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1 Introduction

1.1 Logic

Our axioms for set theory will be expressed in a formal language. Intu-

itively, the symbol ∃ means “there exists”, as in our first axiom:

∃x(x = x).

Now we can define what we mean by a formula in our formal language.

Any formula is built up out of our two relation symbols “=” and “∈”,

where “∈” is intended to mean “is a member of” or “is an element of.”

Likewise, we need variables, such as w, x, y, z, A, B, C, with or without

subscripts. Thus “x ∈ y” means “x is a member of the set y.”

Definition 1.1. For any variables x and y,

1. x = y is a formula,

2. x ∈ y is a formula,

3. If ϕ is a formula and ψ is a formula, then the following are also

formulas:

(a) ϕ ∨ ψ,

(b) ϕ ∧ ψ,

(c) ϕ =⇒ ψ,

(d) ϕ ⇐⇒ ψ.

4. If ψ is a formula, then ¬ψ is a formula.

5. If ϕ is a formula, then ∃x(ϕ) is a formula.

6. If ψ is a formula, then ∀x(ψ) is a formula.

7. ψ is a formula only if ψ can be obtained from clauses 1 to 6.

1
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Example 1.2. Each of the following is a formula of set theory:

1. x = z ∨ x ∈ z,

2. ∀w(w ∈ x =⇒ ¬(w ∈ y)),

3. ∀z(z ∈ x ⇐⇒ z ∈ y),

4. ∃w(w ∈ x) ∨ ∀z(z ∈ y).

Example 1.3. Each of the following are not formulas of set theory:

1. (x = y) = z,

2. (x ∈ y) ∈ z,

3. (c 6=⇒ y) ∈ z.

1.2 Axioms of Set Theory

We give a precise statement of each axiom in our formal language, and

then give a rough, intuitive, equivalent in prose (i.e. plain language).

Proofs depend on the formal language, not on the intuitive equivalents.

(We list them here and revisit them individually in the following sec-

tions.)

Axiom 1 (Extensionality). If two sets have the same members, then the

sets are identical.

∀x∀y [∀z (z ∈ x ⇐⇒ z ∈ y) ⇐⇒ x = y].

Axiom 2 (Replacement). If the domain of a functional is a set, then its

range is also a set.

θ(x, y) is a functional

=⇒ ∀A ∃B ∀y [y ∈ B ⇐⇒ ∃x [x ∈ A ∧ θ(x, y)]].

Axiom 3 (Set Existence). There is at least one set:

∃A [A = A].

Axiom 4 (Power Set). For each set A there is a set containing all the

subsets of A.

∀A ∃C ∀x [x ∈ C ⇐⇒ x ⊆ A].
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Axiom 5 (Union). If A is a set, then the union of A is a set.

∀A ∃w ∀z [z ∈ w ⇐⇒ ∃y [z ∈ y ∧ y ∈ A]].

Axiom 6 (Infinity). There is an inductive set. (See §?? for more details.)

∃A [A is inductive].

Axiom 7 (Choice). Every set has a choice function. (See §6.1 for more

details.)

1.3 Subsets, the Empty Set, No Universal Set

Our first axiom gives us a condition which guarantees that two sets x

and y are identical:

Axiom 1 (Extensionality). If two sets have the same members, then the

sets are identical.

∀x∀y [∀z (z ∈ x ⇐⇒ z ∈ y) =⇒ x = y].

We next introduce the ideas of a subset and proper subset:

Definition 1.4. A ⊆ B states that A “is a subset of” B.

A ⊆ B
defn.
⇐⇒ ∀z [z ∈ A =⇒ z ∈ B].

Theorem 1.5. The subset operation is reflexive.

A ⊆ B ∧ B ⊆ A ⇐⇒ A = B.

Proof.

A ⊆ B ∧ B ⊆ A

⇐⇒ ∀z [z ∈ A =⇒ z ∈ B] ∧ ∀z [z ∈ B =⇒ z ∈ A] Def. 1.4

⇐⇒ ∀z [z ∈ A =⇒ z ∈ B ∧ z ∈ B =⇒ z ∈ A]

⇐⇒ ∀z [z ∈ A ⇐⇒ z ∈ B]

⇐⇒ A = B. Extensionality
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Theorem 1.6. The subset operation is transitive.

[A ⊆ B ∧ B ⊆ C] =⇒ A ⊆ C.

Proof. Let x ∈ A be arbitrary

[A ⊆ B ∧ B ⊆ C]

=⇒ ∀x (x ∈ A =⇒ x ∈ B ∧ x ∈ B =⇒ x ∈ C) Def. 1.4

=⇒ ∀x (x ∈ A =⇒ x ∈ C) Transitivity

Definition 1.7. A ⊂ B states that A “is a proper subset” of B.

A ⊂ B
defn.
⇐⇒ [A ⊆ B ∧ ¬ (B ⊆ A)]

Definition 1.8. Some extra notation for negation:

1. A 6= B
defn.
⇐⇒ ¬ (A = B),

2. A 6∈ B
defn.
⇐⇒ ¬ (A ∈ B).

Theorem 1.9. Proper subsets cannot be equal to the subset they are con-

tained in.

A ⊂ B ⇐⇒ (A ⊆ B ∧ A 6= B) .

Proof.

A ⊂ B

⇐⇒ A ⊆ B ∧ ¬(B ⊆ A) Def. 1.7

⇐⇒ [A ⊆ B ∧ ¬(A ⊆ B)] ∨ [A ⊆ B ∧ ¬(B ⊆ A)]

⇐⇒ A ⊆ B ∧ ¬(A ⊆ B ∧ B ⊆ A)

⇐⇒ A ⊆ B ∧ ¬(A = B) Thm. 1.5

⇐⇒ A ⊆ B ∧ A 6= B Def. 1.8.1

Exercise 1.10.

(A ⊂ B ∧ B ⊆ C =⇒ A ⊂ C) ∧ A ⊆ B ∧ B ⊂ C =⇒ A ⊂ C.

We wish to have a way to express that a formula is true for exactly

one set y:
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Definition 1.11. There exists exactly one y such that ϕ(y):

∃!y ϕ(y)
defn.
⇐⇒ ∃y [ϕ(y) ∧ ∀z (ϕ(z) =⇒ y = z)]

where z does not occur in ϕ(y).

In order to express our next axiom, we need the idea that a formula

ϕ(x, y) of set theory is a functional.

Definition 1.12 (Functional). ϕ(x, y) is functional if an only if

∀x ∀y ∀z [(ϕ(x, y) ∧ ϕ(x, z)) =⇒ y = z].

A functional, like a function, must satisfy the “vertical line test”

f (x) = a and f (y) = a implies x = y.

Axiom 2 (Replacement). If the domain of a functional is a set, then its

range is also a set.

θ(x, y) is a functional

=⇒ ∀A ∃B ∀y [y ∈ B ⇐⇒ ∃x [x ∈ A ∧ θ(x, y)]].

In order to get started, we need to assume that there is at least one

set, and that is what our next axiom states:

Axiom 3 (Set Existence). There is at least one set:

∃A [A = A].

Then we can prove that :

Theorem 1.13. There is exactly one set with no members:

∃!B ∀y (y 6∈ B)

Proof of Existence. Let θ(x, y) ⇐⇒ ⊥ and note that θ is a functional

because

θ(x, y) ∧ θ(x, z) ≡ ⊥ =⇒ y = z

is a tautology. We have ∃A (A = A) by the the Set Existence Axiom and

the Axiom of Replacement implies

∃B ∀y (y ∈ B ⇐⇒ ∃x (x ∈ A ∧ ⊥))

=⇒ ∃B ∀y (y ∈ B ⇐⇒ ⊥)

=⇒ ∃B ∀y (y 6∈ B).
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Proof of Uniqueness. Suppose there are two sets, A 6= B with no mem-

bers:

∀x (x 6∈ A ∧ x 6∈ B) ∧ A 6= B.

Notice though, that

∀x (x ∈ A ⇐⇒ x ∈ B) ≡ ∀x (⊥ ⇐⇒ ⊥) ≡ ⊤.

So by the Axiom of Extensionality we have A = B  .

This set B with no members is called the empty set, or the null set,

and is written ∅.

Distinguish carefully between the empty set ∅ and ϕ — an arbitrary

formula of set theory.

Definition 1.14 (empty set).

∅ = w
defn.
⇐⇒ ∀y (y 6∈ w)

Theorem 1.15. 1. ∀x (x 6∈ ∅),

2. ∀x (∅ ⊆ x), and

3. ∀x (x ⊆ ∅ =⇒ x = ∅).

Proof of 1. Let x = y and B = ∅ in Definition 1.14. We deduce

∅ = ∅ ⇐⇒ ∀x (x 6∈ ∅)

=⇒ ⊤ ⇐⇒ ∀x (x 6∈ ∅) Tautology

=⇒ ∀x (x 6∈ ∅).

Proof of 2. Let x be an arbitrary set.

∀z (z ∈ ∅ =⇒ z ∈ x) ⇐⇒ ∅ ⊆ x Def. 1.4

=⇒ ∀z (⊥ =⇒ z ∈ x) ⇐⇒ ∅ ⊆ x Thm. 1.15

=⇒ ∀z (⊤) ⇐⇒ ∅ ⊆ x Tautology

=⇒ ∅ ⊆ x.
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Proof of 3. Let x be an arbitrary set

x ⊆ ∅ ⇐⇒ ∀z (z ∈ x =⇒ z ∈ ∅) Def. 1.4

=⇒ ∀z (z ∈ x =⇒ ⊥) Thm. 1

=⇒ ∀z (⊤ =⇒ ¬(z ∈ x)) Contrapositive

=⇒ ∀z (z 6∈ x)

=⇒ x = ∅ Def. 1.14

We might think that there is a “universal set” which contains every

set as a member. But we can prove there is no such set of all:

Theorem 1.16 (Russel’s Paradox).

¬∃A∀x (x ∈ A).

Proof. Suppose there is universal set U containing all sets

∃U ∀x (x ∈ U).

Write U with class abstraction by

U = {x : x 6∈ x}

as ∀x (x 6∈ x) ≡ ⊤. However this derives contradiction because

U ∈ U ⇐⇒ U 6∈ U.

Thus there is no universal set.

1.4 Class Abstraction, or {x : ϕ(x)}

Intuitively, {x : ϕ(x)} is intended to be the set of all those sets x such

that ϕ(x) is true. But then {x : ϕ(x)} could be “too big” to be a set. In

particular, {x : x = x} would be the set of all sets. But we know from

Theorem 1.16 that there is no such set. So when {x : ϕ(x)} would be

too big to be a set, we define {x : ϕ(x)} to be some fixed set; the only

fixed set so far being the empty set.

Definition 1.17 (Class Abstraction).

{z : ϕ(z)} = w
defn.
⇐⇒
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∀x [x ∈ w ⇐⇒ ϕ(x)] ∨ (¬∃A ∀x [x ∈ A ⇐⇒ ϕ(x)] ∧ w = ∅).

(The second condition covers the case of w being empty.)

Theorem 1.18. {z : z ∈ x} = x.

Theorem 1.19.

∀x [x ∈ {z : ϕ(z)} ⇐⇒ ϕ(x)]

∨ (¬∃A ∀x [x ∈ A ⇐⇒ ϕ(x)] ∧ {z : ϕ(z)} = ∅)

That is to say,

{x : ϕ(z)} 6= ∅ =⇒ [x ∈ {z : ϕ(z)} ⇐⇒ ϕ(x)].

Proof. Let w = {z : ϕ(z)} in Definition 1.17.

{z : ϕ(z)} = {z : ϕ(z)}

⇐⇒ ∀x [x ∈ {z : ϕ(z)} ⇐⇒ ϕ(x)]

∨ (¬∃A ∀x [x ∈ A ⇐⇒ ϕ(x)] ∧ {z : ϕ(z)} = ∅)

Thus, because {z : ϕ(z)} = {z : ϕ(z)} ≡ ⊤ the result follows.

Given some predicate ϕ(x) we can be sure that

∃Ax [x ∈ A ⇐⇒ ϕ(x)]

provided there is some set C such that {x : ϕ(x)} ⊆ C.

Theorem 1.20.

∃C ∀z [ϕ(z) =⇒ z ∈ C] =⇒ ∃!A ∀z [z ∈ A ⇐⇒ ϕ(z)]

Proof. Bounty.

From 1.19 and 1.20 if follows (easily) that From 1.19 and 1.20 if fol-

lows (easily) that

Theorem 1.21.

∃C ∀z [ϕ(z) =⇒ z ∈ C] =⇒ ∀x [x ∈ {z : ϕ(z)} ⇐⇒ ϕ(x)].

Proof. Bounty.
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1.5 The Power Set Axiom, Unordered

Thus far, our three axioms only guarantee the existence of one set: the

empty set. For it might happen that this was the set given by the Set

Existence Axiom.

So we next introduce an axiom which states that if A is a set then

there is a set P(A) (called the power set of A) containing all the subsets

of A.

Definition 1.22 (Power set). The power set

P(A) := {B : B ⊆ A} .

An alternate notation of P(A) is 2A; hence “power set.”

In order to be sure that the power set of A is not the empty set, we

must introduce the Power Set Axiom:

Axiom 4 (Power Set). For each set A there is a set containing all the

subsets of A.

∀A ∃C ∀x [x ∈ C ⇐⇒ x ⊆ A].

Then we can prove the following:

Theorem 1.23. For every set A, z is in the power set of A only when z is

a subset of A:

∀A ∀z [z ∈ P(A) ⇐⇒ z ⊆ A]

Proof. Bounty.

We next see that the power set operation is monotonic:

Theorem 1.24 (Monotonicity).

A ⊆ B =⇒ P(A) ⊆ P(B).

Proof. Homework.

Then we obtain the following:

Theorem 1.25. For every set A

1. ∅ ∈ P(A),

2. A ∈ P(A),
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3. ∅ 6= P(A), and

4. z ∈ P(P(∅)) ⇐⇒ [z = ∅ ∨ z = P(∅)]

Proof of 1. By Theorem 1.23 we have

∀A ∀z [z ∈ P(A) ⇐⇒ z ⊆ A]

and since ∀A (∅ ⊆ A) by Theorem 1.15 if follows that

∅ ⊆ A =⇒ ∅ ∈ P(A)

from Theorem 1.23.

Proof of 2.

A = A =⇒ A ⊆ A ∧ A ⊆ A Thm. 1.5

=⇒ A ⊆ A

=⇒ A ∈ P(A) Thm. 1.23

Proof of 3. Towards a contradiction assume ∃A (∅ = P(A)) then

∃A (∅ = P(A)) Assumption

=⇒ ∃A ∀x (x 6∈ P(A)) Def. 1.14

=⇒ ∃A (∅ 6∈ P(A)) Thm. 1.25.1

Thus ¬∃A (∅ = P(A)) ≡ ∀A (∅ 6= P(A)) and the result follows.

Proof of 4. By Definition 1.22 we have

P(∅) = {B : B ⊆ ∅}

which means, since ∀x (x ⊆ ∅ =⇒ x = ∅) by Theorem 1.14, we have

P(∅) = {∅}. Thereby

P(P(∅)) = P({∅}) = {B : B ⊆ {∅}} Def. 1.22

=⇒ B = ∅ ∨ B = {∅} Thm. 1.19

=⇒ P(P(∅)) = {∅, {∅}} = {∅, {P(∅)}}

Thus z ∈ {∅,P(∅)} ⇐⇒ (z = ∅ ∨ z = P(∅)) by Theorem 1.28.
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Note that we have two distinct sets, ∅ and P(∅), we can use the

Axiom of Replacement to ensure that the concept of unordered pair {x, y}

makes sense:

Definition 1.26 (Unordered Pair).

{x, y} := {z : z = x ∨ z = y} .

In particular, the Axiom of Replacement is needed to ensure that

{x, y} does not collapse to the empty set:

Theorem 1.27. ∀x, y [{x, y} 6= ∅].

Proof.

{x, y} = ∅ =⇒ {z : z = x ∨ z = y} = ∅ Def. 1.26

=⇒ ¬∃z (z = x ∨ z = y) Thm. 1.19

=⇒ ∀z (z 6= x ∧ z 6= y)

=⇒ ∀z (z 6= x)

=⇒ x 6= x  

Theorem 1.28. ∀x ∀y ∀z [z ∈ {x, y} ⇐⇒ (z = x ∨ z = y)].

Proof. Let ϕ(z) ≡ (z = x ∨ z = y) so that {x, y} = {z : ϕ(z)} and recall

{x, y} 6= ∅ by Theorem 1.27.

z ∈ {x, y} ⇐⇒ ϕ(z) ⇐⇒ z = x ∨ z = y. Thm. 1.19

The main result about unordered pairs is the following theorem:

Theorem 1.29.

{x, y} = {A, B} ⇐⇒ (x = A ∧ y = B) ∨ (x = B ∧ y = A) .

Proof. Bounty.

Thus, in an unordered pair, the elements occur in no particular order:

Exercise 1.30. {x, y} = {y, x}.

If x = y, it will be useful to define {x} to be {x, x} and to call {x} a

singleton.
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Definition 1.31 (Singleton).

{x} := {x, x} .

If follows that

Theorem 1.32. {A} = {B} ⇐⇒ A = B.

Proof.

{A} = {B}

⇐⇒ {A, A} = {B, B} Def. 1.31

⇐⇒ (A = B ∧ A = B) ∨ (A = B ∧ A = B) Thm. 1.29

⇐⇒ A = B

In order to have them available for examples, we define the first few

natural numbers.

Definition 1.33 (Natural Numbers).

0 := ∅

1 := P(∅)

2 := P(P(∅))

...

In contrast to the unordered pair {x, y}, the ordered pair (x, y) de-

pends on the x and y being in a particular oder: first z and then the y.

There are many different ways in which we could defined a concept of

ordered pair.

We use a definition invented by the Polish mathematician Kura-

towski in 1921:

Definition 1.34 (Ordered Pair).

(x, y) := {{x} , {x, y}} .

The key property of ordered pairs is expressed in the following the-

orem:

Theorem 1.35. (x, y) = (A, B) ⇐⇒ x = A ∧ y = B.
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Lemma 1.36. (x = y) =⇒ [(x, y) = (A, B) ⇐⇒ (x = A ∧ y = B)].

Proof. Homework.

Proof. Assume x 6= y then

(x, y) = (A, B)

⇐⇒ {{x} , {x, y}} = {{A} , {A, B}} Def. 1.34

⇐⇒ ({x} = {A} ∧ {x, y} = {A, B})

∨ ({x} = {A, B} ∧ {x, y} = {A}) Thm. 1.29

Dealing with each side of the disjunction individually we have

{x} = {A} ∧ {x, y} = {A, B}

⇐⇒ x = A ∧ {x, y} = {A, B} Thm. 1.32

⇐⇒ x = A ∧ [(x = A ∧ y = B) ∨ (x = B ∧ y = A)] Thm. 1.29

⇐⇒ (x = A ∧ x = A ∧ y = B) ∨ (x = A ∧ x = B ∧ y = A)

⇐⇒ (x = A ∧ y = B) ∨ ⊥ Assumption

⇐⇒ x = A ∧ y = B

or

{x} = {A, B} ∧ {x, y} = {A}

⇐⇒ {x, x} = {A, B} ∧ {x, y} = {A, A} Def. 1.31

⇐⇒ (x = A ∧ x = B) ∧ (x = A ∧ y = A)

⇐⇒ ⊥. Assumption

Thus we have

x 6= y =⇒ [(x, y) = (A, B) ⇐⇒ (x = A ∧ y = B)].

