂b0, . . . , b̂n/2−1);

DFTω2(c0, . . . , cn/2−1) = (ĉ0, . . . , ĉn/2−1).

Finally we construct â according to

DFTω(a0, . . . , an−1) = (̂b0 + ĉ0, . . . , b̂n/2−1 + ĉn/2−1ω
n/2−1

b̂0 − ĉ0, . . . , b̂n/2−1 − ĉn/2−1ω
n/2−1).

Equivalently, using the polynomial interpretation, split A into its even and odd parts, evaluate each
part at ω2 and then reconstruct to retrieve Â.

Clearly this description has a natural implementation as a recursive algorithm; but, in practice
it is sometimes more efficient to implement an in-place algorithm that eliminates the overhead of
creating recursive stacks:

Definition 1. We denote by [i]p the bitwise reverse† of i at length p. Suppose i = i02
0 + · · ·+ ip2

p

and j = j02
0 + · · ·+ jp2

p with iℓ, jℓ ∈ {0, 1} then

[i]p = j ⇐⇒ ik = jp−k for k ∈ {0, . . . , p}.

Example 1. Denote by x2 a number x written in binary.

[3]5 = 24 because 3 = 000112 whose reverse is 110002 = 24.
-

[11]5 = 26 because 11 = 010112 whose reverse is 110102 = 26.

∗In signal processing community this is called the “decimation-in-time” variant of the FFT.
†In [4] the word “mirror” instead of reverse is used.

2



Paul Vrbik

For the non-recursive (in-place) DFT algorithm we require one vector of length n. Initially, at
step zero, this vector is

x0 = (x0,0, . . . , x0,n−1) = (a0, . . . , an−1)

and is updated (incrementally) at steps s ∈ {1, . . . , p} by the rule

[
xs,ims+j

xs,(i+1)ms+j

]
=

[
1 ω[i]sms

1 −ω[i]sms

][
xs−1,ims+j

xs−1,(i+1)ms+j

]
(1)

for all i ∈ {0, 2, . . . , n/ms − 2} and j ∈ {0, . . . , ms − 1}, where ms = 2p−s.
Equation (1), being a relation among four values at the two steps s and s−1, can be illustrated

as in Figure 1. We call this relation a “butterfly” after the shape it forms. We may say that ms

controls the width of this butterfly — the value of which decreases as s increases. Note that two

s = 0

s = 2

s = 3

s = 3

s = 4

Figure 1: Butterflies. Schematic representation of Equation (1). Solid dots represent
the xs,i. The top row corresponds to s = 0. In this case n = 16 = 24.

additions and one multiplication are done in Equation (1) as one product is merely the negation of
the other.

Using induction over s, it can be shown that

xs,ims+j = (DFTωms (aj , ams+j , . . . , an−ms+j))[i]s ,

for all i ∈ {0, . . . , n/ms − 1} and j ∈ {0, . . . , ms − 1} [4] . In particular, when s = p and j = 0 we
have

xp,i = â[i]p
âi = xp,[i]p

for all i ∈ {0, . . . , n− 1}. That is, â is a (specific) permutation of xp as illustrated in Figure 2.
The key property of the DFT is that it is straightforward to invert (i.e. to recover a from â).

DFTω−1(â)i = DFTω−1(DFTω(a))i =

n−1∑

k=0

n−1∑

j=0

aiω
(i−k)j = nai (2)

3



Illustrated Introduction to the Truncated Fourier Transform TBA

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

â[0]4 â[1]4 â[2]4 â[3]4 â[4]4 â[5]4 â[6]4 â[7]4 â[8]4 â[9]4 â[10]4 â[11]4 â[12]4 â[13]4 â[14]4 â[15]4

Figure 2: The Discrete Fourier Transform for n = 16. The top row, corresponding
to s = 0, represents the values of x0. The bottom row, corresponding to s = 4, is a
permutation of â (the result of the DFT on a).

since
n−1∑

j=0

ω(i−k)j = 0

whenever i 6= k. This yields a polynomial multiplication algorithm that does O(n logn) operations
in R. For the sake of brevity I will refer the reader to [1, §4.7] for the outline of this algorithm.

3 The Truncated Fourier Transform

The motivation behind the Truncated Fourier Transform‡ is the observation that many computa-
tions are wasted when the length of a (the input) is not a power of two. This is entirely the fault
of the strategy where one “completes” the ℓ-tuple a = (a0, . . . , aℓ−1) by setting ai = 0 when i ≥ ℓ
to artificially extend the length of a to the nearest power of two (so the DFT can be executed as
usual).

