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1 Sequences

“Confusion is the sweat of learning.”
– Folklore

A sequence is a list of numbers, in this course they will be real num-
bers R. These sequences can be viewed as a function from N to R and
will be denoted {xn} for n ∈N and this means

{xn} := x1, x2, x3, . . .

where x1 is the first element of the sequence, x2 the second, and so on. . . .
Sometimes it will be convenient to begin the sequence with x0 instead.

We study sequences of numbers because they arise in many situations.
Consider the sequence of

1. scores of a batsman in cricket.

2. digits in a decimal expansion: π = 3.14 . . . = x0 . x1 x2 . . .

3. decimal approximations to a number x1 = 3.1, x2 = 3.14, . . . , xn =

expansion of π to n decimal places.

4. approximations given by Newton’s Method:

x0 = 1, xn+1 = xn −
f (xn)

f ′(xn)
.

5. of binomial coefficients
{
(

1
2
k)
}
= 1, 1

2 , − 1
8 , . . ..

In many situations, we are interested in whether the sequence converges.
The situations are typically when we have some algorithm that produces
a sequence of approximations to some desired number. Late on, we come
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to study sequences of functions that approximate a desrired function, and
sequences of other things.

Convergence. We say the sequence {xn} converges to x when

∀ε > 0; ∃N ∈N : n > N =⇒ |xn − x| < ε. (1.1)

When this is the case we can write/say

1. xn → x as n→ ∞,

2. limn→∞ xn = x, and

3. x is the limit of the sequence {xn}.

All mean the same thing.

Proposition 1.1. limn→∞
1
nr = 0 whenever r > 0. That is to say

n ∈N, r > 0 =⇒ 1
nr → 0 as n→ ∞

or equivalently: 0 is the limit limit of
{ 1

nr

}
.

PROOF. Fix ε > 0. We need to find N such that

n > N =⇒
∣∣∣∣ 1
nr − 0

∣∣∣∣ < ε.

Since n > 0,
∣∣ 1

nr − 0
∣∣ = 1

nr and so∣∣∣∣ 1
nr − 0

∣∣∣∣ < ε ⇐⇒ 1
nr < ε

⇐⇒ 1
ε
< nr

⇐⇒ n >
1

ε
1
n

.

Thus any N > 1
ε

1
n

will do.

Note the smaller ε is, the larger N must be. To guarantee that xn is
closer to x, need to go further along sequence. That is, iterate Newton’s
Method further.

Fortunately, we do not need to check the definition every time. The
following theorem allows us to reduce many limits to a few standard ones.
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Algebra of Limits. Suppose that xn → x and yn → y and let a, b,∈ R.
Then

1. axn + byn → ax + by,

2. xnyn → xy,

3. if yn 6= 0 for all n and y 6= 0 then
xn

yn
→ x

y
.

as n→ ∞.

These statements need to be justified in terms of the definition of con-
vernce. We will use what we are given about {xn} and {yn} to show what
we want about {axn + byn}.

PROOF OF 1. Fix ε > 0. We must find N ∈ N such that n > N =⇒
|(axn + byn)− (ax + by)| < ε. We estimate:

|(axn + byn)− (ax + by)| = |a(xn − x) + b(yn − y)|
6 |a| |xn − x|+ |b| |yn − y|.

When a = 0 we take N1 = 1 otherwise, since xn → x, we can choose
N1 ∈N

n > N1 =⇒ |xn − x| < ε

2|a| .

When b = 0 take N2 = 1 otherwise, since yn → y, we can choose
N2 ∈N such that

n > N2 =⇒ |yn − y| < ε

2|b| .

Choose N = max(N1, N2). Then

n > N =⇒ n > N1 and n > N2

=⇒ |a| |xn − x| < |a|ε
2|a| and |b| |yn − y| < |b|ε

2|b|

=⇒ |a| |xn − x|+ |b| |yn − y| < ε

2
+

ε

2
= ε.

Hence this N suffices.

Other basic examples (in addition to 1
nr as n → ∞) are provided by

limits of functions.