Combining this with Lemma 1.36 gives the result.

Contrast Theorem 1.35 with Theorem 1.29 about unordered pairs.

1.6 Intersection, Set Difference, and Union

Most students are familiar with the concept of the intersection A ∩ B of

the sets A and B:
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Definition 1.37 (Intersection).

A ∩ B := {z : z ∈ A ∧ z ∈ B} .

Theorem 1.38. z ∈ x ∩ y ⇐⇒ z ∈ x ∧ z ∈ y.

Exercise 1.39. Demonstrate the intersection operation is commutative, as-

sociative, and idempotent. Namely:

1. x ∩ y = y ∩ x,

2. (x ∩ y) ∩ z = x ∩ (y ∩ z) , and

3. x ∩ x = x.

The next theorem states that x ∩ y is a lower bound for x and y with

respect to ⊆, and 1.41 states that, actually, x∩ y is the greatest lower bound

of x and y with respect to ⊆:

Theorem 1.40. (x ∩ y ⊆ x) ∧ (x ∩ y ⊆ y).

Proof.

∀z (z ∈ x ∩ y =⇒ z ∈ x ∧ z ∈ y) Thm. 1.38

=⇒ ∀z (z ∈ x ∩ y =⇒ z ∈ x) ∧ ∀z (z ∈ x ∩ y =⇒ z ∈ y)

=⇒ (x ∩ y ⊆ x) ∧ (x ∩ y ⊆ y) Thm. 1.4

Theorem 1.41. z ⊆ x ∧ z ⊆ y =⇒ z ⊆ x ∩ y.

Proof.

z ⊆ x ∧ z ⊆ y

=⇒ ∀a [a ∈ z =⇒ a ∈ x] ∧ ∀a [a ∈ z =⇒ a ∈ y] Thm. 1.4

=⇒ ∀a [a ∈ z =⇒ (a ∈ x ∧ a ∈ y)]

=⇒ ∀a [a ∈ z =⇒ a ∈ x ∩ y] Thm. 1.38

=⇒ z ⊆ x ∩ y Thm. 1.4

We next introduce x \ y, the set difference of x with y. Sometimes we

say x \ y as “x set minus y”:

Definition 1.42 (Set Difference).

x \ y := {z : z ∈ x ∧ z 6∈ y} .
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Theorem 1.43. z ∈ x \ y ⇐⇒ z ∈ x ∧ z 6∈ y.

Proof.

Two theorems that will be useful later are the following.

Theorem 1.44. B = A \ (A \ B) ⇐⇒ B ⊆ A.

Proof of =⇒ . Assume B = A \ (A \ B).

x ∈ B =⇒ x ∈ A \ (A \ B) Assumption

=⇒ x ∈ A ∧ x 6∈ A \ B Thm. 1.43

=⇒ x ∈ A

and thus ∀x (x ∈ B =⇒ x ∈ A) which means B ⊆ A by Definition

1.4.

Proof of ⇐= . Assume B ⊆ A.

x ∈ B =⇒ x ∈ B ∧ x ∈ B

=⇒ x ∈ A ∧ x ∈ B Assumption

=⇒ ⊥ ∨ (x ∈ A ∧ x ∈ B)

=⇒ (x ∈ A ∧ x 6∈ A) ∨ (x ∈ A ∧ x ∈ B)

=⇒ x ∈ A ∧ (x 6∈ A ∨ x ∈ B)

=⇒ x ∈ A ∧ ¬(x ∈ A ∧ x 6∈ B)

=⇒ x ∈ A ∧ x 6∈ A \ B Thm. 1.43

=⇒ x ∈ A \ (A \ B)

Thus B ⊆ A =⇒ (x ∈ B ⇐⇒ x ∈ A \ (A \ B)). Or, using Axiom 1 to

write it differently, B ⊆ A =⇒ B = A \ (A \ B).

Theorem 1.45. (A \ B) \ C = (A \ B) ∩ (A \ C).

Proof.

x ∈ (A \ B) \ C

⇐⇒ (x ∈ A ∧ x 6∈ B) ∧ x 6∈ C Thm. 1.43

⇐⇒ (x ∈ A ∧ x 6∈ B) ∧ (x ∈ A ∧ x 6∈ C)

⇐⇒ x ∈ A \ B ∧ x ∈ A \ C Thm. 1.43

⇐⇒ x ∈ (A \ B) ∩ (A \ C) Thm. 1.38.
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Exercise 1.46. x \ (x ∩ y) = x \ y = x ∩ (x \ y) .

Proof.

a ∈ x \ (x ∩ y) ⇐⇒ a ∈ x ∧ ¬(a ∈ x ∧ a ∈ y) Axiom 1

⇐⇒ a ∈ x ∧ (a 6∈ x ∨ a 6∈ y)

⇐⇒ a ∈ x ∧ a 6∈ y

Notice that

a ∈ x ∧ a 6∈ y ⇐⇒ a ∈ x \ y

by Theorem 1.43, and

a ∈ x ∧ a 6∈ y ⇐⇒ a ∈ x ∧ (a ∈ x ∧ a 6∈ y)

⇐⇒ a ∈ x ∧ a ∈ x \ y Thm. 1.43

⇐⇒ a ∈ x ∩ (x \ y). Thm. 1.38

Thus by Axiom 1 we have x \ (x ∩ y) = x \ y = x ∩ (x \ y).

So far, we have talked about the intersection of two sets. Now we

introduce the intersection of any set A. If A has infinitely many members,

then we have a new notion that goes beyond the intersection of two (and,

by iteration, of a finite number of) sets; that is, the intersection of finitely

many or infinitely many sets:

Definition 1.47.

⋂

A := {z : ∀y (y ∈ A =⇒ z ∈ y)} .

Now
⋂

ϕ would be “too big” to be a set without our convention that

{z : ϕ(z)} is ∅ in that case.

Theorem 1.48.
⋂

∅ = ∅.

Proof. Consider

⋂

∅ = {z : ∀y (y ∈ ∅ =⇒ z ∈ y)} Def. 1.47

= {z : ∀y (⊥ =⇒ z ∈ y)}

= {z : ⊤}

= Universal Set = ∅.
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Theorem 1.49.

A 6= ∅ =⇒ ∀z [z ∈
⋂

A ⇐⇒ ∀y (y ∈ A =⇒ z ∈ y)].

Proof. Assume A 6= ∅.

z ∈
⋂

A ⇐⇒ z ∈ {z : ∀y (y ∈ A =⇒ z ∈ y)}

⇐⇒ ∀y (y ∈ A =⇒ z ∈ y) Thm. 1.19.

Exercise 1.50. 1.
⋂

{x} = x,

2.
⋂

{x, y} = x ∩ y, and

3. x 6= ∅ ∧ x ⊆ y =⇒
⋂

y ⊆
⋂

x.

The next two theorems will be applied later:

Theorem 1.51. x ∈ A =⇒
⋂

A ⊆ x.

Proof. Suppose x ∈ A.

z ∈
⋂

A =⇒ ∀y (y ∈ A =⇒ z ∈ y)

=⇒ (x ∈ A =⇒ z ∈ x)

=⇒ (⊤ =⇒ z ∈ x) Assumption

=⇒ z ∈ x.

Thus
⋂

A ⊆ x by Definition 1.4.

Theorem 1.52. [C 6= ∅ ∧ ∀B (B ∈ C =⇒ A ⊆ B)] =⇒ A ⊆
⋂

C.

Proof. Homework.

We now come to
⋃

A, the union of the set A. The union of A is more

general than the union of two sets, since A may be infinite. We will see

later that B ∪ C is a special case of
⋃

A, since B ∪ C =
⋃

{B, C}.

Definition 1.53.

⋃

A := {z : ∃y [z ∈ y ∧ y ∈ A]} .

In order to ensure that
⋃

A is not always the empty set, thus allowing

us to build “bigger” sets through unions, we need a new axiom:



1.6 Intersection, Set Difference, and Union 18

Axiom 5 (Union). If A is a set, then the union of A is a set.

∀A ∃w ∀z [z ∈ w ⇐⇒ ∃y (z ∈ y ∧ y ∈ A)].

Theorem 1.54. z ∈
⋃

A ⇐⇒ ∃y [z ∈ y ∧ y ∈ A].

We now define “little union”, that is, B ∪ C, the union of the sets B

and C.

Definition 1.55 (Little Union).

B ∪ C :=
⋃

{B, C} .

Theorem 1.56. z ∈ B ∪ C ⇐⇒ (z ∈ B ∨ z ∈ C) .

Proof.

z ∈ B ∪ C ⇐⇒ z ∈
⋃

{B, C}

⇐⇒ ∃y (z ∈ y ∧ y ∈ {B, C}) Thm. 1.54

⇐⇒ (z ∈ y ∧ y = B) ∨ (z ∈ y ∧ y = C)

⇐⇒ z ∈ B ∨ z ∈ C.

Theorem 1.57. x ∪ y = {z : z ∈ x ∨ z ∈ y} .

Proof.

z ∈ x ∪ y =
⋃

{x, y} Def. 1.57

= {z : (z ∈ A ∧ A ∈ {x, y})} Def. 1.53

= {z : (z ∈ A ∧ A = x) ∨ (z ∈ A ∧ A = y)}

= {z : z ∈ x ∨ z ∈ y} .

Exercise 1.58. Prove x ∪ y is commutative, associative, idempotent, and

has ∅ as its identity element:

1. x ∪ y = y ∪ x,

2. (x ∪ y) ∪ z = x ∪ (y ∪ z),

3. x ∪ x = x, and

4. x ∪∅ = x.
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Exercise 1.59. Prove

1. x ⊆ x ∪ y,

2. y ⊆ x ∪ y,

3. x ⊆ z ∧ y ⊆ z =⇒ x ∪ y ⊆ z.

So x ∪ y is an upper bound of x and of y with respect to ⊆. Moreover,

x ∪ y is the least upper bound of x and y with respect to ⊆.

Exercise 1.60. The following are equivalent:

1. x ⊆ y,

2. x ∪ y = y,

3. x ∩ y = x.

Proof.

The various parts of the next theorem are often called De Morgan’s

Laws, after the English mathematician Augustus DeMorgan:

Theorem 1.61 (DeMorgan’s Laws). -

1. x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z),

2. x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪ z),

3. x \ (y ∩ z) = (x \ y) ∪ (x \ z),

4. x \ (y ∪ z) = (x \ y) ∩ (x \ z).

Proof of 1.

a ∈ x ∩ (y ∪ z)

⇐⇒ a ∈ x ∧ a ∈ (y ∪ z) Def. 1.37

⇐⇒ a ∈ x ∧ (a ∈ y ∨ a ∈ z) Thm. ??

⇐⇒ (a ∈ x ∧ a ∈ y) ∨ (a ∈ x ∧ a ∈ z)

⇐⇒ a ∈ x ∩ y ∨ a ∈ x ∩ z Def. 1.37

⇐⇒ a ∈ (x ∩ y) ∪ (x ∩ z). Thm. ??
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Proof of 3.

a ∈ x \ (y ∩ z)

⇐⇒ a ∈ x ∧ ¬(a ∈ y ∩ z) Thm. 1.43

⇐⇒ a ∈ x ∧ ¬(a ∈ y ∧ a ∈ z) Thm. 1.38

⇐⇒ a ∈ x ∧ (a 6∈ y ∨ a 6∈ z)

⇐⇒ (a ∈ x ∧ a 6∈ y) ∨ (a ∈ x ∧ a 6∈ z)

⇐⇒ (a ∈ x \ y) ∨ (a ∈ x \ z) Thm. 1.50

⇐⇒ a ∈ (x \ y) ∪ (x \ z). Thm. ??

We end his section with a few additional results on the union of an

arbitrary set A of sets:

Theorem 1.62. 1.
⋃

∅ = ∅,

2. x ∈ y =⇒ x ⊆
⋃

y.

Proof of 1.

x ∈
⋃

∅ ⇐⇒ ∃A (x ∈ y ∧ A ∈ ∅) Thm. 1.60

⇐⇒ ⊥.

And thus
⋃

∅ = ∅.

Proof of 2. Assume x ∈ y.

a ∈ x =⇒ a ∈ x ∧ x ∈ y

=⇒ ∃x (a ∈ x ∧ x ∈ y)

=⇒ a ∈
⋃

y. Thm. 1.60

Thereby x ∈ y =⇒ x ⊆
⋃

y.

Theorem 1.63. ∀B [B ∈ C =⇒ B ⊆ A] =⇒
⋃

C ⊆ A.

(Compare 1.63 with 1.52 on intersection.)

Exercise 1.64. 1. x ⊆ =⇒ x ∩ z ⊆ y ∩ z,

2. x ⊆ y ∧ w ⊆ z =⇒ x ∩ w ⊆ y ∩ z,

3. x ⊆ y =⇒ x ∪ z ⊆ y ∩ z, and

4. x ⊆ y ∧ w ⊆ z =⇒ x ∩ w ⊆ y ∩ z.
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Theorem 1.65. The union operation is monotonic, in contrast with the

intersection operation, which is not.

A ⊆ B =⇒
⋃

A ⊆
⋃

B.

Proof. Assume A ⊆ B.

x ∈
⋃

A =⇒ ∃y (x ∈ y ∧ y ∈ A) Thm. 1.54

=⇒ ∃y (x ∈ y ∧ y ∈ B) Assumption

=⇒ x ∈
⋃

B. Thm. 1.54

The power set operation will also turn out to be monotonic. (See ??.)

Exercise 1.66. Prove or refute that

⋃

A =
⋃

B =⇒ A = B.

Answer. Refute. Notice.

⋃

{∅} = {z : ∃x (z ∈ x ∧ x ∈ {∅})}

= {z : z ∈ x ∧ x = ∅}

= {z : z ∈ ∅}

= {z : ⊥}

= ∅

and

⋃

∅ = {z : ∃z (z ∈ x ∧ x ∈ ∅)}

= {z : ∃x (z ∈ x ∧ ⊥)}

= {z : ⊥}

= ∅.

Exercise 1.67. Prove or refute

⋂⋃

A =
⋃⋂

A.
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Answer. Refute. Notice

⋂⋃

{∅, {∅}} =
⋂

{∅} = {∅} .

and
⋃⋂

{∅, {∅}} =
⋃

∅ = ∅.

1.7 Terms and Class Abstraction

At this point it will be helpful to introduce the concept of a “term” and

to extend our class abstraction to allow terms. A term t(x1, x2) is just a

set in which x1 and x2 occur as free variables. Thus t(x1, x2) might be

x1 ∪ x2 or x1 \ x2 or (x1, x2) or {x1, x2} or {(x1, x2),
⋃

x1}, and so on.

The following is a definition schema of class abstraction using terms.

Definition 1.68. Suppose that v1, . . . , vn, w are distinct variables and that

t(v1, . . . , vn) is a term in which no bound variable occurs and the free

variables occurring in t(v1, . . . , vn) are exactly v1, . . . , vn, and that w does

not occur in the formula ϕ(v1, . . . , vn). Then

{t(v1, . . . , vn) : ϕ(v1, . . . , vn)}

= {w : ∃v1 · · · ∃vn(w = t(v1, . . . , vn) ∧ ϕ(v1, . . . , vn)}

For example, we will use class abstraction with such terms in the next

theorem, which states the generalized version of De Morgan’s laws. We

will fix a set C and look at the set {C \ x : x ∈ A}. By 1.68 this set is

{w : ∃x [w = c \ x ∧ x ∈ A]}.

Theorem 1.69. Let A ⊆ P(C) and A 6= ∅. Then

1. C \
⋃

A =
⋂

{C \ x : x ∈ A},

2. C \
⋂

A =
⋃

{C \ x : x ∈ A},

3. B = {C \ x : x ∈ A} =⇒ A = {C \ y : y ∈ B}.
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Solution to Exercises



2 Relations and Functions

Mathematics makes very extensive use of both relations and functions.

For us, a relation is defined to be any set of ordered pairs, as in the next

definition.

Definition 2.1 (Relation). B is a relation when B is a set of ordered pairs:

∀z (z ∈ B =⇒ ∃x∃y : z = (x, y)).

Theorem 2.2. ∅ is a relation.

Proof. Let B = ∅ then

∀z (z ∈ ∅ =⇒ ∃x ∃y : z = (x, y))

⇐⇒ ∀z (⊥ =⇒ ∃x ∃y : z = (x, y)) 1.14

⇐⇒ ⊤.

Theorem 2.3. If A ⊆ B and B is a relation, then A is a relation.

Proof. Suppose A ⊆ B and B is a relation. We have

∀z (z ∈ A =⇒ z ∈ B) 1.4

=⇒ ∀z (z ∈ A =⇒ ∃x ∃y : z = (x, y)) Ass and 2.1

And thus A is a relation by Definition 2.1.

Theorem 2.4. Let A and B be relations. Then A ∩ B is a relation, A \ B

is a relation, and A ∪ B is a relation.

Proof. Suppose A and B are relations. Recall A ∩ B ⊆ B and A \ B ⊆ A.

Thereby Theorem 2.3 proves these sets are relations.

24
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For A ∪ B we have

z ∈ A ∪ B

=⇒ z ∈ A ∨ z ∈ B 1.56

=⇒ ∃x ∃y (z = (x, y)) ∨ ∃x ∃y (z = (x, y)) Ass 2.1

=⇒ ∃x ∃y (z = (x, y))

Thus ∀z (z ∈ A ∪ B =⇒ ∃x ∃y : z = (x, y)) and thereby A ∪ B is a

relation by Defintion 2.1.

A key idea connected to relations is that of A × B, the Cartesian prod-

uct of the sets A and B. We will define A × B to be the set of all ordered

pairs (w, z) such that w ∈ A and z ∈ B:

Definition 2.5 (Cartesian Product).

A × B = {(a, b) : a ∈ A ∧ b ∈ B} .

Theorem 2.6.

z ∈ A × B ⇐⇒ ∃C ∃D [C ∈ A ∧ D ∈ B ∧ z = (C, D)]

Theorem 2.7. (C, D) ∈ A × B ⇐⇒ C ∈ A ∧ D ∈ B.

Proof. Let z = (C, D) in Theorem 2.6

(C, D) ∈ A × B

⇐⇒ ∃C ∃D : C ∈ A ∧ D ∈ B ∧ (C, D) = (C, D) 2.6

⇐⇒ C ∈ A ∧ D ∈ B.

