
Notes for Lifting Techniques ∗

Paul Vrbik

June 29, 2009

Contents

1 Preliminaries 1

2 Introduction 2

3 Power Series Inversion 2

3.1 By the Naive Algorithm . 3
3.2 By Newton Iteration . 3

4 Inversion of Matrices in Q[[t]]n×n 5

5 Series Roots of Univariate Polynomials 5

6 Series Roots of Multivariate Polynomials 7

7 Lifting a Factor of a Univariate Polynomial 8

8 Lifting Triangular Sets 9

1 Preliminaries

We will be working with power series that have coefficients in Q, denoted

Q[[t]] = {
∑

i≥0

cit
i |ci ∈ Q}.

Let Q[[t]]n×n be the n× n matrices with entries from Q[[t]]. Our development will be done in Q[[t]]
but our results will be valid for the more general case (i.e. replacing Q with any ring).

∗Adapted from a lecture given by Dr. Éric Schost May 2009.

1

2 Introduction

Newton Iteration and Hensel lifting are iterative methods for finding a solution, x(t) ∈ Q[[t]], to
some equation F (x(t), t) = 0 where:

1. x(t) is a power series in t, i.e. x(t) = x0 + x1t + · · · .

2. x0 is known.

We would like to adapt this to do:

1. Inverse of power series, i.e. for 1 − t ∈ Q[[t]] calculate

(1 − t)−1 = 1 + t + t2 + · · · .

2. Inverse of matrices of power series, i.e. for

A =

[

1
1−t

2 + t
1

1+t
−3

1+t2+t3

]

find A−1 ∈ Q[[t]]n×n such that A · A−1 = Id.

3. Power series roots of univariate and multivariate equations, i.e.

y2 − 1 − t = 0 ⇒ y = 1 +
t

2
−

t2

2
+ · · · .

4. “Triangular sets” with power series coefficients.

We will study the development these methods.

3 Power Series Inversion

It is worth noting what constitutes an inverse of an element from Q[[t]]. First year calculus teaches
us that 1

1−t
= 1 + t + t2 + · · · only when |t| < 1 which can lead to some confusion. Reminding

ourselves that the inverse of f (denoted f−1) uniquely satisfies ff−1 = 1 we see that 1+ t+ t2 + · · ·
is indeed the inverse of 1 + t. Notice:

(1 − t)(1 + t + t2 + · · ·) = (1 − t) + (1 − t)t + (1 − t)t2 + · · ·

= 1 − t + t − t2 + t2 − t3 + · · ·

= 1

We may also ask for the inverse of (1− t) ∈ Q[[t]] modulo tk. In this case the inverse is 1 + t + t2 +
· · ·+ tk−1 as:

(1 − t)(1 + t + t2 + · · · + tk−1) ≡ 1 − t + t − t2 + t2 − t3 + · · · − tk−1 + tk−1 + tk mod tk

≡ 1 mod tk

Our interest is devising algorithms that calculate these types of inverses up to some arbitrary k
(usually a power of 2). In particular we are building an algorithm that has the following specification.

Input A series f(t) = f0 + f1t + f2t
2 + · · ·+ fntn ∈ Q[[t]], f0 6= 0 (otherwise f(t) has no inverse).

Ouput x(t) = x0 +x1t+x2t
2 + · · ·+xntm ∈ Q[[t]] such that x(t) · f(t) = 1. (Note, we assume that

∃f−1
0 so x0 = 1/f0. This is a special case.)

2

3.1 By the Naive Algorithm

The basis of a naive algorithm is to extract the coefficients from xf = 1 somehow. For a ∈ Q[[t]]
denote

[a]i := coefficient of ti in a

so that [xf]i =
∑

j+k=i xjfk. As xf = 1 we have [xf]i =
∑

j+k=i xjfk = 0 for i > 0.
To develop the naive algorithm it is best to just work through an example.