However, despite the fact that we may only want ℓ components of â, the DFT will calculate all
of them. Thus computation is wasted. I illustrate this in Figures 3 and 4. This type of wasted
calculation is relevant when using the DFT to multiply polynomials — their products are rarely of
degree one less some power of two.

The definition of the TFT is similar to that of the DFT with the exception that the input and
output vector (a resp. â) are not necessarily of length some power of two. More precisely the TFT
of an ℓ-tuple (a0, . . . , aℓ−1) ∈ R

ℓ is the ℓ-tuple

(
A(ω[0]p), . . . , A(ω[ℓ−1]p)

)
∈ Rℓ.

where n = 2p, ℓ < n (usually ℓ ≥ n/2) and ω a n-th root of unity.

‡The TFT is exactly equivalent to a technique called “FFT pruning” in the signal processing literature [3].

4



Paul Vrbik

Figure 3: The DFT with “artificial” zero points (large black dots).

Figure 4: Removing all unnecessary computations from Figure 3 gives the schematic
representation of the TFT.

5



Illustrated Introduction to the Truncated Fourier Transform TBA

Remark 1. van der Hoeven gives a more general description of the TFT where one can choose an
initial vector (x0,i0 , . . . , x0,in) and target vector (xp,j0, . . . , xp,jn). Provided that the ik’s are distinct
one can carry out the TFT by considering the full DFT and removing all computations not required
for the desired output. For this paper I restrict my discussion to that of the scenario in Figure 4
(where the input and output are the same initial segments) because it is can be used for polynomial
multiplication, and because it yields the most improvement.

If we allow ourselves to operate in a size n array it is actually straightforward to modify the in-
place DFT algorithm from the previous section to instead execute the TFT. (It should be emphasized
that this only saves computation; not space. For a “true” in-place TFT algorithm that operates in
an array of size ℓ, see Harvey and Roche’s work in [2].) At stage s it suffices to compute

(xs,0, . . . , xs,j) with j = ⌈ℓ/ms⌉ms − 1

where ms = 2p−s.§

Theorem 1. Let n = 2p, 1 ≤ ℓ < n and ω ∈ R be a primitive n-th root of unity in R. Then
the TFT of an ℓ-tuple (a0, . . . , aℓ−1) wrt ω can be computed using at most ℓp + n additions and
⌊(ℓp+ n)/2⌋ multiplications of powers of ω.

Proof. Let j = (⌈ℓs/ms⌉)ms−1; at stage swe compute (xs,0, . . . , xs,j). So, in addition to xs,0, . . . , xs,ℓ−1

we compute
(⌈ℓ/ms⌉)ms − 1− ℓ ≤ ms

more values. Therefore, in total we compute at most

pℓ+

p∑

s=1

ms = pℓ+ 2p−1 + 2p−2 + · · ·+ 1

= pℓ+ 2p − 1 < pℓ+ n

values xs,i. The result follows from this.

4 Inverting The Truncated Fourier Transform

Unfortunately, the inverse TFT cannot be inverted by merely doing another TFT with 1/ω and
adjusting the output by some constant factor (like the DFT). Simply put: we are missing information
and have to account for this.

Example 2. Let R = Z/13Z, n = 22 = 4, with ω = 5 a n-th primitive root of unity. Setting
A = a0 + a1x+ a2x

2, the TFT of a = (a0, a1, a2) is




A(ω0)

A(ω2)

A(ω1)


 =




A(1)

A(−1)

A(5)


 =




a0 + a1 + a2

a0 − a1 + a2

a0 + 5a1 − a2




§This is a correction to the bound given in [5] as pointed out in [4].

6



Paul Vrbik

Now to show that the TFT of this w.r.t. 1/ω is not a define

b =




b0

b1

b2


 =




a0 + a1 + a2

a0 − a1 + a2

a0 + 5a1 − a2




The TFT of b w.r.t 1/ω = −5 is




B (ω0)

B (ω−2)

B (ω−1)


 =




B(1)

B(−1)

B(5)


 =




b0 + b1 + b2

b0 − b1 + b2

b0 − 5b1 − b2


 =




3a0 + 5a1 + a2

a0 − 6a1 − a2

−5a0 + a1 − 3a2




which is not some constant multiple of TFTω(a).
This discrepancy is caused by the completion of b to (b0, b1, b2, 0). Namely we should instead

complete b to (b0, b1, b2, A(−5)) to correspond to the DFT of a w.r.t ω.