Theorem 2.8. A × B is a relation.

Proof.

z ∈ A × B

=⇒ ∃C ∃D (C ∈ A ∧ D ∈ B ∧ z = (C, D)) 2.6

=⇒ ∃C ∃D (z = (C, D))

and thus A × B is a relation by Definition 2.1.

Exercise 2.9. Prove.
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1. A × B = ∅ ⇐⇒ (A = ∅ ∨ B = ∅),

2. B ⊆ C =⇒ (A × B ⊆ A × C ∧ B × A ⊆ C × A),

3. A × B = B × A ⇐⇒ {A = B ∨ A = ∅ ∨ B = ∅},

4. (A 6= ∅ ∧ A × B ⊆ A × C) =⇒ B ⊆ C.

Exercise 2.10. Prove or refute. If you refute an inequality then prove or

refute each of the corresponding inclusions.

1. (A × B) ∪ (C × D) = (A ∪ C)× (B ∪ D),

2. (A × B) ∩ (C × D) = (A ∩ C)× (B ∩ D),

3. A × (B \ C) = (A × B) \ (A × C),

4. (A \ B)× (C \ D) = [(A × C) \ (B × C)] \ A × D,

5. (A \ B)× (C \ D) = (A \ C)× (B \ D),

6. (A 6= ∅ ∧ B 6= ∅) =⇒ [(A ⊆ C ∧ B 6= ∅) ⇐⇒ A × B ⊆ C × D].

Exercise 2.11. Prove.

1. (
⋃

B) ∩ A =
⋃

{C ∩ A : C ∈ B},

2. (
⋂

B) ∪ A =
⋂

{C ∪ A : C ∈ B},

3. (
⋃

B) ∪ A =
⋃

{C ∪ A : C ∈ B},

4. (
⋂

B) ∩ A =
⋂

{C ∩ A : C ∈ B}.

2.1 Domain, Range, Field of a Relation

From now on, we let R, S, and T (with or without subscripts) stand for

relations.

Definition 2.12.

xRy
defn.
⇐⇒ (x, y) ∈ R.

The domain of R, or dom(R), and the range of R, or rng(R), are closely

related to each other, and their union is the field of R, or fld(R).

Definition 2.13 (Domain).

dom(R) := {x : ∃y (xRy)} .
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Definition 2.14 (Range).

rng(R) := {y : ∃x (xRy)} .

Definition 2.15 (Field).

fld(R) := dom(R) ∪ rng(R).

It follows that.

Theorem 2.16. 1. x ∈ dom(R) ⇐⇒ ∃y (xRy),

2. y ∈ rng(R) ⇐⇒ ∃x (xRy),

3. z ∈ fld(R) ⇐⇒ ∃w (wRz ∨ zRw).

Proof. Exercise.

The operations of domain, range, and field are monotonic.

Theorem 2.17. 1. R ⊆ S =⇒ dom(R) ⊆ dom(S),

2. R ⊆ S =⇒ rng(R) ⊆ rng(S),

3. R ⊆ S =⇒ fld(R) ⊆ fld(S).

Proof of 1. Assume R ⊆ S.

z ∈ dom(R) =⇒ ∃y [zRy] 2.15

=⇒ ∃y [(z, y) ∈ R] 2.12

=⇒ ∃y [(z, y) ∈ S] Ass

=⇒ ∃y [zSy]

=⇒ z ∈ dom(S). 2.15

Thus dom(R) ⊆ dom(S).

Proof of 2. Assume R ⊆ S.

z ∈ rng(R) ⊆ rng(S)

=⇒ ∃x [xRz] 2.15

=⇒ ∃x [(x, z) ∈ R] 2.12

=⇒ ∃x [(x, z) ∈ S] Ass

=⇒ ∃x [xSz] 2.12

=⇒ z ∈ rng(S).

Thus dom(R) ⊆ dom(S).
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Proof of 3. Exercise.

We next introduce R|A, the restriction of the relation R to A:

Definition 2.18 (Restriction).

R|A := R ∩ (A × rng(R)) .

Theorem 2.19. Restriction is monotonic:

1. A ⊆ B =⇒ R|A ⊆ R|B,

2. R ⊆ S =⇒ R|A ⊆ S|A.

Proof of 1. Assume A ⊆ B.

z ∈ R|A

=⇒ z ∈ R ∩ (A × rng(R)) 2.18

=⇒ z ∈ R ∧ ∃x ∃y [x ∈ A ∧ y ∈ rng(R) ∧ z = (x, y)] 2.6

=⇒ z ∈ R ∧ ∃x ∃y [x ∈ B ∧ y ∈ rng(R) ∧ z = (x, y)] Ass

=⇒ z ∈ R|B. 2.18

Thus R|A ⊆ R|B by Theorem 1.4.

Proof of 2. Assume R ⊆ S.

z ∈ R|A

=⇒ z ∈ R ∩ A × rng(R) 2.18

=⇒ z ∈ S ∩ A × rng(R) Ass

=⇒ z ∈ S ∧ z ∈ A × rng(R) 1.38

=⇒ z ∈ S

∧ ∃x ∃y [x ∈ a ∧ y ∈ rng(R) ∧ z = (x, y)] 2.6

=⇒ z ∈ S

∧ ∃x ∃y [x ∈ a ∧ y ∈ rng(S) ∧ z = (x, y)] Ass, ??

=⇒ z ∈ S|A. 2.18

Thus R|A ⊆ S|A by Theorem 1.4.

Theorem 2.20. R|A is a relation.

Proof.

z ∈ R|A
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=⇒ z ∈ R ∧ z ∈ A × rng(R) 2.18

=⇒ ∃x ∃y [z = (x, y)] ∧ z ∈ A × rng(R) 2.1

=⇒ ∃x ∃y [z = (x, y)].

Thus R|A is a relation by Definition 2.1.

Closely related with the range of a relation R is R[A], the image of A

under R:

Definition 2.21 (Image).

R[A] := rng(R|A)

Theorem 2.22.

y ∈ R[A] ⇐⇒ ∃x [x ∈ A ∧ xRy].

Proof. Exercise.

Theorem 2.23. The operation of image is monotonic.

A ⊆ B =⇒ R[A] ⊆ R[B].

Proof. Assume A ⊆ B.

z ∈ R[A]

=⇒ ∃x [xRz ∧ x ∈ A] 2.22

=⇒ ∃x [xRz ∧ x ∈ B] Ass

=⇒ z ∈ R[B]. 2.22

Thus R[A] ⊆ R[B] by Theorem 1.4.

Theorem 2.24. Image is preserved by union:

1. R[A ∪ B] = R[A] ∪ R[B],

2. R[
⋃

A] =
⋃

{R[C] ∈ A},

3. R[A ∩ B] ⊆ R[A] ∩ R[B],

4. R[A] \ R[B] ⊆ R[A \ B].

Proof. Exercise.

Exercise 2.25. Prove or refute

1. R[A] ∩ R[B] ⊆ R[A ∩ B],
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2. R[A \ B] ⊆ R[A] \ R[B].

Theorem 2.26. R = S ⇐⇒ ∀x ∀y [xRy ⇐⇒ xSy].

Proof of =⇒ . Assume R = S.

xRy ⇐⇒ (x, y) ∈ R 2.1

⇐⇒ (x, y) ∈ S Ass

⇐⇒ xSy. 2.1

Proof of ⇐= .

∀x ∀y [xRy ⇐⇒ xSy]

=⇒ ∀x ∀y [(x, y) ∈ R ⇐⇒ (x, y) ∈ S] 2.12

=⇒ R = S. Axiom 1

Exercise 2.27. Prove or refute

R = A ⇐⇒ ∀x ∀y [(x, y) ∈ R ⇐⇒ (x, y) ∈ A].

2.2 Converse and Relative Product

We next define R̆, the converse of the relation R. The converse of a

relation is a generalization of the inverse of a function. To define R̆, we

use Definition 1.68 with the term t(x, y) equal to the ordered pair (x, y).

Definition 2.28 (Converse).

R̆ := {(x, y) : yRx} .

Theorem 2.29. 1. xR̆y ⇐⇒ yRx,

2. R̆ is a relation.

Proof. Exercise.

The relative product of R/S of the relations R and S is a generalization

of the composition of two functions. Please note that in the relative

product R/S, the slash / is at an angle, not vertical.
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Definition 2.30 (Relative Product).

R/S := {(x, y) : ∃z [xRz ∧ zSy]} .

Here Definition 1.68 was used once more with t(x, y) as the ordered

pair (x, y).

Theorem 2.31.

xR/Sy ⇐⇒ ∃z [xRz ∧ zSy].

Exercise 2.32. R/S is a relation.

Theorem 2.33. 1. dom(R/S) ⊆ dom(R),

2. rng(R/S) ⊆ rng(S).

Proof of 1.

x ∈ dom(R/S)

=⇒ ∃y (xR/Sy) 2.16

=⇒ ∃y ∃z (xRz ∧ zSy) 2.31

=⇒ ∃z (xRz)

=⇒ x ∈ dom(R) 2.16

Thus dom(R/S) ⊆ dom(R) by 1.4.

Proof of 2.

y ∈ rng(R/S)

=⇒ ∃x (xR/Sy) 2.16

=⇒ ∃x ∃z (xRz ∧ zSy) 2.31

=⇒ ∃z (zSy)

=⇒ y ∈ rng(S) 2.16

Thus rng(R/S) ⊆ rng(S) by 1.4.

The relative product is associative:

Theorem 2.34. (R/S)/T = R/(S/T).

Proof.

(x, y) ∈ (R/S)/T

⇐⇒ x (R/S)/T y 2.12
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⇐⇒ ∃z0 (xR/Sz0 ∧ z0Ty) 2.31

⇐⇒ ∃z0 ∃z1 (xRz1 ∧ z1Sz0 ∧ z0Ty) 2.31

⇐⇒ ∃z1 (xRz1 ∧ z1S/Ty) 2.31

⇐⇒ xR/(S/T)y 2.31

⇐⇒ (x, y) ∈ R/(S/T). 2.12

Thus (R/S)/T = R/(S/T) by Axiom 1.

Theorem 2.35. ˘R/S = S̆/R̆.

Proof.

(x, y) ∈ ˘R/S ⇐⇒ x ˘R/Sy 2.12

⇐⇒ xR/Sx 2.29

⇐⇒ ∃z (yRz ∧ zSx) 2.31

⇐⇒ ∃z (xS̆z ∧ zR̆y) 2.31

⇐⇒ (x, y) ∈ S̆/R̆ 2.12.

By Axiom 1 ˘R/S = S̆/R̆.

Theorem 2.36. ˘̆R = R

Proof.

(x, y) ∈ ˘̆R ⇐⇒ x ˘̆Ry 2.12

⇐⇒ yR̆x 2.29

⇐⇒ xRy 2.29

⇐⇒ (x, y) ∈ R. 2.12

Theorem 2.37. 1. dom(R̆) = rng(R),

2. rng(R̆) = dom(R).

Proof of 1.

y ∈ dom(R̆) ⇐⇒ ∃x (yR̆x) 2.16

⇐⇒ ∃x (xRy) 2.29

⇐⇒ y ∈ rng(R). 2.16

Thus dom(R̆) = rng(R) by Axiom 1.
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Proof of 2.

x ∈ rng(R̆) ⇐⇒ ∃y (yR̆x) 2.16

⇐⇒ ∃y (xRy) 2.29

⇐⇒ x ∈ dom(R). 2.16

Thus rng(R̆) = dom(R) by Axiom 1.

Theorem 2.38. rng(R) = dom(S) =⇒ dom(R) = dom(R/S)

Proof. Assume rng(R) = dom(S) which implies

∀z (∃x (xRz) ⇐⇒ ∃y (zSy)).

We have from 2.17 that dom(R/S) ⊆ dom(R) so it suffices to show

dom(R) ⊆ dom(R/S) to get equality.

x ∈ dom(R)

=⇒ ∃z (xRz) 2.16

=⇒ ∃z ∃x (xRz)

=⇒ ∃z ∃y (zSy)

Theorem 2.39. rng(R) = dom(S) =⇒ rng(S) = rng(R/S)

Proof.

Theorem 2.40.

A ⊆ dom(R) =⇒ A ⊆ R̆[R[A]].

Proof. Assume A ⊆ dom(R).

x ∈ A =⇒ x ∈ A ∧ x ∈ dom(R) Ass

=⇒ x ∈ A ∧ ∃y (xRy) 2.16

=⇒ ∃y (x ∈ A ∧ xRy)

=⇒ ∃y ∃a (a ∈ A ∧ aRy ∧ xRy)

=⇒ ∃y (y ∈ R[A] ∧ yR̆x) 2.29, 2.22

=⇒ x ∈ R̆[R[A]]. 2.29
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2.3 One-to-One Relations and Functions

A relation R may be one-one, written 1-1, even if R is not a function:

Definition 2.41 (1-1). R is 1-1 when

∀x ∀y ∀z [xRz ∧ yRz =⇒ x = y].

Theorem 2.42.

(R is 1-1 ∧ S ⊆ R) =⇒ S is 1-1.

Theorem 2.43. Let R be 1-1 and S be 1-1, then

1. R ∩ S is 1-1,

2. R \ S is 1-1,

3. R/S is 1-1,

Theorem 2.44. rng(R) ∩ rng(S) = ∅ =⇒ R ∪ S is 1-1.

Proof. Assume the premise and, towards a contradiction, that R ∪ S is

not 1-1.

∃z (xRz ∧ ySz ∧ x 6= y) 2.41

=⇒ ∃z (z ∈ rng(R) ∧ z ∈ rng(S)) 2.16

=⇒ rng(R) ∩ rng(S) 6= ∅ 1.38

Exercise 2.45. Find R and S such that R is 1-1 and S is 1-1 but rng(R) ∩

rng(S) 6= ∅ and R ∪ S is not 1-1.

Answer. Let R = {(x, z)} and S = {(y, z)}. Notice rng(R) = {z} =

rng(S) so rng(R) 6= rng(S) but R ∪ S = {(x, y), (y, z)} is not 1-1 because

x 6= y ∧ xRz ∧ yRz.

Theorem 2.46.

R is 1-1 ⇐⇒ ∀A (R̆[R[A]] ⊆ A).

Proof of =⇒ . Assume R is 1-1 and let A be arbitrary

z ∈ R̆[R[A]] =⇒ ∃y (y ∈ R[A] ∧ yR̆z) 2.22

=⇒ ∃x ∃y (x ∈ A ∧ xRy ∧ zRy) 2.22, 2.29

=⇒ ∃y (z ∈ A ∧ zRy)
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=⇒ z ∈ A.

Thus R̆[R[A]] ⊆ A by 1.4.

Proof of ⇐= . Exercise.

Theorem 2.47.

R is 1-1 ⇐⇒ ∀A ∀B (R[A]∩ R[B] ⊆ R[A ∩ B]).

Proof of =⇒ . Assume R is 1-1 and let A and B be arbitrary.

z ∈ R[A] ∩ R[B]

=⇒ ∃a (a ∈ A ∧ aRz) ∧ ∃b (b ∈ B ∧ bRz) 1.38

=⇒ ∃a ∃b (a ∈ A ∧ aRz ∧ b ∈ B ∧ bRz)

aRz ∧ bRz =⇒ a = b by assumption

=⇒ ∃a (a ∈ A ∧ a ∈ B ∧ aRz)

=⇒ ∃a (a ∈ A ∩ B ∧ aRz) 1.38

=⇒ z ∈ R[A ∩ B]. 2.22

Thus R[A] ∩ R[B] ⊆ R[A ∩ B].

Proof of ⇐= . Exercise.

Theorem 2.48.

A ⊆ dom(R) ∧ R is 1-1 =⇒ R̆[R[A]] = A.

Proof of ⊆. Assume the premise.

z ∈ R̆[R[A]] =⇒ ∃y (y ∈ R[A] ∧ yR̆z) 2.22

=⇒ ∃x ∃y (x ∈ A ∧ xRy ∧ zRy) 2.22, 2.29

xRy ∧ zRy =⇒ x = z by assumption

∃y (z ∈ A ∧ zRy)

=⇒ z ∈ A.

Thus R̆[R[A]] ⊆ A by 1.4.

Proof of ⊇. Assume the premise.

z ∈ A =⇒ z ∈ dom(R) ∧ z ∈ A

=⇒ ∃y (xRy ∧ z ∈ A) 2.16
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=⇒ ∃x ∃y (x ∈ A ∧ xRy ∧ zRy)

=⇒ ∃y (y ∈ R[A] ∧ yR̆z) 2.22, 2.29

=⇒ z ∈ R̆[R[A]] 2.22

Thus A ⊆ R̆[R[A]] by 1.4.

Theorem 2.49.

R is 1-1 =⇒ R[A ∩ B] = R[A] ∩ R[B].

Proof. Assume R is 1-1.

z ∈ R[A ∩ B] ⇐⇒ ∃y (y ∈ A ∩ B ∧ yRz) 2.22

⇐⇒ ∃y (y ∈ A ∧ y ∈ B ∧ yRz ∧ yRz) 1.38

⇐⇒ z ∈ R[A] ∧ z ∈ R[B] 2.22

⇐⇒ z ∈ R[A] ∩ R[B] 1.38

Thus R[A ∩ B] = R[A] ∩ R[B] by Axiom 1.

Theorem 2.50.

R is 1-1 =⇒ R[A] \ R[B] = R[A \ B].

Proof of ⊆. Assume R is 1-1.

z ∈ R[A] \ R[B]

=⇒ z ∈ R[A] ∧ z 6∈ R[B] 1.43

=⇒ ∃a (a ∈ A ∧ aRz) ∧ ¬∃b (b ∈ B ∧ bRz) 2.22

=⇒ ∃a (a ∈ A ∧ aRz) ∧ ∀b (b 6∈ B ∨ ¬bRz)

=⇒ ∃a (a ∈ A ∧ aRz) ∧ ∀b (b ∈ B =⇒ ¬bRz)

=⇒ ∃a (a ∈ A ∧ a 6∈ B ∧ aRz)

=⇒ ∃a (a ∈ A \ B ∧ aRz) 1.43

=⇒ z ∈ R[A \ B]. 2.22

Thus R[A] \ R[B] ⊆ R[A \ B] by 1.4.

Proof of ⊇. Bounty.

Next we define the usual functional notation y = f (x), but we do

it more generally for any relation R: y = R(x). Notice that whenever
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∃y ∃z [xRy ∧ xRz ∧ y 6= z], then R(x) collapses to the empty set. Like-

wise, if ¬∃y [xRy], then R(x) collapses to the empty set. We need such a

collapse to ensure that R(x) is well-defined for every x.

Definition 2.51.

y = R(x)
defn.
⇐⇒

(∃!z [xRz] ∧ xRy) ∨ (¬∃!z [xRz] ∧ y = ∅) .

We define a function to be a relation R such that R̆ is 1-1.

Definition 2.52.

R is a function
defn.
⇐⇒ R̆ is 1-1.