Example 1. At each step we use [xf]i to solve for xi (note: 1/f0 = x0);

i = 1 x0f1 + x1f0 = 0 ⇒ x1 =
−x0f1

f0
= −x0

i = 2 x0f2 + x1f1 + x2f0 = 0 ⇒ x2 =
−x0f2 + x1f1

f0

i = 3 x0f3 + x1f2 + x2f1 + x3f0 = 0 ⇒ x3 =
−x0f3 + x1f2 + x2f1

f0

From Example 1 we see that we can calculate xi by

xi =
−x0fi + x1fi−1 + · · · + xi−1f1

f0

,

enabling us to generate the desired output. As we are not using information from xi−1, . . . , x0 we
do O(i) operations to get xi for a total of O(i2) operations to explicitly build x(t) to i terms which
is far from ideal.

3.2 By Newton Iteration

We would like to reuse old information to save computation. So now suppose x0, . . . , xi−1 (i-
coefficients) in x(t) are given so that x(t)f(t) ≡ 1 mod ti. Let

x(t) = x0 + x1t + · · · + xi−1t
i−1 + δx

where δx = ait
i + ai+1t

i+1 + · · · are the higher order terms of x(t) whose coefficients are unknown.
We can interpret this as knowing x(t) mod ti. What follows is a method for establishing δx mod t2i

thereby allowing us to double the “accuracy” of x(t) (as we would expect from the quadratically
convergent Newton’s method).

Define
xinit := x0 + x1t + · · ·+ xi−1t

i−1

so that x = xinit + δx.
We again build coefficients by extracting them from xf = 1 except now we have:

xf = 1 ⇒ (xinit + δx)f = 1 ⇒ xinitf + δxf = 1. (1)

where (by our assumption) xinitf = 1+0t+ · · ·+0ti−1 + tiR ≡ 1 mod ti for some “remainder” term
R. Multiplying (1) by xinit on both sides we get

x2
initf + xinitδxf = xinit (2)

3

which allows us to derive an expression for δx as all other values are known.
Rewrite fxinit ≡ 1 mod ti as xinitf = 1+ tiR for some remainder R and multiply this expression

by δx giving:
xinitδxf = δx + δxtiR (3)

Recall that δx ≡ 0 mod ti so ti|δx and therefore t2i|δxtiR meaning δxtiR ≡ 0 mod t2i. So, subbing
(2) into (3) and taking mod t2i we get

x2
initf + δx ≡ xinit mod t2i

and solving for δx gives
δx ≡ xinit − x2

initf mod t2i (4)

which is the update formula we desire.

Example 2. By letting t = p for p some prime we can use this update formula to calculate inverses
modulo pn. If we let p = 3 then we can calculate −1/2 mod (38 = 6561) as follows:

1. −1
2

= 1
1−3

= 1 mod 3

2. δx ≡ (1 − (1)2(1 − 3)) mod 32 = 3 which implies 1 + 3 = 4 ≡ −1
2

mod 32

3. δx ≡ (4 − (4)2(1 − 3)) mod 34 = 36 which implies 4 + 36 = 40 ≡ −1
2

mod 34

4. δx ≡ (40 − (40)2(1 − 3)) mod 38 = 3240 which implies 40 + 3240 = 3280 ≡ −1
2

mod 38

where this process could be repeated up to any 32k

.

To simplify the complexity analysis for this method we will assume that we can multiply poly-
nomials in linear time (which is absurd as the best method is O(n log n)). Making this assumption
means we will only be off by some log factors which is not a big deal.

Assuming that x0 = 1/f0 is given it takes one operation to calculate x1, two operations to
calculate x2, x3, four operations to calculate x4, . . . , x7, and so on. Generalizing this we find that it
takes O(1 + 2 + 4 + 8 + · · ·+ 2k) = O(2k+1) = O(2k) operations to calculate O(2k) terms.

Remark 1. An optimization to calculate x2
initf can be done. Observe

x2
initf = xinit(xinitf) = xinit(1 + 0t + · · ·+ 0ti−1 + tiR) = xinit + tixinitR.