Proposition 1.2. f (x)→ L as x → ∞ =⇒ f (n)→ L as n→ ∞.
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PROOF. The statements are trivially equivalent when x is replaced by n in
the definitions of the two statements.

Example 1.3. 1

lim
n→∞

n
(

1− e−
1
n

)
= lim

x→∞

1− e−
1
x

1
x

= lim
x→∞

−e−
1
x · 1

x2

− 1
x2

H
= lim

x→∞
+e−

1
x

= 1.

Example 1.4. sin 1
n → 0 as n→ ∞ because sin 1

x → 0 as x → ∞.

Example 1.5.
n2 − 2n + 3
2n3 + n + 7

=
n2−2n+3

n3

2n3+n+7
n3

=
1
n −

2
n2 +

3
n3

2 + 1
n2 +

7
n3

Since we have

1
n
→ 0

1
n2 → 0

1
n3 → 0

as n→ ∞. We have, by the Algebra of Limits, that

1
n
− 2

n2 +
3
n2 → 0− 2 · 0 + 3 · 0 = 0

and
2 +

1
n2 +

7
n3 → 2 + 0 + 7 · 0 = 2.

Hence, by the algebra of limits,

1
n −

2
n3 +

3
n3

2 + 1
n2 +

7
n3

→ 0
2
= 0

Not all limits can be evaluated in this way.

Example 1.6.
n2 − n cos n
6n2 + n + 1

=
n2−n cos n

n2

6n2+n+1
n2

=
1− 1

n cos n
6 + 1

n + 1
n2 .

Can apply the algebra of limits to conclude that 6 + 1
n + 1

n2 → 6 as n→ ∞.
We need to know limn→∞

1
n cos n. 1

n → 0 as n → ∞ but {cos n} does not

1
H
= denotes the step is done via L‘Hoptials Rule.
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converge:

1 5 6 7

−1

1

2 3 4

•

•

•
•

•

•
•

And thus we cannot apply the Algebra of Limits here.

The Squeeze Principle. Suppose that

1. xn → x as n→ ∞,

2. yn → x as n→ ∞, and

3. ∀n (xn 6 zn 6 yn).

Then zn → x as n→ ∞.

PROOF. Proof is given in Math 2330.

Example 1.7. Continuing Example 1.6. Since, for all n,

−1 6 cos n 6 1 =⇒ − 1
n
6

1
n

cos n 6
1
n

.

We have − 1
n → 0 and 1

n → 0 as n → ∞. Hence 1
n cos n → 0 as n → ∞ by

the squeeze principle.
Hence 1− 1

n cos n→ 1 as n→ ∞ and thereby

n2 − n cos n
6n2 + n + 1

=
1− 1

n cos n
6 + 1

n + 1
n2

→ 1
6

as n→ ∞

by the algebra of limits.

Proposition 1.8. Suppose that {xn} is an increasing sequence such that
there is M ∈ |RR with xn 6 M for all n. Then {xn} converges.

This will be proved in Math 2330 Analysis. It is an important property
of R.



2 Series

A series is the formal sum of a sequence. Thus, if {xn} is a sequence, the
corresponding series is ∑∞

k=1 xk.

Definition 2.1. The nth partial sum of the series ∑∞
k=1 xk is

sn :=
n

∑
k=1

xk = x1 + x2 + · · ·+ xn.

The series ∑n
k=1 converges with sum s if the sequence {sn} of the

partial sums converges to s. In this case we write

∞

∑
k=1

xk = s.

If ∑∞
k=1 xk does not converge, we say that it diverges.

Intuitively, ∑∞
k=1 xk = s if x1 + x2 + · · ·+ xn is close to s for big n.

We will often start the sum at a different point like

∞

∑
k=a

xk.

This converges if the sequence of partial sums {∑n
k=a xk} converges. It

follows from the algebra of limits that ∑∞
k=1 xk converges if and only if

∑∞
k=a xk converges and

∞

∑
k=1

=
a−1

∑
k=1

xk +
∞

∑
k=a

xk = (x1 + x2 + · · ·+ xa−1) +
∞

∑
k=a

xk.