From Definition 2.52 of function, we easily derive the following more

familiar description of what it means to be a function:

Theorem 2.53. R is a function if and only if

∀x ∀y ∀z (xRy ∧ xRz =⇒ y = z).

Proof of =⇒ . Let x, y, and z be arbitrary.

xRy ∧ xRz

=⇒ yR̆x ∧ zR̆x 2.29

=⇒ y = z. Ass, 2.41

Proof of ⇐= .

We then prove:

Theorem 2.54. R is a function if and only if

∀x ∀y (xRy =⇒ y = R(x)).

Theorem 2.55.

R is a function ∧ S ⊆ R ⇐⇒ S is a function.

From now on, we let f , g, h and F, G, H (with or without subscripts)

stand for functions.

Theorem 2.56. The following are functions
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1. F ∩ G,

2. F \ G,

3. F/G,

4. F|A.

Theorem 2.57.

dom(F) ∩ dom(G) = ∅ =⇒ F ∪ G is a function.

Proof. Assume F ∪ G is not a function. There exists x, y, z such that

y 6= z ∧ xF ∪ Gy ∧ xF ∪ Gz 2.53

=⇒ y 6= z ∧ (xFy ∨ xGy) ∧ (xFz ∨ xGz)

=⇒ (y 6= z ∧ xFy ∧ xFz)

∨ (y 6= z ∧ xFy ∧ xGz)

∨ (y 6= z ∧ xGy ∧ xFz)

∨ (y 6= z ∧ xGy ∧ xGz)

=⇒ ⊥ ∨ (y 6= z ∧ xFy ∧ xGz)

∨ (y 6= z ∧ xGy ∧ xFz) ∨ ⊥ 2.53

=⇒ (x ∈ dom(F) ∧ x ∈ dom(G))

∨ (x ∈ dom(G) ∧ x ∈ dom(F)) 2.16

=⇒ x ∈ dom(F) ∩ dom(G) 1.38

Thus

¬(F ∪ G a function) =⇒ ¬(dom(F) ∩ dom(G) = ∅)

and the result follows from the contraposition.

Theorem 2.58.

f̆ [A ∩ B] = f̆ [A] ∩ f̆ [B].

Proof of ⊆.

z ∈ f̆ [A ∩ B]

=⇒ ∃y (y ∈ A ∩ B ∧ z f̆ y) 2.22

=⇒ ∃y (y ∈ A ∧ y ∈ B ∧ z f̆ y) 1.38

=⇒ ∃y (y ∈ A ∧ z f̆ y ∧ y ∈ B ∧ z f̆ y)

=⇒ z ∈ f̆ [A] ∧ z ∈ f̆ [B] 2.22
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=⇒ z ∈ f̆ [A] ∩ f̆ [B]. 1.38

Thus f̆ [A ∩ B] ⊆ f̆ [A] ∩ f̆ [B] by 1.4.

Proof of ⊇.

z ∈ f̆ [A] ∩ f̆ [B]

=⇒ z ∈ f̆ [A] ∧ z ∈ f̆ [B] 1.38

=⇒ ∃y0 (y0 ∈ A ∧ y0 f̆ z) ∧ ∃y1 (y1 ∈ B ∧ y1 f̆ z) 2.22

=⇒ ∃y0 ∃y1 (y0 ∈ A ∧ y1 ∈ B ∧ y0 f̆ z ∧ y1 f̆ z)

f̆ is 1-1 by assumption implying y0 = y1 = y

=⇒ ∃y (y ∈ A ∩ B ∧ y f̆ z) 1.38

=⇒ z ∈ f̆ [A ∩ B] 2.22

Thus f̆ [A] ∩ f̆ [B] ⊆ f̆ [A ∩ B] by 1.4.

Theorem 2.59.

f̆ [A] \ f̆ [B] = f̆ [A \ B].

Exercise 2.60. Prove or refute

1. f [
⋃

A] =
⋃

f [A],

2. f [
⋂

A] =
⋂

{ f [B] : B ∈ A},

3. f [A ∩ B] = f [A] ∩ f [B],

4. f [A] \ f [B] = f [A \ B],

5. f̆ [
⋂

A] =
⋂

{

f̆ [B] : B ∈ A
}

.

Theorem 2.61.

f [ f̆ [B]] ⊆ B.

Proof.

z ∈ f [ f̆ [B]] =⇒ ∃y (y ∈ f̆ [B] ∧ y f z) 2.22

=⇒ ∃y ∃b (b ∈ B ∧ b f̆ y ∧ y f z) 2.22

=⇒ ∃y ∃b (b ∈ B ∧ b f̆ y ∧ z f̆ y) 2.29

f̆ is 1-1 implies z = b

=⇒ ∃y (z ∈ B ∧ z f y)

=⇒ z ∈ B.

Thus f [ f̆ [B]] ⊆ B by 1.4.
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Theorem 2.62.

f̆ [B] = {x : f (x) ∈ B ∧ x ∈ dom( f )} .

Theorem 2.63. If f is 1-1, then f̆ is a 1-1 function.

We will find it useful to have the notation f : A → B when dom( f ) =

A and rng( f ) ⊆ B.

Definition 2.64.

f : A → B
defn.
⇐⇒ [dom( f ) = A ∧ rng( f ) ⊆ B] .

Definition 2.65. Suppose that f : A → B.

1. f is said to be surjective, or to be onto B, if rng( f ) = B,

2. f is injective if f is 1-1,

3. f is bijective if f is both injective and surjective.

Theorem 2.66. If f : A → B is bijective, then f̆ : B → A is bijective.

Proof. Assume that f : A → B is bijective. We have f̆ is 1-1 by virtue of

the fact f is a function.

z ∈ rng( f̆ ) ⇐⇒ ∃y (y f̆ z) 2.16

⇐⇒ ∃y (z f y) 2.29

⇐⇒ z ∈ dom( f ) 2.16

⇐⇒ z ∈ A.

Thus rng( f̆ ) = A and thereby f̆ : B → A is bijective by 2.65.

The composite function f ◦ g is obtained by applying first the function

g and then the function f . Notice that the order of the functional no-

tation f ◦ g is reversed from that of the relative product g/ f of f and

g:

Definition 2.67.

f ◦ g = g/ f .

Theorem 2.68.

f ◦ g is a function.
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Proof. Suppose, towards a contradiction, that ˘f ◦ g is not 1-1, then there

is x, y, and z

x ˘f ◦ g z ∧ y ˘f ◦ g z ∧ x 6= y 2.41

=⇒ x ˘g/ f z ∧ y ˘g/ f z ∧ x 6= y 2.67

=⇒ x f̆ /ğz ∧ y f̆ /ğz ∧ x 6= y 2.35

=⇒ ∃a (x f̆ a ∧ ağz) ∧ ∃b (y f̆ b ∧ bğz) ∧ x 6= y

=⇒ ∃a ∃b (x f̆ a ∧ y f̆ b ∧ ağz ∧ bğz ∧ x 6= y)

Notice ağz ∧ bğz =⇒ a = b as ğ is 1-1.

=⇒ ∃a (x f̆ a ∧ y f̆ a ∧ x 6= y)

=⇒ (x = y) ∧ (x 6= y) .

Therefore ˘f ◦ g is 1-1 =⇒ f ◦ g is a function.

Theorem 2.69.

x ∈ dom( f ◦ g) =⇒ f ◦ g(x) = f (g(x)).

Theorem 2.70. 1. If f is 1-1 and g is 1-1, then f ◦ g is 1-1.

2. If g : A → B is surjective and f : B → C is surjective, then f ◦ g :

A → C is surjective.

3. If g : A → B is bijective and f : B → C is bijective, then f ◦ g : A →

C is bijective.

Proof of 1. Suppose the premise and, towards a contradiction, that ∃x∃y∃z

such that

x f ◦ gz ∧ y f ◦ gz ∧ x 6= y

=⇒ ∃a∃b : (xga ∧ a f z) ∧ (ygb ∧ b f z)

f is injective =⇒ a = b

=⇒ ∃a : xga ∧ a f z ∧ yga ∧ a f z

g is injective =⇒ x = y

=⇒ x = y ∧ x 6= y 

Proof of 2. Exercise.

Proof of 3. By part 1 and 2 we have f ◦ g is injective and surjective (re-

spectively). Thus, by Definition ??, is bijective.
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We next define the identity relation on A, and write it as IdA:

Definition 2.71.

IdA := {(a, a) : a ∈ A} .

Theorem 2.72. Let f : A → B and g : B → A.

1. g ◦ f = IdA =⇒ f is injective,

2. f ◦ g = IdB =⇒ f is surjective.

Proof of 1. Suppose a0, a1 ∈ dom( f ) and

a0 f z ∧ a1 f z

=⇒ zga0 ∧ zga1 Lemma

=⇒ a0 = a1 g is a function.

Lemma 2.73. a f z =⇒ zga.

Notice

a ∈ dom( f ) = A =⇒ ∃b ∈ rng( f ) = B : a f b

and

b ∈ rng( f ) ⊆ B =⇒ b ∈ dom(g) =⇒ ∃a′ ∈ A : bga.

Thus

a ∈ dom( f ) =⇒ ∃b ∈ b∃a′ ∈ A : a f b ∧ bga′

=⇒ (a, a′) ∈ g ◦ f = IdA

=⇒ a = a′.

Therefore a f b =⇒ bga.

Proof of 2. Exericse.

To conclude this section, we introduce B A, the set of all functions f

with f : B → A.

Definition 2.74 (Set of all functions).

B A := { f : dom f = B ∧ rng f ⊆ A} .

Theorem 2.75.

f ∈ B A ⇐⇒ ( f : B → A).
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Theorem 2.76.

A ⊆ B =⇒ C A ⊆ CB.

Proof. Assume A ⊆ B.

f ∈ C Aq =⇒ dom f = C ∧ rng f ⊆ A

=⇒ dom f = C ∧ rng f ⊆ B Assumption

=⇒ f ∈ CB.

Thus CB ⊆ C A.

Theorem 2.77. 1. ∅A = {∅},

2. A 6= ∅ =⇒ A
∅ = ∅,

3. B A = ∅ ⇐⇒ (A = ∅ ∧ B 6= ∅).

Proof of 1. f ∈ ∅A ⇐⇒ f ⊆ ∅× A ⇐⇒ f ⊆ ∅ ⇐⇒ f = ∅.

Proof of 2. f ∈ A
∅ =⇒ dom( f ) = A 6= ∅ ∧ rng( f ) = ∅ and thereby

dom( f ) 6= ∅ =⇒ ∃x ∈ dom( f )

=⇒ ∃y : xRy

=⇒ y ∈ rng( f ) = ∅ 

Thus ∀ f ( f 6∈ A
∅) =⇒ A

∅ = ∅

Proof of 3. Exercise.

2.4 Partial Orders and Strict Partial Orders

We wish to draw the reader’s attention to the certain particularly useful

kinds of relations. To do so, we first need to introduce various properties

of relations:

Definition 2.78 (Reflexive). R is reflexive when

∀x [x ∈ fld(R) =⇒ xRx].

Definition 2.79 (Irreflexive). R is irreflexive when

∀x [x ∈ fld(R) =⇒ ¬(xRx)].
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Definition 2.80 (Transitive). R is transitive when

∀x ∀y ∀z [(x, y, z ∈ fld(R) ∧ xRy ∧ yRz) =⇒ xRz].

Definition 2.81 (Symmetric). R is symmetric when

∀x ∀y [(x, y ∈ fld(R) ∧ xRy) =⇒ yRx].

Definition 2.82 (Asymmetric). R is asymmetric when

∀x ∀y [(x, y ∈ fld(R) ∧ xRy) =⇒ ¬(yRx)].

Definition 2.83 (Antisymmetric). R is antisymmetric when

∀x ∀y [(x, y ∈ fld(R) ∧ xRy ∧ yRx) =⇒ x = y].

Now we can define “partial order” and “strict partial order”:

Definition 2.84 (Partial Order). R is a partial order when R is antisym-

metric, reflexive, and transitive.

Definition 2.85 (Strict Partial Order). R is a strict partial order when R is

irreflexive and transitive.

Theorem 2.86. R is a strict partial order when R is asymmetric and

transitive.

⇐= . Is trivial as asymmetry implies irreflexivity:

(xRy =⇒ ¬yRx) =⇒ (xRx =⇒ ¬xRx) =⇒ (¬xRx).

=⇒ . Assume R is irreflexive and transitive. For any x and y we have

xRy ∧ yRx =⇒ xRx =⇒ ⊥.

Thus ∀x∀y (¬xRy ∨ ¬yRx) or equivalently

xRy =⇒ ¬yRx

implying R is asymmetric.

The usual ≤ relation on the real numbers is a partial order, and so is

the usual ≥. The usual < on the real numbers is a strict partial order,

and so is the usual >.
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We now give examples in terms of ⊆, ⊂, and ∈.

Definition 2.87. 1. ⊆A:= {(x, y) : x, y ∈ A ∧ x ⊆ y},

2. ⊂A:= {(x, y) : x, y ∈ A ∧ x ⊂ y},

3. ∈A := {(x, y) : x, y ∈ A ∧ x ∈ y}.

Definition 2.88. 1. R is a partial order on A when R ∩ (A × A) is a

partial order,

2. R is a strict partial order on A when R ∩ (A × A) is a strict partial

order.

Theorem 2.89. 1. ⊆A is a partial order on A,

2. ⊂A is a strict partial order on A.

Proof of 1. We need to show ⊆A is antisymmetric, reflexive and transi-

tive.

Antisymetric:

x ⊆A y ∧ y ⊆A x =⇒ x, y ∈ A ∧ x ⊆ y ∧ y ⊆ x =⇒ x = y.

Reflexive:

x ∈ A ∧ x = x =⇒ x ∈ A ∧ x ⊆ x =⇒ x ⊆A x.

Transitive:

x ⊆ y ∧ y ⊆ z =⇒ x ⊆ z =⇒ x ⊆A z.

The result follows.

Proof of 2. Exercise.

Exercise 2.90. 1. ⊆ is not a relation,

2. ⊂ is not a relation,

3. ∈ is not a relation.

Theorem 2.91. 1. If R is a strict partial order on A, then R ∪ IdA is a

partial order on A,

2. If R is a partial order on A, then R \ IdA is a strict partial order on

A.
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Proof of 1. By assumption R is irreflexive and transitive. We need to

show R ∪ IdA is reflexive, transitive, and antisymmetric.

Reflexive:

a ∈ A =⇒ (a, a) ∈ IdA =⇒ (a, a) ∈ R ∪ IdA.

Transitive:

xR ∪ IdAy ∧ yR ∪ IdAz

=⇒ (xRy ∨ xIdAy) ∧ (yRz ∨ yIdAz)

=⇒ (xRy ∧ yRz) ∨ (xIdAy ∧ yIdAz)

∨ (xRy ∧ yIdAz) ∨ (xIdAy ∧ yRz)

=⇒ (xRz) ∨ (x = z) Assumption

=⇒ xR ∪ IdAz.

Antisymmetric: Towards a contradiction suppose

xR ∪ IdAy ∧ yR ∪ IdAx ∧ x 6= y

=⇒ (xRy ∧ yRx) ∨ (xRy ∧ yIdAx)

∨ (xIdAy ∧ yRx) ∨ (xIdAy ∧ yIdAx)

=⇒ xRy ∧ yRx

=⇒ xRx Assumption

Proof of 2. Exercise.

It will be useful to have the concept of “smallest” or “least” element

of a set A in regard to a relation R:

Definition 2.92 (R-smallest). x is an R-smallest element (or R-first element,

or R-least element) of A when

x ∈ A ∧ ∀y (y ∈ A =⇒ (xRy ∨ x = y)).

Because ∈ is not a relation, we cannot use ∈ in place of R in Defini-

tion . So we need the following Definition:

Definition 2.93 (∈-smallest). x is an ∈-smallest (or ∈-least) element of A

if and only if x is an ∈A-least element of A.

We need one last property of relations, namely connectedness in order

to define what we mean by an order and a well-order.
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Definition 2.94 (Connected). R is connected when

∀x ∀y [x, y ∈ fld(R) =⇒ (xRy ∨ yRx ∨ x = y)].

Definition 2.95 (Order). R is an order (or an ordering) if and only if R is a

partial order and R is connected.

Definition 2.96 (Strict Order). R is a strict order if and only if R is a strict

partial order and R is connected.

Definition 2.97 (Well-order). R is a well-order (or a well-ordering) if and

only if R is a strict order and

∀B [B ⊆ fld(R) ∧ B 6= ∅ =⇒ ∃x (x is an R-least element ofB)].

Once more, because ∈ is not a relation, we cannot use ∈ in place of

R in Definition 2.97 and 2.98. Se we need the following definition:

Definition 2.98 (∈ Well-orders). ∈ well-orders A when ∈A well-orders A.

We now introduce the natural numbers as sets which are well-ordered

by ∈.



3 The Natural Numbers

The natural numbers 0, 1, 2, . . . are usually axiomized, and character-

ized, by the following five axioms. They are called the Peano Postulates,

after the Italian mathematician Giuseppe Peano who invtented them

about 1890:

P1 0 is a natural number,

P2 the successor of a natural number is a natural number,

P3 if the successor of x equals the successor of y, then x = y,

P4 there is no natural number x such that 0 is the successor of x,

P5 if 0 has the property ψ and, for any natural number x, if x has ψ,

then the successor of x has ψ, then every natural number has ψ.

Since set theory is the foundation for mathematics, we wish to con-

struct a set, to be called ω or omega (the last letter in the Greek alphabet),

that satisfies the Peano Postulates.

Definition 3.1 (Sucessor). suc(A) is the successor of the set A when

suc(A) := A ∪ {A} .

Definition 3.2 (Inductive). A is inductive when it contains the empty set

and is closed under the operation of successor:

∅ ∈ A ∧ ∀y (y ∈ A =⇒ suc(y) ∈ A).

We are now in a position to define the concept of natural number.

Definition 3.3 (Natural Number). Let ω denote the set of natural num-

bers, then

ω = {x : ∀B (B is inductive =⇒ x ∈ B)} .

48
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Definition 3.4. Let the following serve a short-hands for natural num-

bers:

0 = ∅

1 = suc(0)

2 = suc(1)

...

From now on, we let k, m, n (with and without subscripts) stand for

natural numbers.

Let us now show that our natural numbers satisfy the Peano Postu-

lates.

Theorem 3.5 (P1). 0 is a natural number.

0 ∈ ω.

Proof. By definition every inductive set contains the empty set ∅. Thus,

also by definition, ∅ = 0 is a natural number.

Theorem 3.6 (P2). If x is a natural number then its successor is a natural

number

x ∈ ω =⇒ suc(x) ∈ ω.

Proof. If x is a natural number this means x ∈ A for every inductive set

A. By definition then, suc(x) ∈ A for every inductive set A.

We defer P3 until later and turn to considering P4:

Theorem 3.7 (P4). There is no natural number x such that 0 = suc(x).