This means (3) can be rewritten as:

δx ≡ −tixinitR mod t2i.

and using a trick called “middle product” it is possible to compute only R (see []).

4

4 Inversion of Matrices in Q[[t]]n×n

Let F(t) ∈ Q[[t]]n×n, e.g. letting n = 2 we have

F(t) =

[

f0,0(t) f0,1(t)
f1,0(t) f1,1(t)

]

which we can express as a series of matrices (i.e. as an element from Q2×2[[t]]):

F(t) = F0 + F1t + F2t
2 + · · ·

where Fi ∈ Q2×2. What we would like to find is X(t) = X0+X1t+X2t
2+· · · ∈ Qn×n[[t]] ∼= Q[[t]]n×n

such that FX = Id.
To do this:

1. Compute X0 = F−1
0 (assume this is possible).

2. Repeat the newton iteration scheme from §3.2 replacing the series f(t), x(t) with the series of
matrices F(t),X(t). Namely update X = Xinit + δX using

δX = Xinit − XinitFXinit mod t2i, (5)

where the products are matrix multiplications.

Remark 2. The development of the above method can be done in the same manner as §3.2. Special
care needs to be taken with regards to commutativity. However, it is true that

FXinit = XinitF ≡ 0 mod ti,

which is easily proved and useful for working out (5).

5 Series Roots of Univariate Polynomials

We now consider univariate polynomials with power series coefficients, i.e. F ∈ Q[[t]][u] where

F (t, u) = u2 − 1 − t − t2 − t3 − t4 − · · · .

Our goal is to compute a point x(t) ∈ Q[[t]] such that F (t, x(t))|t=0 = 0 (which will just write as
F (0, x) = 0). The point x = 1 satisfies this property for F defined above.

For reasons that will become clear later we require

∂F

∂u
(0, x) 6= 0.

We can interpret this geometrically as helping us avoid double roots (but more to the point we must
eventually divide by this quantity).

For the algorithm assume we know x0, x1, . . . , xi−1 such that

F (t, x0 + x1t + · · ·+ xi−1t
i−1) ≡ 0 mod ti.

We want to compute xi such that

F (t, x0 + x1t + · · · + xit
i) ≡ 0 mod ti+1 (6)

5

Definition 1 (Taylor formula). For a polynomial P we have

P (A + B) = P (A) +
∂P

∂u
(A)B + B2R (7)

for R some polynomial remainder term.

Applying Taylor’s formula to (6) with A = x1 + · · · + xi−1t
i−1 and B = xit

i we get

0 ≡ F (A) +
∂F

∂u
(A)B + B2R mod ti+1 (8)

≡ F (t, x0 + · · ·+ xi−1t
i−1) +

∂F

∂u
(t, x0 + . . . + xi−1t

i−1)xit
i + t2iR mod ti+1 (9)

The coefficient of ti in (9) is

[F (t, xo + x1t + · · ·+ xi−1t
i−1)]i +

[

∂F

∂u
(t, x0 + · · · + xi−1t

i−1)xiti

]

i

where
[

∂F

∂u
(t, x0 + · · ·+ xi−1t

i−1)xit
i

]

i

= xi

[

∂F

∂u
(t, x0 · · ·+ xi−1t

i−1)

]

0

= xi

∂F

∂u
(0, x0)

yielding the update formula

xi = −
[F (t, x0 + · · · + xi−1t

i−1]i
∂F
∂u

(0, x0)
mod ti+1. (10)

To instead lift a solution modulo ti to modulo t2i we apply the Taylor’s formula to (9) using
A = x1 + · · · + xi−1t

i−1 and B = δx:

F (t, x0 + · · ·+ xi−1t
i−1) +

∂F

∂u
(t, x0 + · · ·+ xi−1t

i−1)δx + δx2R. (11)

Recall that δx ≡ 0 mod ti and δx2 ≡ 0 mod t2i so taking (11) mod t2i and solving for xi gives:

δx = −
F (t, x0 + · · ·+ xi−1t

i−1)
∂F
∂u

(t, x0 + · · · + xi−1ti−1)
mod t2i. (12)

If we implement this we will have to:

1. compute F (t, x0 + · · ·+ xi−1t
i−1) mod t2i

2. compute ∂F
∂u

(t, x0 + · · ·+ xi−1t
i−1) mod t2i

3. invert and multiply mod t2i.