Example 2.2. Let |r| < 1. Then

∞

∑
k=0

rk = lim
n→∞

n

∑
k=0

rk

6
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converges. To see this note

sn =
n

∑
k=0

rk =
1− rn+1

1− r
sum of geometric series

→ 1− 0
1− r

=
1

1− r
as n→ ∞ by algebra of limits.

Hence ∑∞
k=0 rk = 1

1−r .

Example 2.3. Let 0 < x < 1 have decimal expansion

x = 0.d1 d2 d3 · · ·

where dk ∈ {0, 1, . . . , 9}. Then the series ∑∞
k=1 dk10−k has partial sums

given by

sn =
n

∑
k=1

dk10−k = expansion of x to n decimal places.

Hence ∑∞
k=1 dk10−k = limn→∞ sn = x.

The sum
∞

∑
k=2

(
1

k− 1
− 1

k

)
(2.1)

has partial sums given by

sn =
n

∑
k=2

(
1

k− 1
− 1

k

)
=

(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+ · · · = 1− 1

n
.

Hence
∞

∑
k=2

(
1

k− 1
− 1

k

)
= lim

n→∞
sn = lim

n→∞
1− 1

n
= 1

and thereby
∞

∑
k=2

1
k2 − k

=
∞

∑
k=2

(
1

k− 1
− 1

k

)
= 1. (2.2)

Algebra of Series. Suppose that ∑∞
k=a xn and ∑∞

k=n yn are convergent
series. Then

∞

∑
k=a

bxn + cyn = b
∞

∑
k=a

xn + c
∞

∑
k=a

yn.

PROOF. Let sn = ∑n
k=a xk and tn = ∑n

k=a yk, so that

sn → s =
∞

∑
k=a

xk and tn → t =
∞

∑
k=a

yk
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PROOF. Let sn = ∑k=a xk and tn = ∑k=a yk, so that

sn → s =
∞

∑
k=a

xk and tn → t =
∞

∑
k=a

yk.

Then

n

∑
k=a

(bxk + cyk) = b
n

∑
k=a

xk + c
n

∑
k=a

y)k

= bsn + ctn

→ bs + ct by Algebra of Limits

= b
∞

∑
k=a

xk + c
∞

∑
k=a

yk.

Multiplication of series is much more difficult. Consider

s2t2 = (x1 + x2)(y1 + y2) and s3t3 = (x1 + x2 + x3)(y1 + y2y + 3).

Rearranging into order for a series is a problem.

Example 2.4.

∞

∑
n=0

2
3n +

5
(−4)n+1 =

∞

∑
n=0

2
1
3n −

5
4
· 1
(−4)n

= 2
∞

∑
n=0

1
3n −

5
4

∞

∑
n=0

1
(−4)n

= 2 · 1
1− 1

3

+
5
4
· 1

1 + 1
4

= 3 + 1 = 4.

Lemma 2.5. If ∑ xn converges, then xn → 0 as n→ ∞.

PROOF. Since ∑ xn converges, we have sn → s, say. Then sn−1 → s as well
and so

xn = sn − sn−1 → s− s = 0

by the algebra of limits.

Example 2.6. ∑∞
n=2

1
n2−n converges and so 1

n2−n → 0.
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The contrapositive is more useful.

Example 2.7. The contrapositive is more useful. ψ =⇒ ϕ is equivalent
to ¬B =⇒ ¬A. If xn 6→ 0, then ∑ xn does not converge. For example
(−1)n 6→ 0 and so ∑∞

n=1(−1)n does not converge.

There are series such that xn → 0 and ∑n xn diverges.

Proposition 2.8. If {xn} is a sequence of nonnegative numbers, then ∑k xk

either converges or diverges to ∞. i.e.

sn =
n

∑
k=1

xkn→ ∞ as n→ ∞.