Proof. Suppose towards a contradiction that ∃x : 0 = suc(x). Then

0 = suc(x) =⇒ ∅ = x ∪ {x}

=⇒ x 6∈ x ∪ {x}

=⇒ x 6= x.  

On the basis of our axioms thus far, there might not exist any induc-

tive set. In that case, every set would be a natural number, and P5 would

be false for natural numbers. So our next step is to assume the existence

of an inductive set:
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Axiom 6 (Infinity). ∃A (A is inductive).

This assumption is called the Axiom of Infinity because it gives us a

set A that will turn out to be infinite. Using only the axioms assumed

before A6, we cannot prove that there exists an infinite set. Of course,

we have not yet defined precisely what we mean by an infinite (or a

finite) set, but we will do so soon.

Definition 3.8.

ω := {x : x ∈ ω} .

Our next goal is to prove that ω, or “omega”, is not the empty set.

Theorem 3.9.

x ∈ ω ⇐⇒ x ∈ N.

We now show ω satisfies P5.

Theorem 3.10. Let B ⊆ ω then

[0 ∈ B ∧ ∀n (n ∈ B =⇒ suc(n) ∈ B)] =⇒ B = ω.

Theorem 3.11 (The Principle of Mathematical Induction). Let ψ(x) be

any formula of set theory, then

[ψ(0) ∧ ∀n (ψ(n) =⇒ ψ(suc(n)))] =⇒ ∀n [ψ(n)].

Our next development is oriented toward showing that ω satisfies

P3:

Definition 3.12 (∈-transitive). B is ∈-transitive when

∀x (x ∈ B =⇒ x ⊆ B).

Theorem 3.13. ∀n ∈ ω; n is ∈-transitive.

Proof. Let ψ(x) ⇐⇒ x is ∈-transitive.

Base:
ψ(0) ⇐⇒ 0 is ∈-transitive

⇐⇒ ∀x (x ∈ ∅ =⇒ x ⊆ ∅)

⇐⇒ ∀x (⊥ =⇒ x ⊆ ∅)

⇐⇒ ⊤.

Induction hypothesis: Assume n is ∈-transitive.
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Notice x ∈ suc(n) =⇒ x ∈ n ∪ {n} =⇒ x ∈ n ∨ x = n and

x ∈ n
IH
=⇒ x ⊆ n and x = n =⇒ x ⊆ n ∪ {n}. Thus, by the principle

of mathematical induction the result follows.

Theorem 3.14. ∀n ∈ ω; n 6∈ n.

Theorem 3.15.

∀n [B ⊆ n ∧ B 6= ∅ =⇒ ∃x (x is an ∈-least element of B)].

Proof. Let Φ(B, x) ⇐⇒ x is the ∈B-least element of B and

ψ(n) ⇐⇒ ∀n (B ⊆ n ∧ B 6= ∅ =⇒ ∃x Φ(B, x)).

Base:
ψ(0) ⇐⇒ ∀n (B ⊆ ∅ ∧ B 6= ∅ =⇒ ∃x Φ(B, x))

⇐⇒ ∀n (⊥ =⇒ ∃x Φ(B, x))

⇐⇒ ⊤.

Induction hypothesis: Assume ψ(n) ≡ ⊤.

Notice

B ⊆ suc(n) =⇒ B ⊆ n ∪ {n}

=⇒ ∀a (a ∈ B =⇒ a ∈ n ∨ a ∈ {n})

=⇒ ∀a (a ∈ B =⇒ a ∈ n ∨ a = n).

However, n 6∈ n by Theorem 3.14 so ¬(a ∈∧ a = n). Thus B ⊆ n or

(exclusively) B = {n} .

When B ⊆ n we have

ψ(n) =⇒ [B ⊆ n ∧ B 6= ∅
IH

=⇒ ∃x Φ(B, x)]

and when B = {n} we have

Φ(B, x) ⇐⇒ x ∈ {n} ∧ ∀y (y ∈ {n} =⇒ x ∈B y ∨ x = y)

⇐⇒ n ∈B n ∨ n = n

⇐⇒ ⊤.

Thus ψ(n) =⇒ ψ(suc(n)) and the result follows from the principle of

mathematical induction.
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Theorem 3.16 (ω satisfies P3).

suc(m) = suc(n) =⇒ m = n.

Proof. Assume suc(m) = suc(n), then

(a ∈ suc(m) ⇐⇒ a ∈ suc(n))

⇐⇒ (a ∈ m ∪ {m} ⇐⇒ a ∈ n ∪ {n})

⇐⇒ (a ∈ m ∨ a = m ⇐⇒ a ∈ n ∨ a = n)

⇐⇒ (a ∈ m ⇐⇒ a ∈ n) ∨ (a ∈ m ⇐⇒ a = n)

∨ (a = m ⇐⇒ a ∈ n) ∨ (a = m ⇐⇒ a = n)

⇐⇒ (m = n) ∨ (m = {n}) ∨ (n = {m}) ∨ (m = n).

Note

m = {n} =⇒ suc({n}) = suc(n)

n = {m} =⇒ suc({m}) = suc(m)

both contradict our assumption.

Thus we can conclude

suc(m) = suc(n) =⇒ m = n

and the result follows by the principle of mathematical induction.

Theorem 3.17.

n = 0 ∨ ∃m {n = suc(m)}.

Proof. Let ψ(n) ⇐⇒ n = 0 ∨ ∃m {n = suc(m)}.

Base:

ψ(0) ⇐⇒ 0 = 0 ∨ ∃m {n = suc(m)} ⇐⇒ ⊤.

Induction hypothesis: Assume ψ(n) ≡ ⊤.

ψ(n)
IH

=⇒ ∃m {n = suc(m) ∨ n = 0}

=⇒ ∃m {suc(n) = suc(suc(m))}

=⇒ ∃m′ {m′ = suc(m) ∧ suc(n) = suc(m′)}

=⇒ ψ(suc(n)).

Thus, by the principle of mathematical induction, the result follows.



53

Theorem 3.18. 1. Every member of a natural number is a natural

number,

2. ω is ∈-transitive.

Definition 3.19. 1. m < n ⇐⇒ m ∈ n,

2. m ≤ n ⇐⇒ (m < n ∨ m = n).

Theorem 3.20. 0 ≤ n.

Proof. Towards a contradiction

∃n (0 > n) =⇒ ∃n (n ∈ ∅) =⇒ ∃n (n ∈ ∅) .

Theorem 3.21. m < n =⇒ suc(m) ≤ n.

Proof. Assume m < n and, towards a contradiction, that n < suc(m).

m < n ∧ n < suc(m)

=⇒ m ∈ n ∧ n ∈ suc(m)

=⇒ m ∈ n ∧ n ∈ m ∪ {m}

=⇒ m ∈ n ∧ (n ∈ m ∨ n = m)

=⇒ (m ∈ n ∧ n ∈ m) ∨ (m ∈ n ∧ n = m).

Breaking the disjunction into two cases:

m ∈ n ∧ n ∈ m

=⇒ m ⊆ n ∧ n ⊆ m ∧ n ∈ m ∈-transitivity

=⇒ n = m ∧ n ∈ m

=⇒ n ∈ m 

and m ∈ n ∧ n = m =⇒ n ∈ n .

Theorem 3.22. m < n ∨ m = n ∨ n < m.

Theorem 3.23. ∈ well-orders n.

Theorem 3.24.

∃n [ϕ(n)] =⇒ ∃m [m is the ∈-least natural number k such that ϕ(k)].

Theorem 3.25. ∈ well-orders ω.

Next we give an extremely important theorem, the Recursion Theorem

for natural numbers, which justifies definition by recursion:
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3.1 Recursion

Theorem 3.26 (Recursion Theorem, first form). Let H be a function.

Then there is a unique function F such that

1. dom(F) = ω, and

2. ∀n [F(n) = H(F|n)].

Theorem 3.27 (Recursion Theorem, second form). Let a ∈ A and G :

A × ω → A. Then there is a unique function h : ω → A such that

1. h(0) = a,

2. ∀n [h(suc(n) = G(h(n), n)].

Our first application of the Recursion Theorem is to show that the

Peano Postulates P1–P5 characterize the natural numbers as given by

the structure (ω, suc |ω, 0). To do so, we first need to define the concept

of ordered triple, then the type of the structure (ω, suc |ω, 0), and then

the concept of isomorphism.

Definition 3.28. (A, B, C) := (A, (B, C)).

Definition 3.29. (A, f , a) has the structural type of (ω, suc |ω, 0) if a ∈

A and f : A → A.

Definition 3.30. (A, f , a) and (B, g, b) are isomorphic when

1. (A, f , a) and (B, g, b) have the structural type of (ω, suc |ω, D),

2. there is a bijection H : A → B such that H(a) = b, and

3. ∀x ∈ A [H( f (x)) = g(H(x))].

Theorem 3.31 (Isomorphism Theorem for ω). If (A, f , a) has the struc-

tural type of (w, suc |ω, 0) and (A, f , a) satisfies P1–P5, then (ω, suc |ω,

0) is isomorphic to (A, f , a).

We now use the Recursion Theorem to define addition, multiplica-

tion, and exponentiation on natural numbers:

3.1.1 Addition

Definition 3.32 (Addition). For each m, let A = ω and let a = m and let

G : ω × ω → ω be such that G(n, k) = suc(n) for all n and k. Define Fm

to be the unique function F given by . Define, for each m and n,

m + n := Fm(n).
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Theorem 3.33. ∀m [m + 0] = m.

Proof. There ∃!hm : hm(0) = m ∧ hm(suc(n)) = suc(h(n)). By definition

we have

m + 0 = hm(0) = m.

Theorem 3.34. ∀m ∀n (m + suc(n) = suc(m + n)).

Proof. Let m be arbitrary and

ψ(n) ⇐⇒ (m + suc(n) = suc(m + n))

further let hm be the unique function such that m + n = hm(n).

Base:

m + suc(0) = hm(suc(0)) = suc(hm(0)) = suc(m) = suc(m + 0)

Induction hypothesis: m + suc(n) = suc(m + n).

Now we need show m + suc(suc(m)) = suc(m + suc(n)). So, by

induction hypothesis,

suc(m + suc(n))

= suc(suc(m + n))

= suc(suc(hm(n))

= suc(hm(suc(n)))

= hm(suc(suc(n)))

= m + suc(suc(n))

The result follows from the principle of mathematical induction.

3.1.2 Multiplication

Definition 3.35 (Multiplication). For each m, let A = ω and let a = 0

and let G : ω × ω → ω be such that G(n, k) = n + m for all n and all

k. Define Fm to be the unique function F then given by 3.32. Define, for

each m and n,

m · n := Fm(n).

Theorem 3.36. ∀m [m · 0 = 0]
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Proof. Let h×m be the unique function such that h×m(0) = 0 and m · n =

h×m(n), then by definition

m · 0 = h×m(0) = 0.

Theorem 3.37. ∀m ∀n [m · suc(n) = m · n + m].

3.1.3 Exponentiation

Definition 3.38 (Exponentiation). For each m, let A = ω and let a = 1

and let G : ω × ω be such that G(n, k) = n · m for all n and all k.

Define Fm to be the unique function F then determined by 3.32. Define

mn = Fm(n) for each m and n.

Theorem 3.39. ∀m [m0 = 1].

Proof. Let h∧m be the unique function satisfying mn = h∧m(n), then by

definition

m0 = h∧m(0) = 1.

Theorem 3.40. ∀m ∀n [msuc(n) = mn · m].

Exercise 3.41. Prove

1. ∀m ∀n [m + n = n + m],

2. ∀m ∀n ∀k [(m + n) + k = m + (n + k)],

3. ∀m ∀n [m · n = n · m],

4. ∀m ∀n ∀k [(m · n) · k = m · (n · k)],

5. ∀m ∀n ∀k [(mn)k = mn·k].

3.2 The Set of Integers

We wish to define a set which we can use as the integers (at this point

we only have natural numbers). First, we define what will serve as the

negative integers.

Definition 3.42 (Negative Integer).

∀n [n 6= 0 =⇒ −n = (0, n)].
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Definition 3.43 (Negative Integers).

Z− := {−n : n ∈ ω \ {0}} .

Theorem 3.44. ω ∩ Z− = ∅.

Proof. Towards a contradiction assume a ∈ ω ∩ Z−.

a ∈ ω ∩ Z−

=⇒ a ∈ ω ∧ a ∈ Z−

=⇒ ∅ ∈ a ∧ a ∈ Z−

=⇒ ∃b : a = (0, b) ∧ ∅ ∈ (0, b)

=⇒ ∅ ∈ {{0} , {0, b}}

=⇒ ∅ = {0} ∨ ∅ = {0, b}  

Definition 3.45 (Integers).

Z := ω ∪ Z−.

This set Z will be the integers for us. We wish to extend the relation

<, defined on ω at 3.19, to all of Z. To avoid confusion here, we rename

the < defined at 3.19, as <ω.

Definition 3.46.

<Z := <ω ∪ {(−m, −n) : n ∈ m} ∪ {(−m, n) : m 6= 0} .

Theorem 3.47. -

1. <ω ∩ {(−m, −n) : n ∈ m} = ∅,

2. <ω ∩ {(−m, m) : m 6= 0} = ∅,

3. {(−m, −n) : n ∈ m} ∩ {(−m, n) : m 6= 0} = ∅.

Proof of 1. Towards a contradiction assume a ∈<ω ∩ {(−m, −n) : n ∈ m}.

∃m, n : (m, n) = (−m,−n) ∧ m < n

=⇒ ∃m, n : m = −m ∧ n = −n ∧ m < n

=⇒ ∃m, n : m = (0, m) ∧ n = (0, n) ∧ m < n

=⇒ ∅ ∈ (0, m)

=⇒ ∅ = {0} ∨ ∅ = {0, m} 
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Proof of 2.

Proof of 3.

3.3 Homomorphisms of Relations

We next wish to investigate functions f : A → B, where A = fld(R)

and B = fld(S), that are “structure-preserving”. Such functions are called

“homomorphisms”:

Definition 3.48. Let f : A → B and A = fld(R) and B = fld(S).

1. f is a homomorphism ⇐⇒ ∀x ∀y (xRy ⇐⇒ f (x)S f (y)),

2. f is an embedding of R into S (or: of A into B) ⇐⇒ f is 1-1 ∧ f

is a homomorphism,

3. f is an isomorphism ⇐⇒ f is bijective ∧ f is a homomorphism,

4. f is an automorphism ⇐⇒ f is an isomorphism ∧ A = B.

Assume that we have extended our addition + from ω to our integers

Z. Then do the following exercise:

Exercise 3.49. Find all the:

1. automorphisms of <ω,

2. automorphisms of <Z,

3. embeddings of <ω in <Z,

4. embeddings of <Z in <ω,

5. embeddings of <ω in <ω,

6. embeddings of <Z in <Z.

Answer.

1. The only automorphism is the identity.

2. All linear shifts f (n) 7→ n + m for fixem m.
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Theorem 3.50. <Z is a strict order and is not a well-ordering.

To develop further our ideas about Z, we need some new definitions:

Definition 3.51 (R-predecessor). x is an R-predecessor of y if and only if

xRy ∧ x 6= y.

Definition 3.52 (R-immediate predecessor). x is an R-immediate predeces-

sor of y if and only if

1. x is an R-predecessor of y, and

2. ∀z [xRz =⇒ (z is not an R-predecessor of y) ∨ x = z]

Definition 3.53 (R-successor). y is an R-successor of x if and only if

x is an R-predecessor of y.

Definition 3.54 (R-immediate successor). y is an R-immediate successor of

x if and only if

x is an R-immediate predecessor of y.

Theorem 3.55. -

1. Every member of ω has <ω-immediate successor,

2. every member of ω \ {0} has an <ω-immediate predecessor,

3. every member of Z has <Z-immediate predecessor and an <Z-

immediate successor.

Proof of 1. suc(m) is the <ω-immediate successor of n ⇐⇒ n is the

<ω-immediate predecessor of suc(n).

Notice n is the <ω-predecessor of suc(n),

n <ω suc(n) ∧ n 6= suc(n)

⇐⇒ n <ω suc(n)

⇐⇒ n ⊆ n ∪ {n}

⇐⇒ ⊤.

and

n <ω ℓ ∧ ℓ <ω suc(n)
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=⇒ n ∈ ℓ ∧ ℓ ∈ n ∪ {n}

=⇒ (n ⊆ ℓ) ∧ (ℓ ⊆ n ∨ ℓ = n)

=⇒ ℓ = n.

3.4 Finite and Infinite Sets

We next wish to introduce the idea that two sets A and B have the same

cardinal number or are equipotent.

Definition 3.56.

A ≈ f B ⇐⇒ (dom( f ) = A ∧ rng( f ) = B ∧ f is injective)

Now A ≈ f B is read “A is equipotent to B under f ”. We will write

A ≈ B, to be read “A is equipotent to B”.

Definition 3.57. A ≈ B ⇐⇒ ∃ f [A ≈ f B].

The next theorem is an easy consequence of these two definitions:

Theorem 3.58. -

1. A ≈ A,

2. A ≈ B =⇒ B ≈ A,

3. A ≈ B ∧ B ≈ C =⇒ A ≈ C,

4.
(

A ≈ f B ∧ C ⊆ A
)

=⇒ C ≈ f [C].

Proof of 1. Let f = IdA. Then dom( f ) = A ∧ rng( f ) = A ∧ f injective.

Thus A ≈ A.

Proof of 2. A ≈ B =⇒ ∃ f : dom( f ) = A ∧ rng( f ) = B ∧ f injective.

Note we have (by definition) that f̆ is injective because f is a function

and f̆ is a function because f is injective.

Proof of 3. A ≈ B ∧ B ≈ C =⇒ ∃ f , g : A ≈ f B ∧ B ≈g C where

f : A → B and g : B → C are injective. Notice g ◦ f : A → C and g ◦ f

injective and thus A ≈g◦ f C =⇒ A ≈ C.

Proof of 4. Assume A ≈ f B and C ⊆ A. This means

dom( f ) = A ∧ rng( f ) = B ∧ f injective ∧ C ⊆ A.
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Let g : C → f [C] = {c : ∃x (x f c)} be given by

g = {(c, b) : c ∈ C ∧ c f b} .

Thus dom(g) = C ∧ rng(g) = f [C] ∧ g injective which means C ≈g

f [C] =⇒ C ≈ f [C].

Unfortunately, ≈ is too big to be a relation:

Theorem 3.59. ≈ is not a relation.

Sketch of Proof. We have ∀A (A ≈ A) so

{(A, A) : A a set} ⊆ ≈ .

This means ≈ contains the universal set and thus is not a set.

We next define A 4 B, read “A is less than or equipotent to B”:

Definition 3.60. A 4 B ⇐⇒ ∃C [A ≈ C ∧ C ⊆ B].