However, we can reduce the complexity by some constant factors by making the following observa-
tion:

6

Remark 3. Since F (t, x0 + · · ·+ xi−1t
i−1) ≡ 0 mod ti we may express it as tiRi with Ri ∈ Q[[t]][u]

and instead do:

≡
F (t, x0 + · · ·+ xi−1t

i−1)
∂F
∂u

(t, x0 + · · ·+ xi−1ti−1)
mod t2i

≡
tiRi

∂F
∂u

mod t2i

= ti

(

Ri

∂F
∂u

mod ti

)

.

Therefore we need only calculate ∂F
∂u

(t, x0 + · · ·+ xi−1t
i−1) mod ti (instead of mod t2i).

Remark 4 (Representation of F). F is in k[[t]][u] so F =
∑

i Fiu
i for Fi ∈ k[[t]]. We need a data

structure that can accommodate the evaluation of F (and it’s derivatives) at some arbitrary point.
A DAG (directed acyclic graph) representation is a good choice. [PICTURE HERE]

6 Series Roots of Multivariate Polynomials

Let F1, . . . , FN be multivariate polynomials in Q[[t]][u1, . . . , un]. Our goal is to solve the system

〈F1, . . . , Fn〉 by finding x(1), . . . , x(n) ∈ Q[[t]] (x(i) = x
(i)
0 + x

(i)
1 t + · · ·) such that

F1(x
(1), . . . , x(n), t)

∣

∣

t=0
= 0

...

Fn(x(1), . . . , x(n), t)
∣

∣

t=0
= 0

We require a point (x
(1)
0 , . . . , x

(n)
0) satisfying

Fi(x
(1)
0 , . . . , x

(n)
0) for i = 1 . . . n

and that,

J :=







∂F1

∂u1
· · · ∂F1

∂un

...
. . .

...
∂Fn

∂u1
· · · ∂Fn

∂un







∣

∣

∣

∣

∣

∣

∣

(u1,...,un)=(x(1),...,x(n))

is invertible mod t (i.e. the Jacobian of F = 〈F1, . . . , Fn〉 evaluated at the initial point is invertible)

Definition 2 (Generalized Taylor Formula). For a multivariate polynomial P we have

P (A(1) + B(1), . . . , A(n) + B(n)) = P (A(1), . . . , A(n)) +
∑ ∂F

∂A(i)
Bi +

〈

B(1), . . . , B(n)
〉2

Now, assume we have a solution for the system modulo t. Namely suppose that we are given

x(1) = x
(1)
0 + x

(1)
1 t + · · · + x

(1)
i−1t

i

...

x(n) = x
(n)
0 + x

(n)
1 t + · · ·+ x

(n)
i−1t

i

7

such that
Fj(x

(1), . . . , x(n)) ≡ 0 mod ti for j = 1 . . . n.