Essentially to invert the TFT we follow the paths from xp back to x0. We will use the fact that
whenever two values among

xs,ims+j, xs−1,ims+j

and
xs,(i+1)ms+j, xs−1,(i+1)ms+j

are known then we can deduce the other values. That is, if two values of some butterfly are
known then the other two values can be calculated using Equation (1) as the relevant matrix
is invertible. Moreover, these relations only involve shifting (multiplication and division by two),
additions, subtractions and multiplications by roots of unity — an ideal scenario for implementation.

Again observe (as with DFT) that xp−k,0, . . . , xp−k,2k−1 can be calculated from xp,0, . . . , xp,2k−1.
This is because all the butterfly relations necessary to move up like this never require xs,2k+j for
any s ∈ {p− k, . . . , p}, j > 0. This is illustrated in Figure 5. More generally we have that

xp,2j+2k , . . . , xp,2j+2k−1

is sufficient information to compute

xp−k,2j , . . . , xp−k,2j+2k−1

provided that 0 < k ≤ j < p. (In Algorithm 1, that follows, we call this a “self-contained push up”).

5 Inverse TFT Algorithm

We present a simple recursive description of the inverse TFT algorithm for the case we have re-
stricted ourselves to (all zeroes packed at the end). The algorithm operates in a length n array
x = (x0, . . . ,xn−1) for which we assume access to (n = 2p corresponds to ω, a n-th primitive root
of unity). Initially, the contents of the array is

x = (xp, 0, . . . , xp, ℓ−1, 0, . . . , 0)

7



Illustrated Introduction to the Truncated Fourier Transform TBA

Figure 5: The computations in the boxes are self contained.

where (xp, 0, . . . , xp, ℓ−1) is the result of the TFT on (x0, 0, . . . , x0, ℓ−1, 0, . . . , 0) — ultimately, the
output of the computation.

In keeping with our “Illustrated” description we use pictures, like Figure 6, to indicate what
values are known (solid dots) and what value to calculate (empty dot). For instance, “push down
xk with Figure 6”, is shorthand for: use xk = xs−1, ims+j and xk+ms+j = xs−1, (i+1)ms+j to determine
xs, ims+j . (We emphasize with an arrow that this new value should also overwrite the one at xk).
This calculation is easily accomplished using (1) with this caveat: the values i and j are not
explicitly known. What is known is s (and therefore ms) and some array position k. Observe that
i is recovered by i = k quo ms (the quotient of k/ms).

xk = xs−1, ims+j xs−1, (i+1)ms+j = xk+ms+j

xs, ims+j xs, (i+1)ms+j

Figure 6: The relation given in (1).

The full description of the inverse TFT follows in Algorithm 1 (note that the initial call is
InvTFT(0, ℓ− 1, n− 1, 1)). A visual depiction of this Algorithm is given in Figure 9. A proof of
its correctness follows.

Theorem 2. Algorithm 1, initially called with InvTFT (0, ℓ− 1, n− 1, 1) and given access to the
0-indexed, length n array

x = (xp, 0, . . . , xp, ℓ−1, 0, . . . , 0) (3)

will terminate with
x = (x0, 0, . . . , x0, ℓ−1, 0, . . . , 0) (4)

where (3) is the result of the TFT on (4).

8



Paul Vrbik

Algorithm 1: InvTFT(head, tail, last, s)

Initial call: InvTFT(0, ℓ− 1, n− 1, 1);

1 middle ←
last− head

2
+ head;

2 LeftMiddle ← ⌊middle⌋;

3 RightMiddle← LeftMiddle + 1;

4 if head > tail then
5 Base case—do nothing;

6 return null;

7 else if tail ≥ LeftMiddle then

8 Push up the self-contained region xhead to xLeftMiddle;

9 Push down xtail+1 to xlast with ;

10 InvTFT(RightMiddle, tail, last, s+ 1);

11 s← p− log2 (LeftMiddle− head + 1);

12 Push up (in pairs) (xhead, xhead+ms
) to (xLeftMiddle, xLeftMiddle+ms

) with ;

13 else if tail < LeftMiddle then

14 Push down xtail+1 to xLeftMiddle with ;

15 InvTFT(head, tail, LeftMiddle, s+ 1);

16 Push up xhead to xLeftMiddle with ;

9



Illustrated Introduction to the Truncated Fourier Transform TBA

Termination. Consider the integer sequences given by

αi = taili − headi ∈ Z and βi = taili −

⌊
lasti − headi

2
+ head

⌋
∈ Z

for headi/taili the values of head/tail at the ith recursive call (give lasti the same definition).
If headi > taili then we have termination. Otherwise, either branch (7) executes giving

headi+1 =

⌊
lasti − headi

2

⌋
+ headi > headi

taili+1 = taili

lasti+1 = lasti

and thus αi+1 < αi; or branch (13) executes giving

headi+1 = headi

taili+1 = taili

lasti+1 =

⌊
lasti − headi

2

⌋
+ headi > headi.

and thus βi+1 < βi.
Neither branch can run forever since β < 0 means condition (13) fails forcing termination or α

to decrease; and α < 0 causes termination.