The next theorem gives some easy consequences of this definition:

Theorem 3.61. -

1. A ≈ B =⇒ A 4 B,

2. A ⊆ B =⇒ A 4 B,

3. A 4 A,

4. A 4 B ∧ B 4 C =⇒ A 4 C.

Proof of 1. A ≈ B =⇒ ∃C = B : A ≈ C ∧ C ⊆ B =⇒ A 4 B.

Proof of 2. A ⊆ B =⇒ A ≈ A ∧ A ⊆ B =⇒ A 4 B.

Proof of 3. A ≈ A ∧ A ⊆ A =⇒ A 4 A.

Proof of 4.

A 4 B ∧ B 4 C

=⇒ ∃D0, D1 : A ≈ D0 ∧ D0 ⊆ B ∧ B ≈ D1 ∧ D1 ⊆ C

=⇒ ∃D0, D1, f , g : A ≈ f D0 ∧ D0 ⊆ B ∧ B ≈g D1 ∧ D1 ⊆ C

Note: f [A] ⊆ B ∧ g[B] ⊆ C =⇒ g[ f [A]] ⊆ C.

=⇒ A ≈g◦ f g[ f [A]] ∧ g[ f [A]] ⊆ C

=⇒ A 4 C.
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Now we define A ≺ B, read “A is less potent than B”"

Definition 3.62. A ≺ B ⇐⇒ [A 4 B ∧ ¬ (B 4 A)] .

Here are some easy consequences:

Theorem 3.63. -

1. ¬ (A ≺ A),

2. (A ≺ B ∧ B ≺ C) =⇒ A ≺ C,

3. (A ≺ B) =⇒ ¬ (B ≺ A),

4. (A ≺ B ∧ B 4 C) =⇒ A ≺ C.

Proof of 1. A ≺ A ⇐⇒ A 4 A ∧ ¬(A 4 A) ⇐⇒ ⊥.

Proof of 2.

A ≺ B ∧ B ≺ C

=⇒ A 4 B ∧ ¬(B 4 A) ∧ B 4 C ∧ ¬(C 4 B)

=⇒ (A 4 B ∧ B 4 C) ∧ ¬(C 4 B ∧ B 4 A)

Note that (¬p ∧ ¬q) =⇒ ¬(p ∧ q)

=⇒ A 4 C ∧ ¬(C 4 A)

=⇒ A ≺ C.

Exercise 3.64. dom( f ) ≈ f .

Answer. Let g : dom( f ) → f be given by

g = {(a, f (a)) : a ∈ dom( f )}

then ∃g : dom(g) = dom( f ) ∧ rng(g) = f ∧ g injective =⇒ dom( f ) ≈g

f =⇒ dom( f ) ≈ f .

We can now define what we mean by a set being “finite” or “infinite.”

Definition 3.65. -

1. A is finite ⇐⇒ ∃n [A ≈ n],

2. A is infinite ⇐⇒ ¬ (A is finite).

Now we give some simple theorems about finite and infinite sets:
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Theorem 3.66. A is infinite =⇒ ∀n (n ≺ A).

Proof. Assume A infinite and proceed with the PMI, letting

ψ(n) ⇐⇒ n 4 A.

Base: ψ(0) ⇐⇒ ∅ 4 A ⇐⇒ ∃∅ ⊆ A : ∅ ≈ ∅ ⇐⇒ ⊤.

Induction hypothesis: n 4 A.

We ψ(n) =⇒ ∃A′ ⊆ A : n ≈ A′ =⇒ ∃A′ ∃ f : A′ ⊆ A ∧ n ≈ f A′

which decomposes into two cases

1. A′ = A =⇒ n ≈ A =⇒ A is finite.  

2. A′ ⊂ A =⇒ ∃a ∈ A \ A′.

Consider g = f ∪ {(n, a)} — this is a function satisfying

dom(g) = dom( f ) ∪ {n} = n ∪ {n} = suc(n),

rng(g) = A′ ∪ {a} ⊆ A,

and g injective (not proved but trivial).

Thus n ≈g A′ ∪ {a} =⇒ n 4 A. By PMI ∀n; n 4 A.

Theorem 3.67. ∀m (m is finite)

Proof. m ≈ m =⇒ m 4 m =⇒ ∃m (m 4 m) =⇒ m is finite.

Theorem 3.68. (A is finite ∧ A ≈ B) =⇒ B is finite.

Proof. ∃n (A ≈ n ∧ A ≈ B) =⇒ ∃n (B ≈ n) =⇒ B is finite.

Theorem 3.69. A is finite =⇒ A ∪ {y} is finite.

Proof. ∃n (A ≈ n) =⇒ ∃n∃ f (A ≈ f n) where dom( f ) = A ∧ rng(g) =

n ∪ {n} ∧ f injective. This means

∃g (dom(g) = A ∪ {y} ∧ rng(g) = n ∪ {n} ∧ f injective)

where g = f ∪ {y, suc(n)}. Thus A ∪ {y} ≈g suc(n) =⇒ A ∪ {y}

finite.

Theorem 3.70. A ⊆ n =⇒ A is finite.
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Proof. Let A be arbitrary and

ψ(n) ⇐⇒ (A ⊆ n =⇒ A is finite).

Base: ψ(0) ⇐⇒ (A ⊆ ∅ =⇒ A is finite) ⇐⇒ ∅ is finite ⇐⇒ ⊤.

Induction hypothesis: A ⊆ n =⇒ A is finite.

Suppose A ⊆ suc(n) = n ∪ {n}. Notice A ⊆ n =⇒ A is finite by

induction hypothesis so suppose A 6⊆ n.

A 6⊆ n =⇒ n ∈ A so let A− = A \ {n}. A− is finite by the induction

hypothesis because A0 ⊆ n. This means A− ∪ {n} is finite by Theorem

??. Thus A is finite.

Theorem 3.71. (A is finite ∧ B ⊆ A) =⇒ A is finite.

Proof. A is finite ∧ B ⊆ A =⇒ ∃n (A ≈ n ∧ B ⊆ A) =⇒ ∃ f (dom( f ) =

A ∧ rng( f ) = n ∧ f injective).

Consider g : B → f [B] where B ⊆ A ∧ f [B] ⊆ n, it follows that

f [B] ⊆ n =⇒ f [B] is finite by Theorem 3.35. Letting m ≈ f [B], this

means g = f ∩ B × rng( f ) is a function satisfying

dom(g) = B ∧ rng(g) ≈ m ∧ g injective

which implies B ≈g m =⇒ B ≈ m =⇒ B is finite.

Theorem 3.72. (A is finite ∧ B 4 A) =⇒ B is finite

Proof. We have A is finite =⇒ ∃n : A ≈ n and B 4 A =⇒ ∃A′ ⊆ A :

B ≈ A′. Thus there is injective f and g such that

1. dom( f ) = A ∧ rng( f ) = n, and

2. dom(g) = B ∧ rng(g) = A′ ⊆ A.

It follows

f ◦ g : B → n′ ⊆ n

is injective and thus

∃m : B ≈ n′ ∧ n′ ≈ m =⇒ B ≈ m =⇒ B is finite.

Theorem 3.73. (A is infinite ∧ A ⊆ B) =⇒ B is infinite.

Theorem 3.74. (A is infinite ∧ A 4 B) =⇒ B is infinite.
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Theorem 3.75. A is finite =⇒ A \ B is finite.

Theorem 3.76. (A is finite ∨ B is finite) =⇒ A ∩ B is finite.

Proof. Without loss of generality assume A is finite, then we have, for

any B

(A ∩ B ⊆ A) ∧ A is finite =⇒ A ∩ B is finite.

Theorem 3.77. (A is finite ∧ B is finite) =⇒ A ∪ B is finite.

Theorem 3.78.

(C is finite ∧ ∀c [c ∈ C =⇒ C is finite]) =⇒
⋃

C is finite.

Theorem 3.79. A ≈ A × {y} .

Theorem 3.80. (A is finite ∧ B is finite) =⇒ A × B is finite.

Dedekind.

Theorem 3.81 (Dedekind-infinite). A is a Dedekind-infinite (or D-infinite)

when there is some function f : A → A which is an injection but not a

surjection:

A is D-infinite ⇐⇒ ∃ f : A → A ( f injective ∧ f not surjective)

Moreover, A is Dedekind-finite (or D-finite) when A is not D-infinite.

Theorem 3.82. ∀n (n is D-finite)

Proof. Towards a contradiction assume ∃n is D-infinite. This implies

∃ f : n → n′ : f injective ∧ n′ ⊂ n.

Note:

• dom( f ) = n =⇒ rng( f̆ ) = n, and

• f a function =⇒ f̆ is injective.

and thus f̆ : n′ → n is a bijection.

Consider g : n → n a bijection given by (g ◦ f̆ )(n) = n, namely

g =
{

( f̆ (m), m) : m ∈ dom( f̆ )
}

∪
{

(m, n) : m ∈ n \ dom( f̆ )
}

.
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Let h = g ◦ f̆ and thus

h = Id : n′ → n

=⇒ h̆ : Id : n → n′

=⇒ h̆[n] ⊆ n′

=⇒ n ⊆ n′.  

Theorem 3.83. A is finite =⇒ A is D-finite.

Proof. Towards a contradiction suppose A is finite ∧ A is D-infinite. We

have ∃m : A ≈ m ∧ A is D-finite =⇒ m is D-infinite.  .

Theorem 3.84. A is D-infinite =⇒ A is infinite.

Theorem 3.85. ω is D-infinite.

Proof. Let f : ω → ω be given by f = {(n, suc(n)) : n ∈ ω} . Clearly

∅ 6∈ rng( f ) and f -injective. Thus ω is D-infinite by definition.

Theorem 3.86. m < n =⇒ ¬(m ≈ n).

Theorem 3.87. m ≈ n =⇒ m = n.

Theorem 3.88 (Dirichlet’s Pigeonhole Principle). If m < n and f : n →

m, then for some k < m and some n1, n2 < n, we have n1 6= n2 and

f (n1) = f (n2) = k:

(m < n ∧ f : n → m) =⇒

∃k, n1, n2 (k < m ∧ n1 < n ∧ n2 < n ∧ f (n1) = f (n2) = k.)

Theorem 3.89. There is no surjective function f : n → suc(n):

¬∃ f : n → suc(n) ∧ f surjective.

Proof. Let ψ(n) ⇐⇒ ¬∃ f : n → suc(n) ∧ f surjective.

Base: dom( f ) = ∅ =⇒ rng( f ) = ∅ 6= suc(∅). Thus ψ(0).

Induction Hypothesis: Suppose ¬∃ f : n → suc(n) ∧ f surjective.

Towards a contradiction let f be a surjective function on suc(n) ×

suc(suc(n)). There are two cases:

f (suc(n)) = suc(suc(n))

=⇒ f = f ′ ∪ {(suc(n), suc(suc(n))}
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=⇒ f ′ : n → suc(n) ∧ f ′ surjective

This contradicts ψ(n).  

f (suc(n)) 6= suc(suc(n))

=⇒ ∃a, b : f = f ′ ∪ {(a, suc(suc(n))), (suc(n), b)}

=⇒ f ′ ∪ {(a, b)} : n → suc(n) ∧ f ′ surjective

This also contradicts ψ(n).  .

Theorem 3.90. If f : A → A and A is finite, then f is injective iff and

only if f is surjective.

( f : A → A ∧ A is finite) =⇒ ( f is injective ⇐⇒ f is surjective).

Proof of =⇒ . Assume A finite and f : A → A and towards a contradic-

tion suppose f is injective and not surjective. By definition A is D-infinite

and therefore P-infinite.  .

Proof of ⇐= . Let

ψ(n) ⇐⇒ A ≈ n ∧ ∀ f ( f surjective =⇒ f injective)

and proceed with induction.

Base: The only function on ∅×∅ is both injective and surjective. Thereby

ψ(0).

Induction hypothesis: A ≈ n ∧ ∀ f ( f surjective =⇒ f injective).

Towards a contradiction assume

A ≈ suc(n) ∧ f surjective ∧ f not injective.

which implies ∃a 6= b : f (a) = f (b).

Consider g : A \ {b} → A given by

g = f |A \ {b} = {(a, f (a)) : a ∈ A \ {b}} .

This function g defines a surjective function satisfying

g : A \ {b} ≈ n → A ≈ suc(n)

which itself gives another surjective function

g′ : n → suc(n)
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contradicting Theorem 3.89.

Theorem 3.91. A is finite =⇒ P(A) is finite.

Theorem 3.92. (A is finite ∧ B is finite) =⇒ B A is finite.

Proof. A, B is finite =⇒ B × A is finite by 3.80 and thus P(B × A) is

finite by 3.91. Notice f ∈ B A =⇒ f : B → A =⇒ f ⊆ B × A =⇒ f ∈

P(B × A) and thereby B A ⊆ P(B × A) is finite.

Theorem 3.93. A is finite =⇒ f [A] is finite.

Theorem 3.94. A is D-infinite ⇐⇒ ω 4 A.

Proof of =⇒ . Assume A is D-infinite. We have then,

∃ f ( f : A → A injective and not onto)

which means ∃a ∈ A : a 6∈ rng( f ).

By Recursion Theorem, second form, there is unique h : w → A

satisfying

h(0) = 0

h(suc(n)) = G(h(n), n) = f (h(n)).

Thus we have shown there is a function h : ω → A; it remains to show

h is injective.

Claim. h is injective.

Let ψ(n) ⇐⇒ h[n] ≈ n.

Base: ψ(0) ⇐⇒ h[∅] ≈ ∅ ⇐⇒ ∅ ≈ ∅.

Towards a contradiction suppose it is not the case that h[suc(n)] ≈

suc(n) then there is ℓ, m : ℓ < m ∧ h(ℓ) = h(m). Let ℓ = suc(k) and

m = suc(p) and notice

h(ℓ) = h(suc(k)) = f (h(k)) and h(m) = h(suc(p)) = f (h(p)).

so f (h(k)) = f (h(p)) =⇒ h(k) = h(p) because f is injective.

We have 0 < k < p ≤ suc(n) because h(0) = a 6∈ rng( f ) and p,

k < suc(n). It follows that there is an injection h : ω → A. This

contradicts the induction hypothesis ψ(n) and proves h is injective.

It follows that there is injective h : ω → A =⇒ ω 4 A.
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⇐= . Assume ω 4 A (and show A is D-infinite).

Let ω 4 A =⇒ ∃ f : ω ≈ f B ∧ B ⊆ A ∧ f bijectivel Define

g(x)







x x ∈ A \ B

f (suc( f̆ (x))) x ∈ B
.

Then g is injective since f is a bijection. But g is not surjective because

¬∃x ∈ B : suc( f̆ (x)) = 0. Thereby f (0) 6∈ rng(g) with f (0) ∈ B. The

result follows.

Theorem 3.95. (A is D-infinite ∧ A 4 B) =⇒ B is D-infinite.

Proof. By 3.36, 3.61, 3.94, respectively, ω 4 A, ωB, and B is D-finite.

Theorem 3.96. (A is D-finite ∧ B 4 A) =⇒ B is D-finite.

Proof. Assume B is B is D-infinite, by 3.95 A is D-infinite.  

It would be natural, at this point, to prove that a set A is infinite

if and only if A is Dedekind-infinite. But to show that if A is infinite,

then A is Dedekind-infinite requires a new Axiom, the Axiom of Choice,

to which we return later.

Theorem 3.97. A is infinite =⇒ P(P(A)) is D-infinite.

3.5 Partial Orders and Upper Bounds

We introduce some terminology that will be useful for us, both for deal-

ing with natural numbers and more generally:

Definition 3.98 (Supremum and Infimum). Let R be a partial order or a

strict partial order. Let B 6= ∅.

R-upper bound of B

z ∈ ubR(B) ⇐⇒ ∀y (y ∈ B =⇒ (yRz ∨ y = z)).

R-supremum (or equivalently R-least upper bound) of B

x = supR(B) ⇐⇒ x ∈ ubR(B) ∧ (y ∈ ubR(B) =⇒ xRy ∨ x = y)

R-greatest (or equivalently R-largest or R-last) element of B

x = maxR(B) ⇐⇒ x ∈ B ∧ ∀y (y ∈ B =⇒ [yRx ∨ y = x]).



3.5 Partial Orders and Upper Bounds 70

R-lower bound of B

x ∈ lbR(B) ⇐⇒ x ∈ lbR̆(B)

R-infimum (or equivalently R-greatest lower bound) of B

x = infR(B) ⇐⇒ x = supR̆(B)

Theorem 3.99. Let R be a partial or a strict partial order.

x = maxR(B) =⇒ x = supR(B)

Proof.

x = maxR(B) =⇒ x ∈ B ∧ (z ∈ B =⇒ z 4 x)

=⇒ x ∈ ubR(B) ∧ (z ∈ B =⇒ z 4 x)

=⇒ x = supR(B).

Theorem 3.100. Let B ⊆ ω and B 6= ∅. B has an <ω-upper bound if and

only if B is finite.

=⇒ . Assume B ⊆ ω ∧ B 6= ∅ ∧ ∃m ∈ ub<ω(B).

k ∈ B =⇒ k <ω m ∨ k = m

=⇒ k ∈ m ∨ k = m

=⇒ k ∈ suc(m)

Thereby B ⊆ suc(m) =⇒ B is finite by 3.70.

⇐= . By the PMI with

ψ(n) ⇐⇒ (B ≈ n =⇒ ∃m ∈ ub<ω(B)).

For the base notice ψ(0) ⇐⇒ (B ≈ 0 =⇒ ∃m ∈ ub<ω(B) ⇐⇒ ⊤).

Let x ∈ B =⇒ ∃m ∈ ub<ω(n) by ψ(n). Thus max(x, m) ∈ ub<ω(B)

Theorem 3.101. Let B ⊆ ω and B 6= ∅. B has no <ω-upper bound if

and only if B ≈ ω. That is,

ub<ω(B) = ∅ ⇐⇒ B ≈ ω.
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=⇒ . Assume B ≈ ω and, towards a contradiction, ∃k ∈ ub<ω(B).

(y ∈ B =⇒ (y <ω k ∨ y = k))

=⇒ (y ∈ B =⇒ y ∈ k ∨ y = k)

=⇒ B ⊆ k ∪ {k} = suc(k)

=⇒ B is finite ∧ B ≈ ω 

⇐= . Assume B ⊆ ω ∧ B 6= ∅ ∧ ub<ω(B) = ∅.

For R ⊆ ω × ω let

H(R) =







max<ω(B \ rng(R)) if B \ rng(R) 6= ∅

0

Recursion Theorem First Form gives unique h : ω → B such that

h(n) = H(h[n]) = min<ω(B \ h[n]).

B is infinite by ?? and h[n] is finite =⇒ B \ h[n] 6= ∅.

Towards a contradiction assume h is not onto. This implies B \

rng(h) 6= ∅ so let

m = min<ω(B \ rng(h)), and

n = min<ω(n : m < h(n)).

We have k < n =⇒ ¬(m < h(k)) =⇒ h(k) < m ∨ m = h(k) =⇒

h(k) < m ∨ ⊥ =⇒ m = h(k).