To proceed with Newton iteration to find δx(1), . . . , δx(n) such that

Fj(x
(1) + δx(1), . . . , x(n) + δx(n)) = 0 for j = 1 . . . n.

apply Taylor’s formula

Fj(x
(1), . . . , x(n)

n) +
n
∑

k=1

∂Fj

∂uk

(x(1), . . . , x(n))δx(k) +
〈

δx(1), . . . , δx(n)
〉2

= 0 (13)

for j = 1 . . . n and reduce mod t2i to get

Fj(x
(1), . . . , x(n)

n) +

n
∑

k=1

∂Fj

∂uk

(x(1), . . . , x(n)
n)δx(k) + 0 ≡ 0 mod t2i (14)

⇒

[

∂Fj

∂u1
(x(1), . . . , x(n)

n), . . . ,
∂Fj

∂un

(x(1), . . . , x(n)
n)

]







δx(1)

...
δx(n)






≡ 0 mod t2i

(note δx(j)δx(j) ≡ 0 mod t2i). This gives an expression for (13) in matrix form:

J







δx(1)

...
δx(n)






≡ −







F1(x
(1), . . . , x

(n)
n)

...

Fn(x(1), . . . , x
(n)
n)






mod t2i

and solving gives an update formula for the δx(i)’s:






δx(1)

...
δx(n)






≡ −J−1







F1(x
(1), . . . , x

(n)
n)

...

Fn(x(1), . . . , x
(n)
n)






mod t2i (15)

which has nontrivial implementation.

Remark 5. If we are in a lifting loop we reuse old J−1’s to update. Namely suppose that J mod t
is known, we compute J−1 mod t2i by computing J−1 mod t2, t4, . . . , t2i incrementally using lifting.

7 Lifting a Factor of a Univariate Polynomial

Let G(x, t), H(x, t), F (x, t) ∈ Q[[t]][x]. Suppose G(x, t) ·H(x, t) ≡ F (x, t) mod tn, G, H 6= 1 we call
G and H the “factors” of F modulo tn

Example 3. Let

F (x, t) = x4(1 + t + t2 + t3 + · · ·) + 2x3(1 + 4t + t2 + · · ·)

+ x2(3 + 3t + · · ·) + 2x(1 + 4t + · · ·) + (2 + 2t + · · ·) + · · ·

then G(x, t) = (x2 + 1)(x2 + 2x + 2) is a factor of F (x, 0).

8

Assume a factor Ginit = G0 + tG1 + · · · + ti−1Gi−1 of F mod tn is known (we also require that
∂F
∂x

(x, 0) is invertible modulo G and that degx Gk < degx G0 for all k > 0). We wish to find an
update formula for δG so that

F = (Ginit + δG)H. (16)

(i.e., so that G = Ginit + δG is a factor of F in the base field).
Now to get an update formula for δG recall δG ≡ 0 mod ti and ∂δG

∂x
≡ 0 mod ti. This allows us

to reduce
∂Ginit

∂x
F =

∂Ginit

∂x
H(Ginit + δG)

modulo t2i, using

∂F

∂x
=

(

∂Ginit

∂x
+

∂δG

∂x

)

H + (Ginit + δG)
∂H

∂x

⇒
∂Ginit

∂x
H = −

∂F

∂x
+

∂δG

∂x
H + (Ginit + δG)

∂H

∂x

to get
∂Ginit

∂x
F ≡

(

∂Ginit

∂x
H

)

Ginit −
∂F

∂x
δG +

(

∂H

∂x
δG

)

Ginit mod t2i (17)

and taking this modulo Ginit we get

∂Ginit

∂x
F ≡ −

∂F

∂x
δG mod

〈

t2i, Ginit

〉

yielding the update formula:

δG ≡

(

−
∂Ginit

∂x
· F

)

/

(

∂F

∂x

)

mod
〈

t2i, Ginit

〉

. (18)

8 Lifting Triangular Sets

Lifting a triangular set can be interpreted as the generalization of lifting a root or factor of a
polynomial.

We wish to devise an algorithm that has the following specification:

Input The system of polynomials F1, . . . , Fn ∈ Q[[t]][x1, . . . , xn] and triangular sets T1, . . . , Tn with
Ti ∈ Q[xi, . . . , xn] such that

F1(x1, . . . , xn, t) ≡ 0 mod 〈t, T1, . . . , Tn〉

...

Fn(x1, . . . , xn, t) ≡ 0 mod 〈t, T1, . . . , Tn〉

and






∂F1

∂x1
· · · ∂F1

∂xn

...
. . .