Correctness (sketch). We argue inductively (through illustration) that, for n ∈ {0, . . . , p− 1}

x = (xp−n−1, 0, . . . , xp−n−1, 2n+1−1)

can always be calculated from

x = (xp, 0, . . . , xp, ℓ−1, xp−n−1, tail+1, . . . , xp−n−1, 2n+1−1) .

Taking this as the inductive hypothesis refer to Figure 7 and Figure 8.

6 Conclusions

The Truncated Fourier Transform is a novel and elegant way to reduce the number of computations
of a DFT-based computation by a possible factor of two (which may be significant). Additionally,
with the advent of Harvey and Roche’s paper [2], it is possible to save as much space as computation.
The hidden “cost” of working with the TFT is the increased difficulty of determining the inverse
TFT. Although in most cases this is still less costly than the inverse DFT, the algorithm is no doubt
more difficult to implement.

Acknowledgements

The author wishes to thank Dr. Dan Roche and Dr. Éric Schost for reading the draft of this paper
and offering suggestions.

10



Paul Vrbik

Figure 7: tail ≥ LeftMiddle (i.e. at least half the values are at x = p).

xhead xtail

xlast

2n 2n

s = p− n− 1

s = p− n

s = p

(a) Line (8): push up the self contained (dashed) region. This yields values sufficient to push down at line (9).

xhead xtail

xlast

2n

s = p− n− 1

s = p− n

s = p

(b) This enables us to make a recursive call on the dashed region (line (12)). By our induction hypothesis this
brings all points at s = p to s = p− n.

s = p− n− 1

s = p− n

s = p

(c) Sufficient points at s = p− n are known to move to s = p− n− 1 at line (13).

11



Illustrated Introduction to the Truncated Fourier Transform TBA

Figure 8: tail < LeftMiddle (i.e. less than half the values are at x = p).

xhead xtail

xlast

2n 2n

s = p− n− 1

s = p− n

s = p

(a) Initially there is sufficient information to push down at line (14).

xhead xtail

xlast

2n 2n

s = p− n− 1

s = p− n

s = p

(b) This enables us to make the prescribed recursive call at line (15).

2n 2n

s = p− n− 1

s = p− n

s = p

(c) By the induction hypothesis this brings the values in the dashed region to s = p−n, leaving enough information
to move up at line (16).

12



Paul Vrbik

(d) Initial state of the algorithm. Grey dots are the result
of the forward TFT; larger grey dots are zeros.

(e) tail≥LeftMiddle. Push up; calculate x1,0, . . . , x1,7 from
x4,0, . . . , x4,7 (contained region). Then push down.

(f) Recursive call on right half. (g) tail<LeftMiddle. Push down with.

(h) Recursive call on left half. (i) tail≥LeftMiddle. Push up the contained (dashed) re-
gion then push down.

(j) Recursive call on right half. (k) Hiding details. The result of (g).

(l) Finish step (e) by pushing up. (m) Finish step (c) by pushing up.

(n) Resolve the original call by pushing up. (o) Done.

Figure 9: Schematic representation of the recursive computation of the inverse TFT
for n = 16 and ℓ = 11.

13



Illustrated Introduction to the Truncated Fourier Transform TBA

References

[1] K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for Computer Algebra. Kluwer Aca-
demic Publishers, 1992.

[2] David Harvey and Daniel S. Roche. An in-place truncated fourier transform and applications
to polynomial multiplication. In Proceedings of the 2010 International Symposium on Symbolic
and Algebraic Computation, ISSAC ’10, pages 325–329, New York, NY, USA, 2010. ACM.

[3] H.V. Sorensen and C.S. Burrus. Efficient computation of the dft with only a subset of input or
output points. Signal Processing, IEEE Transactions on, 41(3):1184 –1200, mar 1993.

[4] J. van der Hoeven. Notes on the Truncated Fourier Transform. Technical report, Université
Paris-Sud, Orsay, France, 2008.

[5] Joris van der Hoeven. The truncated fourier transform and applications. In ISSAC ’04: Pro-
ceedings of the 2004 international symposium on Symbolic and algebraic computation, pages
290–296, New York, NY, USA, 2004. ACM.

14