So we have

min<ω (B \ rng(h[n])) = m = h(n)

which gives h(n) = m ∧ m < h(n)  Thus h(n) is onto.

It is left as an exercise to show h is injective.

We conclude that h is an bijection from ω → B which means ω ≈ B as

desired.

From 3.100 and 3.101, if follows immediately that

Theorem 3.102. B ⊆ ω =⇒ (B is finite ∨ B ≈ ω).
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3.6 Countable Sets

The simplest infinite set, in a certain sense, is ω, the set of all natural

numbers. We call a set “denumerable” if it is equipotent to ω.

Definition 3.103. A is denumerable ⇐⇒ A ≈ ω.

Closely related to the idea of being denumerable are the two ideas

of being “countable and “uncountable.”

Definition 3.104 (Countable). C is countable when

C is finite ∨ C is denumerable

and uncountable otherwise.

Theorem 3.105. A is finite ⇐⇒ A ≺ ω.

=⇒ . A is finite =⇒ ∃n : A ≈ n. Since n 4 ω this implies A 4 ω.

Suppose ω 4 A =⇒ ω is finite by 3.72  .

Thus ¬(ω 4 A) =⇒ A ≺ ω.

⇐= . Assume A ≺ ω =⇒ A 4 ω =⇒ ∃B ⊆ ω : A ≈ B. By 3.102, B

finite or B ≈ ω.

If B finite there is nothing to prove so suppose B ≈ ω:

B ≈ ω ∧ A ≈ B =⇒ w ≈ A =⇒ ω 4 A.

However, by assumption, A ≺ ω =⇒ ¬(w 4 A)  .

Thus B-finite =⇒ A finite.

We would like to use this theorem, and 3.103 to show that A is count-

able if and only if A 4 ω. One direction is easy to prove:

Theorem 3.106. A is countable =⇒ A 4 ω.

Proof. A is countable =⇒ A is finite ∨ A is denumerable =⇒ ∃n ∈

ω : A ≈ n ∨ A ≈ ω =⇒ ∃n ⊆ ω : A ≈ n ∨ ∃w ⊆ w : A ≈ ω =⇒

A 4 ω.

But the other direction involves a difficulty: One step requires that,

from A 4 ω and ω 4 A we show A ≈ ω. But similar problems will

arise elsewhere, and so we wish to prove that

A 4 B ∧ B 4 A =⇒ A ≈ B.
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This is known as the Cantor-Berstein Theorem, and we now prepare to

prove it.

A very useful tool in proving the Cantor-Bernstein Theorem is what

is called the Fixed-Point Theorem for Monotonic Functions. We first need a

couple of definitions:

Definition 3.107 (Fixed Point).

y is a fixed point of f ⇐⇒ y = f (y).

Definition 3.108 (Monotonic). Let F : P(A) → P(A). Then F is mono-

tonic if and only if

∀X ⊆ A ∀Y ⊆ A (X ⊆ Y =⇒ F(X) ⊆ F(Y)).

Theorem 3.109 (Fixed-Point Theorem on Monotonic Functions).

F : P(A) → P(A) is monotonic =⇒ ∃x (x is a fixed point of F).

Proof by magic. Let E = {B ⊆ A : B ⊆ F(B)} so that

1. x ∈
⋃

E =⇒ ∃y ∈ E : x ∈ y,

2. y ⊆
⋃

E =⇒ F(y) ⊆ F(
⋃

E),

3. y ∈ E =⇒ y ⊆ F(y).

Thereby

(x ∈ y ∧ y ⊆ F(y) ∧ F(y) ⊆ F(
⋃

E)) =⇒ x ∈ F(
⋃

E)

and x ∈
⋃

E =⇒ x ∈ F(
⋃

E)) =⇒
⋃

E ⊆ F(
⋃

E).

Notice

⋃

E ⊆ F(
⋃

E)

=⇒ F(
⋃

E) ⊆ F(F(
⋃

E))

=⇒ F(
⋃

E) ∈ E

=⇒ F(
⋃

E) ⊆
⋃

E

and thereby F(
⋃

E) ⊆
⋃

E ∧
⋃

E ⊆ F(
⋃

E) =⇒ F(
⋃

E) =
⋃

E =⇒
⋃

E is a fixed point of F.

We then prove a special case of Cantor-Bernstein Theorem:

Theorem 3.110. (C ⊆ B ∧ B ⊆ A ∧ A ≈ C) =⇒ (A ≈ B).
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Theorem 3.111 (Cantor-Bernstein).

A 4 B ∧ B 4 A =⇒ A ≈ B.

Proof. Notice, by definition,

A 4 B =⇒ ∃ f : A → B injective

B 4 A =⇒ ∃g : B → A injective .

and let

Φ : P(A) → P(A)

x 7→ g[B \ f [A \ x]].

Claim. Φ is monotonic.

Notice

x ⊆ y =⇒ A \ y ⊆ A \ x

=⇒ f [A \ y] ⊆ f [A \ x]

=⇒ g[B \ f [A \ x]] ⊆ g[B \ f [A \ y]]

so we have x ⊆ y =⇒ Φ(x) ⊆ Φ(y) and thereby Φ is monotonic

=⇒ ∃x : Φ(x) = x. �

Notice

A = x ∪ (A \ x)

B = (B \ f [A \ x]) ∪ f [A \ x]

We can use g to “induce a bijection” by defining a function from g onto

rng(g).

g′ : (B \ f [A \ x]) → g[B \ f [A \ X]] = Φ(x) = x.

This function g′ is a bijection because it is both injective and surjective.

The same can be done with f :

f ′ : A \ x → f [A \ x]

Where f injective =⇒ f ′ bijective as above.

Thus we have

g′ : B \ f [A \ x] → x
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ğ′ : x → B \ f [A \ x]

f ′ : A \ x → f [A \ x]

so f ′ ∪ ğ′ : A \ x ∪ {x} → B \ B \ f [A \ x]∪ f [A \ x]. Since f ′ and g′ are bijective

on disjoint sets f ′ ∪ ğ′ is also a bijection (prove it!). In particular

h(y) =







ğ′(y) y ∈ x

f (x) y 6∈ x
.

Thus we have a bijection h : ωA → B giving A ≈ B.

Theorem 3.112. A is countable ⇐⇒ A 4 ω.

Theorem 3.113.

(A is countable ∧ B ⊆ A) =⇒ B is countable.

Theorem 3.114.

({0} × ω) ∪ ({1} × ω) ≈ ω.

Theorem 3.115.

(A is countable ∧ B is countable) =⇒ A ∪ B is countable.

Theorem 3.116. Z is denumerable.

Theorem 3.117. ω × ω is denumerable

Theorem 3.118. A is countable =⇒ n A is countable.

We now wish to consider seq(A), the set of all finite sequences on a

set A:

Definition 3.119 (Sequence).

seq(A) :=
⋃

n A : n ∈ ω.

Theorem 3.120. A is countable =⇒ seq(A) is countable.

We would like to prove at this point that the union of a countable set

of countable sets is countable. But the proof of this theorem requires the

Axiom of Choice, to which we later return.

3.7 Uncountable Sets

Our first task is to show that there exists an uncountable set:
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Theorem 3.121. ω2 is uncountable.

This set ω2 is closely connected with an idea useful in analysis and

in computer science, the “characteristic function” of a set y with respect

to a set A.

Theorem 3.122 (Characteristic Function). Let A 6= ∅ and y ⊆ A. Then

χA
y : A → {0, 1} is the unique function such that χA

y (z) = 1 is z ∈ y, and

χA
y (z) = 0 if z /∈ y. Then function χA

y is called the characteristic function

of y with respect to A.

If A is clear from context, we write χy instead.

Theorem 3.123. A2 ≈ P(A).

Theorem 3.124 (Cantor’s Theorem). A ≺ P(A).

Theorem 3.125. ¬∃A (P(A) ≈ ω).

Theorem 3.126.

(A is uncountable ∧ A ⊆ B) =⇒ B is uncountable.

Theorem 3.127.

(2 4 A ∧ ω 4 B) =⇒ B A is uncountable.



4 Cardinal Numbers

Before proceeding further, we wish to introduce the idea of cardinal num-

ber. So far, we have introduced the idea of A ≈ B, that is, of the sets A

and B being equipotent, which many authors write as “having the same

cardinal number”.

We wish to introduce what we call the Cardinal Axiom.

Axiom 7 (Cardinal Axiom). For every A there is a set |A|, called the

cardinal number of A, and for every B and C, |B| = |C| if and only if

B ≈ C.

Once we have introduced the Axiom of Choice, we will be able to

prove this cardinal axiom from it. So the Cardinal Axiom is only a tem-

porary assumption, but a useful one.

In particular, we require |A| to satisfy the following definition.

Definition 4.1. -

1. ∀n ∈ ω; |n| = n,

2. |ω| = ω,

3. 2ω = |ω2|.

Notice only condition (3) defines something new, namely 2ω , and

when we introduce cardinal exponentiation, we will have to check that

condition (3) is satisfied.

The be sure that conditions (1), (2), and (3) cause no problems, we

need the following (easy) theorem:

Theorem 4.2. -

1. m ≈ n =⇒ m = n,

2. ¬(n ≈ ω),

77
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3. ¬(n ≈ ω2) ∧ ¬(w ≈ ω2)

Proof of 1. By the Cardinal Axiom and Definition 4.1.1 we have

m ≈ n =⇒ |m| = |n| =⇒ m = n.

Proof of 2. By the Cardinal Axiom and Definition 4.1.2 we have

n ≈ ω =⇒ |n| = |ω| =⇒ n = ω.  

Proof of 3. Exercise.

4.1 Cardinal Arithmetic

From now on, we let κ, λ, and µ (kappa, lambda, and mu), with or

without subscripts, stand for cardinal numbers.

We wish to define addition on cardinal numbers. To do so, we need

the following preliminary theorem:

Theorem 4.3. -

1. ∀κ ∀λ ∃A ∃B : κ = |A| ∧ λ = |B| ∧ A ∩ B = ∅,

2. ∀κ ∀λ ∃!µ ∃A ∃B : κ = |A| ∧ λ = |B| ∧ A ∩ B = ∅ ∧ µ = |A ∪ B|.

Proof of 1. By the Cardinal axiom there is A′ and B′ such that κ = |A′|

and λ = |B′|. Let A = A′ × {0} and B = B′ × {1} so that clearly

A ∩ B = ∅. Since A′ ≈ A and B′ ≈ B the result follows.

Definition 4.4. k + λ is the unique µ given by Theorem 4.3.2.

Theorem 4.5. -

1. κ + λ = λ + κ,

2. κ + (λ + µ) = (κ + λ) + µ,

3. κ + 0 = κ.

Proof. By the cardinal axiom there is A, B, C such that A ∩ B = A ∩ C =

B ∩ C = ∅ and κ = |A|, λ = |B|, and µ = |C|.

1. κ + γ = |A|+ |B| = |A ∪ B| = |B ∪ A| = |B|+ |A| = λ + κ.
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2. κ + (λ + µ) = |A|+ (|B|+ |C|) = |A|+ |B ∪ C| = |A ∪ (B ∪ C)| =

|(A ∪ B) ∪ C| = (κ + λ) + |C| = (κ + λ) + µ.

3. κ + 0 = |A|+ |∅| = |A ∪∅| = |A| = κ.

Theorem 4.6. -

1. A is D-infinite =⇒ n + |A| = |A|,

2. ω + ω = ω.

Proof of 1. Without loss of generality assume n ∩ A = ∅. As n + |A| =

|n|+ |A| = |n ∪ A| it suffices to show n ∪ A ≈ A.

For fixed A, let ψ(n) ⇐⇒ n ∪ A ≈ A and notice

ψ(0) ⇐⇒ ∅∪ A ≈ A ⇐⇒ A ≈ A ⇐⇒ ⊤.

Suppose ψ(n) and note A is D-infinite. This means we have

f : A → A f injective not surjective,

g : n ∪ A → A g bijective,

and ∃a ∈ A \ rng( f ). Consider h : n ∪ A → A given by

h = f ◦ g ∪ {({n} , a)} .

It is easily shown h is injective and thus n ∪ {n} ∪ A = suc(n) ∪ A 4 A.

As clearly A 4 n ∪ A we have by Cantor-Bernstein that suc(n)∪ A ≈ A.

The result follows from the PMI.

Proof of 2. ω + ω = |ω| + |ω| = |ω × {0} | + |ω × {1} | = |ω × {0} ∪

ω × {1} |. Then it suffices to show that ω × {0} ∪ ω × {1} ≈ ω. This

follows from ?? but one could also prove

h : ω × {0} ∪ ω × {1} → ω

(x, y) 7→ 2x + y

is a bijection.

When we consider m+ n, we might mean m+ n as defined on natural

numbers at 3.32, or we might mean m+ n as the sum of two cardinals as

defined at 4.4. So whenever we mean m + n as the sum of two cardinals,

we will write m +c n with a subscript c on the plus sign.

However, our next theorem shows that, for m and n, these two defi-

nitions of addition agree:
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Theorem 4.7. m +c n = m + n.

Proof. Notice:

m +c n = m + n

⇐⇒ |m × {0} ∪ n × {1} | = |m + n|

⇐⇒ m × {0} ∪ n × {1} ≈ m + n.

So we proceed by proving, using the PMI, that

ψ(n) ⇐⇒ m × {0} ∪ n × 1 ≈ m + n.

The base case is valid because

ψ(0) ⇐⇒ m × {0} ∪∅× {1} ≈ m + 0

⇐⇒ m × {0} ≈ m

⇐⇒ ⊤.

and, assuming ψ(n), we have

m × {0} ∪ n × {1} ≈ m + n

=⇒ m × {0} ∪ n × {1} ∪ {({n} , 1)} ≈ m + n ∪ {m + n}

=⇒ m × {0} ∪ suc(n)× 1 ≈ suc(m + n)

=⇒ m × {0} ∪ suc(n)× 1 ≈ m + suc(n).

The result follows.

We now introduce cardinal multiplication, after first showing the

preliminary theorem needed to justify the definition of cardinal multi-

plication:

Theorem 4.8. ∀κ ∀λ ∃!µ ∃A ∃B : κ = |A| ∧ λ = |B| ∧ µ = |A × B|.

Definition 4.9. κλ is the unique µ given by 4.8. We also write κ · λ.

Theorem 4.10. -

1. κλ = λκ,

2. κ(λµ) = (κλ)µ,

3. κ(λ + µ) = κλ + κµ,

4. κ · 1 = κ.
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Proof. By the cardinal axiom there is A, B, C such that A ∩ B = A ∩ C =

B ∩ C = ∅ and κ = |A|, λ = |B|, and µ = |C|.

1. κλ = |A × B| = |B × A| = λκ.

2. κ(λµ) = |A| · |B × C| = |A × (B × C)| = |(A × B)× C| = |A × B| ·

|C| = (κγ)µ.

3. κ(λ + µ) = |A| · |B ∪ C| = |A × (B ∪ C)| = |A × B ∪ A × C| =

|A × B|+ |A × C| = κλ + κµ.

4. κ · 1 = κ · | {∅} | = |κ × {∅} | = |κ| = κ.

Theorem 4.11. ω · ω = ω.

Proof. Notice ω × ω ≈ ω =⇒ |ω × ω| = |ω| =⇒ ω · ω = ω so we

need only prove ω × ω ≈ ω.

It is obvious ω 4 ω × ω so let us show ω × ω 4 ω. To that end

consider

h : ω × ω → ω

(n, m) 7→ pnqm.

This is an injection (requires the Fundamental Theorem of Algebra) and

thus ω × ω 4 ω.

As with addition, we multiply m and n, we may mean mn as defined

by recursion on natural numbers at 3.35, or we may mean m · n as the

product of two cardinals defined at 4.9. In the latter case, we write m ·c n

with a subscript c (for cardinal) on the multiplication sing.

We now show that these two definitions of multiplication agree on

m and n:

Theorem 4.12. m ·c n = mn.

Proof. Let

ψ(n) ⇐⇒ m ·c n = mn

clearly ψ(0) ⇐⇒ m ·c 0 = n0 ⇐⇒ 0 = 0 ⇐⇒ ⊤. Moreover

m ·c suc(n) = |m × suc(n)|

= |m × n ∪ m × {n} |

= m ·c n + m ·c 1

= m ·c n + m

= mn + m by ψ(n).
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and therefore ψ(suc(n)). The result follows from the PMI.

Finally, we introduce exponentiation or cardinal numbers, after the

usual preliminary theorem:

Theorem 4.13. ∀κ ∀λ ∃!µ ∃A ∃B : κ = |A| ∧ λ = |B| ∧ µ =
∣

∣

B A
∣

∣.

Definition 4.14. κλ is the unique µ given by 4.13, with the proviso that

µ = 2ω if κ = 2 and λ = ω.

(This last proviso is inserted because 4.1.3.)

Theorem 4.15. -

1. κ0 = 1,

2. κ1 = κ,

3. 1κ = 1.

Proof. By the cardinal axiom there is A such that κ = |A|.

1. κ0 = |∅A| = | {∅} | = | suc(∅)| = 1.

2. κ1 = |suc(0)A| = |{∅}A| = |A| = κ.

3. 1κ = |Asuc(0)| = |A{∅}| = | {(a, {∅}) : a ∈ A} | = 1

As with addition and multiplication, we need to distinguish between

mn, the exponentiation on natural numbers, defined at 3.38, and (mn)c,

the exponentiation on natural numbers defined at 4.14. We now show

that these two definitions of exponentiation agree for m and n:

Theorem 4.16. (mn)c = mn.

Proof. Let

ψ(n) ⇐⇒ (mn)c = mn

and note ψ(0) ⇐⇒ (m0)c = m0 ⇐⇒ 1 = 1 ⇐⇒ ⊤.

Now consider (note, we take for granted suc(n)m =n m ×{n} m as this

is a special case of 4.17)

(msuc(n))c = |suc(n)m|

= |nm ×{n} m|

= |nm| · |{n}m|

= |nm| · |m|

= mnm
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= mn+1

The result follows from PMI.

The next three theorems are needed to prove general laws on cardinal

exponentiation.

Theorem 4.17. Suppose A ∩ B = ∅. Then

A∪BC ≈ AC × BC.

Proof 4. We show A∪BC 4 AC × BC.

f ∈ A∪BC 4 AC =⇒ f : A ∪ B → C

Thus f can be decomposed into two functions g : A → C and h : B → C

given by

g = f ∩ A × C

h = f ∩ B × C

and thus A∪BC 4 AC × BC

Proof <. We show AC × BC 4 A∪BC.

(g, h) ∈ AC × BC =⇒ g : A → C ∧ h : B → C.

Thus we can identify any (g, h) with g ∪ h = f ∈ A∪BC. It follows
AC × BC 4 A∪BC.

Cantor-Berstein gives A∪BC ≈ AC × BC.

Theorem 4.18. C(A × B) ≈ C A × CB.