...
∂Fn

∂x1
· · · ∂Fn

∂xn







is invertible mod 〈T1(x1, 0), . . . , Tn(x1, . . . , xn, 0)〉.

9

Output The triangular sets

Tn(x1, . . . , xn, t) = xdn

n + Tn,dn−1(x1, . . . , xn−1, t)x
dn−1
n + · · · + Tn,0(x1, . . . , xn−1, t)

...

T2(x1, x2, t) = xd2
2 + T2,d2−1(x1, t)x

d2−1
2 + · · ·+ T2,0(x1, t)

T1(x1, t) = xd1
1 + T1,d1−1(t)x

d1−1
1 + · · · + T1,0(t)

such that Fi ≡ 0 mod
〈

tN , T ′
n, . . . , T ′

1

〉

. That is, a “solution” in the sense that:

xn − TN,0(t)

...

x2 − T2,0(t)

x1 − T1,0(t).

It is almost the case that all roots of {T1, . . . , TN} are roots of {F1, . . . , Fn} (almost because we
may lose isolated roots).

Example 4. Let F1, F2 ∈ Q[[t]][x1, x2] be given by:

F1 = 1 + tx1x2 − t2x1 − (1 + t)x2 − x1x
2
2

F2 = t − (2t − 1)x1 + (1 + t)x1x2 − tx2
1x2

corresponding to the triangular sets (our input)

T2(x1, x2, 0) = x1 + x2 − 1

T1(x1, 0) = x2
1 + 2x1.

Since

[

∂F1

∂x1

∂F1

∂x2
∂F2

∂x2

∂F2

∂x2

]

invertible mod 〈T2(x1, x2, 0), T1(x1, 0), t〉 our algorithm will output:

T2(x1, x2, t) = x2
2 + (1 + t + · · ·)x1x2 + (1 + t + · · ·)x1 − (1 + t + · · ·)

T1(x1, t) = x2
1 + (1 + t + · · ·)x1.

such that Fi ≡ 0 mod 〈T2, T1, t
n〉.

Theorem 1. Let F1, . . . , Fn ∈ Q[[t]][x1, . . . , xn]. The number of solutions of 〈F1, . . . , Fn〉 is bounded

by
∏n

i=1 deg(Fi)

Proof. ?

Let us now begin to develop the desired algorithm. First recall that Fi is required to reduce to
0 mod 〈T1, . . . , Tn〉, we claim this is if and only if there exists Hi,1, . . . , Hi,m such that

Fi = Hi,1T1 + · · ·+ Hi,nTn.

10

(That is, Fi is a linear combination of elements in {T1, . . . , Tn}.)
We can write the requirement that F1, . . . , Fn reduces to 0 mod 〈T1, . . . , Tn〉 as a matrix expres-

sion:






F1
...

Fn






=







H1,1 · · · H1,n

...
. . .

...
Hn,1 · · · Hn,n













T1
...

Tn







(note the Hi,j’s aren’t necessarily unique, which is problematic).
Suppose we know (T1,init, . . . , Tn,init) such that F1, . . . , Fn reduces to 0 mod 〈ti, T1,init, . . . , Tn,init〉.

We would like to find δ1, . . . , δn (polynomials) such that δ1 ∈ Q[[t]][x1], δ2 ∈ Q[[t]][x1, x2], and so
on, such that







δ1
...
δn






≡







∂T1

∂x1
· · · ∂T1

∂xn

...
. . .

...
∂Tn

∂x1
· · · ∂Tn

∂xn













∂F1

∂x1
· · · ∂F1

∂xn

...
. . .

...
∂Fn

∂x1
· · · ∂Fn

∂xn







−1 





F1
...

Fn






mod

〈

t2i, T1,init, . . . , Tn,init

〉

(each one of these steps in non-trivial).
We will omit the proof of this development as it is similar enough to the proof given in §7.

11