Proof. We have f ∈ C(A × B) =⇒ f : C → A × B and it is easy to see

we can identify this f with (g, h) ∈ C A × CB (and vice verse) using

f 7→ ( f ∩ C × A, f ∩ C × B).

We thus have C(A × B) 4 C A × CB and C(A × B) < C A × CB. By

Cantor-Bernstein C(A × B) ≈ C A × CB.

Theorem 4.19. C(B A) ≈ B×CA.

Proof. Assignment 4.
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Theorem 4.20. -

1. κλ+µ = κλ · κµ,

2. (κλ)µ = κµ · λµ,

3. (κλ)µ = κλµ.

Proof. By the cardinal axiom there is A, B, C such that A ∩ B = A ∩ C =

B ∩ C = ∅ and κ = |A|, λ = |B|, and µ = |C|.

1. κλ+µ = |A||B∪C| = |B∪C A| = |B A × C A| = κλ · κµ,

2. (κλ)µ = |C (A × B)| = |C A| · |CB| = κµ · λµ, and

3. Assignment 4.

We call the cardinal number 2ω the power of the continuum since, as

we will see a little later, it is the cardinal number of the set of all real

numbers.

Definition 4.21. 2ω is the power of the continuum.

Then we establish some basic properties of the power of the contin-

uum.

Theorem 4.22. 2ω = 2ω + 2ω = 2ω · 2ω = (2ω)ω.

Proof. Bounty.

4.2 Rational Numbers

In section ??, we extend ω to obtain our integers Z, where we defined

−n as (0, n) for all n > 0. We then defined <Z by extending <ω and

showed that <Z is a strict order.

Now we wish to extend Z to get what we will use as Q, the set of

all rational numbers. There are many ways to do so, but all of them

result in isomorphic structures. We shall only concern ourselves with

extending <Z to get a strict order on Q, and shall not take the time to

extend addition and multiplication to Q.

Definition 4.23 (Proper Fractions). Let F denote the set of proper frac-

tions.

F := {(a, b) : b ∈ ω \ {0, 1} ∧ a ∈ Z \ {0}} .

Theorem 4.24. Z ∩ F = ∅.

Proof. Exercise (easy).
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We now define the set of Q of all rational numbers as the union of

these two sets.

Definition 4.25. Q := Z ∪ F .

If (a, b) ∈ F , we could defined a
b to be (a, b), but we do not do so

since we will have no need for division.

Next we extend <Z, our strict oder on Z, to Q:

Definition 4.26.

<Q:=<Z ∪ {(a, (b, c)) : a ∈ Z ∧ (b, c) ∈ Q \ Z ∧ ac <Z b}

∪ {((b, c), a) : a ∈ Z ∧ (b, c) ∈ Q \ Z ∧ b <Z ac}

∪
{

((b, c), (b′, c′)) : (b, c), (b′, c′) ∈ Q \ Z ∧ bc′ <Z b′c
}

.

Theorem 4.27. <Q is a strict order with no least and no greatest element.

Proof. Exercise.

Theorem 4.28. Q is denumerable.

Proof. Q and ω × ω are equipotent via the bijection

f : Q → ω × ω

given by

f (a) =



















(a0, a1) a = (a0, a1) ∈ F

(a, 0) a ∈ Z−1

(a, 1) a ∈ N.

So Q ≈ ω × ω and since ω × ω ≈ ω we have Q ≈ ω and thereby Q is

denumerable by defintion.

We wish to characterize <Q as an ordering:

Definition 4.29 (Dense). Let R be a strict order. R is dense if and only if

∀x∀y (xRy =⇒ ∃z : xRz ∧ zRy) ∧ |fld(R)| ≥ 2.

Theorem 4.30. <Q is dense.

Proof. Let a = (a0, a1), b = (b0, b1) ∈ Q such that (a0, a1) <Q (b0, b1) and

a, b > 0. Thus we have a0b1 < b0a1 (i.e. a0
a1

<
b0
b1

=⇒ a0b1 < b0a1).

Claim. (The idea here is to show a <
a+b

2 < b.)

(a0, a1) <Q (a1b0 + a0b1, 2a1b1) <Q (b0, b1)
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Notice

a0b1 < b0a1 =⇒ a0a1b1 < a2
1b0 =⇒ 2a0a1b1 < a2

1b0 + a0a1b1

and thus (a0, a1) <Q (a1b0 + a0b1, 2a1b1). Similarly

a0b1 < b0a1 =⇒ a0b2
1 < a1b0b1 =⇒ a1b0b1 + a0b2

1 < 2a1b0b1

and thus (a1b0 + a0b1, 2a1b1) <Q (b0, b1) and the claim follows.

By repeating this proof two more times with a < 0, b > 0 and a > 0,

b < 0 we can show Q is dense.

Theorem 4.31. <Q is a dense denumerable strict order with no <Q-least

and no <Q-greatest element.

Proof. Immediate consequence of Theorems 4.27, 4.28, and 4.30.

This Theorem 4.31 characterizes <Q as we now show:

Theorem 4.32. If R and S are dense denumerable strict orders with no

least and no greatest element, then R and S are isomorphic.

Proof. Bounty.

Moreover, <Q is universal among countable strict orders.

Theorem 4.33. If A is countable and ordered by R then A can be em-

bedded in Q.

Proof. It suffices to show there exists an injective and homomorphic

function f : A → Q.

Notice A countable and ordered =⇒ A = {a0, a1, a2, . . .}. Let us

show how to construct a homomorphic f : A → Q. First let f (a0) = 0

and assume that f is homomorphic on

f : {a0, . . . , an} → Q.

That is ai < aj ≤ an =⇒ f (ai) < f (aj).

We define f (an+1) to maintain this property. Let

X = {a ∈ {a0, . . . , an} : a < an+1}

Y = {a ∈ {a0, . . . , an} : a > an+1}

and notice, by design

x ∈ f [X] ∧ y ∈ f [Y] =⇒ f (x) <Q f (y).
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Because Q is dense

∃q ∈ Q : sup( f [X]) < q < inf( f [Y]).

Letting f (an) = q we see (a < an =⇒ f (a) < f (an)) and (a > an =⇒

f (a) > f (an)).

Therefore f : A → Q defined by

f (a0) = 0

f (an+1) = q

for any q

sup( f [{a ∈ {a0, . . . , an} : a < an+1}]) < q < inf( f [{a ∈ {a0, . . . , an} : a < an+1}])

is a homomorphic function from F : A × A into <Q.

For any strict order, we can define the closed interval [a, b] and the

open interval 〈 a, b〉.

Definition 4.34. Let R be a strict oder.

[a, b] :=







{p : (aRp ∧ pRb) ∨ (p = a) ∨ (p = b)} when aRb ∨ a = b ∈ fld(R)

∅ otherwise

〈 a, b〉 :=







{p : (aRp ∧ pRb)} when aRb

∅ otherwise

Theorem 4.35. Let R be an infinite strict order. If [a, b] is finite for all

a, b ∈ fld(R), then R is isomorphic to <Z or ∈ω or ∈̆ω.

Exercise 4.36. Prove or refute: Let R be an infinite strict order. If 〈 a, b〉

is finite for all a, b ∈ fld(R), then R is isomorphic to <Z or ∈ω or ∈̆ω.

4.3 Real Numbers

We wish to construct the set R of all real numbers from the set Q or ra-

tional numbers by “filling in the gaps”. It turns out that this construction

can be applied to any strict order.

Definition 4.37. Let R be a strict order and let A = fld(R). Then (B, C)

is an ordered partition of A if and only if

(B ∪ C = A) ∧ (B ∩ C = ∅) ∧ (B 6= ∅) ∧ (C 6= ∅)
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∧ ∀y∀z(y ∈ B ∧ z ∈ C =⇒ yRz).

Definition 4.38. Let R be a strict order and let A = fld(R) and (B, C) be

an ordered partition of A.

1. (B, C) is a jump ⇐⇒ (B contains an R-last element and C contains

an R-first element),

2. (B, C) is a Dedekind cut ⇐⇒ ∀z ((z is an R-infimum of c) =⇒

z ∈ C).

Definition 4.39. Let R be a strict oder and A = fld(R).

1. Let B ⊆ A. The B is dense in A when

∀x∀z(xRz =⇒ ∃y : y ∈ B ∧ xRy ∧ yRz)

2. A is Dedekind-complete if and only if every non-empty subset E of A

which has an R-upper bound also has an R-least upper bound (an

R-supremum).

Theorem 4.40 (Dedekind-completion of Q). There is a Dedekind-completion

strict order S with no S-first or S-last element such that,

1. Q ⊆ fld(S) and <Q⊆ S and S agree on Q, and

2. Q is dense in fld(S).

E = fld(S) is unique up to isomorphism; that is, if S1 and S2 are

two such relations with E1 = fld(S1) and E2 = fld(S2), then there is an

isomorphism h between E1 and E2 such that h(a) = a for all a ∈ Q.

Definition 4.41 (Real Numbers). Let R, called the set of real numbers,

be the set E constructed in Theorem 4.40, and <R be the relation S

constructed there.

Theorem 4.42. |R| = 2ω.

Proof. Assignment 4.

Theorem 4.43. |R × R| = 2ω.

Proof. Exercise.

Theorem 4.44. n 6= 0 =⇒ |nR| = 2ω.

Proof. Bounty.
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Theorem 4.45. |ωR| = 2ω.

Proof. Exercise.

Theorem 4.46. A is countable =⇒ |R \ A| = 2ω.

Proof. Bounty.



5 Well-Orderings and Ordinal Number

This chapter continues the development which began with the definition

of well-ordering (§??) and with Chapter 3 on the natural numbers.

5.1 Initial Segments

Throughout this section we assume that “less than” < is a strict partial

order on a set A; we extend < to “less than or equal to” by

Definition 5.1 (≤). ∀x, y ∈ A; x ≤ y ⇐⇒ (x < y ∨ x = y).

Definition 5.2 (Initial Segment). Let B ⊆ A. Then B is an initial segment

of A if and only if B ⊂ A and

∀x∀y; (y ∈ B ∧ x < y) =⇒ x ∈ B.

Theorem 5.3. If < well-orders A and B is an initial segment of A then

∃a ∈ A : B = {y : y ∈ A ∧ y < a} .

Proof. Since < is a well-order

∃a ∈ A : a = min(A \ B)

We have a /∈ B so it follows

a = min(A \ B)

⇐⇒ (∀x ∈ A \ B; x ≥ a)

⇐⇒ (∀x ∈ A; x 6∈ B =⇒ x ≥ a)

⇐⇒ (∀x ∈ A; x < a =⇒ x ∈ B).

Thus {y ∈ A : y < A} ⊆ B.

90
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Moreover, by definition,

y ∈ B =⇒ (∀x ∈ A; x < y =⇒ x ∈ B)

=⇒ (∀x ∈ A; x 6∈ B =⇒ x ≥ y)

Note x 6∈ B =⇒ x 6= y so

=⇒ (∀x ∈ A; x 6∈ B =⇒ x > y)

=⇒ a > y

=⇒ y ∈ {y : y ∈ B ∧ y < a}

=⇒ y ∈ {y : y ∈ A ∧ y < a}

Thus B ⊆ {y : y ∈ A ∧ y < a} and the result follows.

Exercise 5.4. Prove or refute.

1. Suppose < is a strict partial order but is not connected. Then there

is some initial segment B of A = fld(<) such that

∀a ∈ A (B 6= {x : x ∈ A ∧ x < a}).

2. For every C with at least 4 elements, there is some strict partial

order R with fld(R) = C and some initial segment B of C such that

∀a ∈ C; B 6= {x : x ∈ C ∧ xRa} .

3. There is some C and some R such that R orders C, and there is

some initial segment B of C such that

∀a ∈ C; B 6= {x : x ∈ C ∧ xRa} .

Definition 5.5. f : A → A is said to be increasing when

∀x, y ∈ A; x < y =⇒ f (x) < f (y).

Theorem 5.6. If < well-orders A and f : A → A is increasing, then

∀x ∈ A (x ≤ f (x)).

Proof. Assume the premise, let X = {x ∈ A : f (x) < x}, and towards a

contradiction assume X 6= ∅. Because A is well ordered X must have a

least element (say) z where f (z) < z.



5.1 Initial Segments 92

Notice because f is increasing

f (z) < z =⇒ f ( f (z)) < f (z)

Thereby f (z) < z satisfies the property for which z was assumed mini-

mal.  

Exercise 5.7. Any isomorphism A ≈ f B must preserve the well ordering.

In particular f (min(A)) = min(B).

Theorem 5.8. Let < well-order A. Then,

1. no initial segment of A is isomorphic to A,

2. A has only one automorphism, the identity function on A,

3. if A and B are isomorphic and well-ordered, then the isomorphism

between A and B is unique.1

Proof of 1. Assume < well-orders A and, towards a contradiction, as-

sume there is some a ∈ A such that

A ≈ f {x ∈ A : x < a}

(i.e. that A is isomorphic to some initial segment of itself).

Consider B = {x : x 6= f (x)} and let m = min(B). As f (m) 6= m we

have either f (m) < m or m < f (m).

Case: f (m) < m

f (m) < m =⇒ f ( f (m)) = f (m) =⇒ f (m) = m  .

Case: m < f (m)

Let f (a) = m and notice a > m otherwise f (a) = a.

a > m =⇒ f (a) > f (m) =⇒ m > f (m)  

Thus we must have f (m) = m which contradicts our original assump-

tion. The result follows.

Proof of 2. Assume towards a contradiction there is f such that A ≈ f A

and f is not the identity. Thereby we have B = {x : x 6= f (x)} 6= ∅ and

can use the same argument as 1.

1This is sometimes referred to as the “rigidity lemma.”
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Proof of 3. Suppose, towards a contradiction, that

A ≈ f B ∧ A ≈g B ∧ f 6= g.

Let A := A1 ∪ A2 = {a : f (a) = g(a)} ∪ {a : f (a) 6= g(a)} and notice

1. A1 6= ∅ because by Exercise 5.7

2. A2 6= ∅ because f 6= g, and f (min(A)) = g(min(A)).

Let B1 := f (A1) and note by definition that f (A1) = g(A1). We have that

f (min(A2)) = min(B \ B1) = g(min(A2)).

But by definition f (a) 6= g(a) for a ∈ A2.  

Theorem 5.9. Let R well-order A, and S well-order B. Then exactly one

of the following conditions is true:

1. A is isomorphic to B,

2. A is isomorphic to an initial segment of B,

3. B is isomorphic to an initial segment of A.

Exercise 5.10. Prove or refute. Let < well-order A, and B ⊂ A. Then B is

well-ordered by <B and is isomorphic to an initial segment of A.



6 Axiom of Choice

This axiom was once controversial, but plays an important role in branches

of mathematics.

Definition 6.1 (Choice Function). B has a choice function ⇐⇒ there is

some function f with f (z) ∈ z for every non-empty z with z ∈ B.

Example 6.2. Let {{1, 4, 7} , {9} , {2, 7}} then a choice function f is given

by

f ({1, 4, 7}) = 7 f ({9}) = 9 f ({2, 7}) = 2.

Theorem 6.3. Every finite set has a choice function.

Proof. Let B be an arbitrary finite set. We have then that B is countable

and can be written

B = {S0, S1, . . . , Sn}

for some n ∈ N. Proceeding with the PMI let

ψ(n) ⇐⇒ B = {S0, . . . , Sn} has a choice function.

Notice {S0} trivially has a choice function because S0 6= ∅ =⇒ ∃s ∈ S0

so we can let the choice function be given by f (S0) = s.

Consider B = {S0, . . . , Sn, Sn+1}, let f be the choice function on

{S0, . . . , Sn} ensured by ψ(n), and note Sn+1 6= ∅ =⇒ ∃s ∈ Sn+1.

Thus

f ′ = f ∪ {(Sn+1, s)}

is a choice function for B.

Note the proof for the above uses induction over n so does not prove

there are choice functions for infinite sets (only arbitrary large finite

sets).
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Theorem 6.4. B can be well-ordered ⇐⇒ P(B) has a choice function.

=⇒ . Assume B is well-ordered which means any nonempty subset of

B has a least element. Thereby the function

f : P(B) \ {∅} → B

x 7→ min(x)

is a choice function for P(B).

⇐= . Assume P(B) has a choice function f : P(B) \ {∅} → B. We can

build a well-ordering b0 < b1 < b2 · · · from f as follows.

b0 = f (B)

b1 = f (B \ {b0})

b2 = f (B \ {b0, b1})

...

bn = f (B \ {b0, . . . , bn−1})

...

Definition 6.5. If A is a function, then Ai is defined to be A(i), provided

that i ∈ dom(A).

We now define union, intersection, and Cartesian product over such

an index set I:

Definition 6.6. Let I ⊆ dom(A), where A is a function:

1.
⋃

i∈I Ai = ∪ {Ai : i ∈ I},

2.
⋂

i∈I Ai = ∩ {Ai : i ∈ I},

3. ∏i∈I Ai = { f : dom( f ) = I ∧ ∀i (i ∈ I =⇒ f (i) ∈ Ai)}.

Then ∏i∈I Ai is called the Cartesian product of {Ai : i ∈ I}.

As an aside, notice that ∏i∈{0,1} Ai is not generally equal to A0 × A1:

Exercise 6.7. There are sets A0 and A1 such that

∏
i∈{0,1}

Ai 6= A0 × A1.

However, we have the following:
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Theorem 6.8. For every A0 and A1,

∏
i∈{0,1}

Ai ≈ A0 × A1.

We now state the following Axiom of Choice but we do not yet assume

it:

Axiom 7 (AC). Every set has a choice function.

Theorem 6.9. The following are equivalent:

1. the axiom of choice,

2. every set can be well-ordered,

3. ∏
i∈I

Ai 6= ∅ ⇐⇒ ∀i ∈ I (Ai 6= ∅).

Theorem 6.10. The following are equivalent:

1. the axiom of choice,

2. The Maximal Principle. Let <A be a strict partial order on a set

A. Let B be a subset of A such that <A is a strict order on B. Then

there exists an ⊆-maximal subset C of A such that B ⊆ C and <A

is a strict order on C.

We now give some consequences of the axiom of choice that cannot

be proved from our other axioms alone:

Theorem 6.11. The axiom of choice implies that the following are equiv-

lanet:

1. B is infinite,

2. ω 4 B.

Theorem 6.12. The axiom of choice =⇒ (the union of a countable set

of countable sets is countable).

Theorem 6.13. The axiom of choice =⇒ (the set R of all real numbers

is not countable union of countable sets).

Theorem 6.14. The axiom of choice =⇒ (every vector space has a

basis).

Theorem 6.15. The axiom of choice =⇒ (there is a function f : R → R

such that, for all x, y ∈ R, f (x + y) = f (x) + f (y) but f (x) is not linear).

For all continuous real functions, if f (x + y) = f (x) + f (y) for all x, y,

then f (x) = kx for some constant k.

And they lived happily ever after...