PROOF. The sequence {sn} of partial sums is nondecreasing: sn+1 = sn +

xn > sn. Suppose that there is some M ∈ R with sn 6 M for every n.
Then, by the Monotone Convergence Theorem {sn} converges, i.e. ∑k xn

converges.
Otherwise, for every M there is an N ∈N such that sN > M. But then,

n > N =⇒ sn = sN +
n

∑
k=N+1

> sN > M

and so sn → ∞.

∞

∑
n=1

1
n

diverges.

PROOF.

sn =
n

∑
k=1

1
k
= 1 +

1
2
+

1
3
+ · · ·+ 1

n

= 1 +
1
2
+

(
1
3
+

1
4

)
+

(
1
5
+

1
6
+

1
7
+

1
8

)
+ · · ·

> 1 +
1
2
+

1
4
+

1
4
+

1
8
+

1
8
+

1
8
+

1
8
+

1
16

= 1 +
1
2
+

1
2
+ · · ·+ 1

2

= 1 +
`

2
if n = 2`
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Given M ∈ R+, choose R > 2M and put n = 2`. Then

s2` −
2`

∑
k=1

1
k
> 1 +

`

2
> M.

Hence ∑∞
k=1

1
k = ∞.

Even though in the example we have 1
k → 0 as k → ∞, ∑∞

k=1
1
l = ∞.

We shall see that ∑k xk converges if xk → 0 “fast enough”.

1
k
→ 0 but not fast enough.

1
k2 − k

→ 0 fast enough

We will compare rates of convergence of sequences. Here is a good source
of convergent series.

The Integral Test. Suppose f : [a, ∞) → (0, ∞) is a continuous and
decreasing function. Then

∞

∑
k=a

f (k) converges ⇐⇒ lim
R→∞

∫ R

a
f (x)dx exists.

PROOF OF ⇐= . Suppose that

lim
R→∞

∫ R

a
f (x)dx = I < ∞.

a R

I is the area under the curve between a and R.
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Then, ∀n,

sn =
n

∑
k=a

f (k) = f (a) +
n

∑
k=n+1

f (k)

6 f (a) +
∫ n

a
f (x)dx

6 f (a) + I

ha a + 1 a + 2

Hence {sn} is an increasing sequence which is bounded above. There-
fore {sn} converges i.e. ∑∞

k=a f (k) converges.

PROOF OF =⇒ . Suppose that
∫ R

a f (x)dx → ∞ as R → ∞. On the other
hand,

ha a + 1 a + 2

sn >
∫ n+1

a
f (x)dx → ∞ as n→ ∞

and it follows that sn → ∞ as n→ ∞. Hence ∑k f (k) diverges to ∞.

Example 2.9. ∑∞
k=1

1
ks converges ⇐⇒ s > 1, 1

k5 = f (k), where f (x) = 1
x5 .

We have ∫ R

1
f (x)dx =

∫ R

1

1
x5 dx
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=


[

x−s+1

−s + 1

]R

1
s 6= 1

[ln x]R1 s = 1

=


R−s+1

−s + 1
− 1
−s + 1

s 6= 1

ln R s = 1

If s > 1 then −s + 1 < 0 and so

− 1
−s + 1

→ 1
1− s

as R→ ∞.

Hence ∑∞
k=1

1
ks converges when s < 1.

If s = 1 then
ln R→ ∞ as R→ ∞.

Hence ∑∞
k=1

1
k diverges to ∞. (Already seen directly.)

If s < 1 then −s + 1 > 0 and so

− 1
1− s

→ ∞ as R→ ∞.

Hence ∑∞
i=1

1
ks diverges to ∞ when s < 1.

Thus, in particular, ∑∞
k=1

1
k2 converges, ( 1

n2 → 0 fast enough) and ∑∞
k=1

1√
k

diverges to ∞, ( 1√
k
)→ 0, but no fast enough.)

These examples, and the geometric series, from the basis of the theory
of convergent series. Many other series can be shown to be convergent (or
divergent) by comparing with them.

The Comparison Test. Let {xn} and (yn) be sequences and suppose
that there is an N such that

∀n > N; 0 6 xn 6 yn

1. ∑n yn converges =⇒ ∑n xn converges.

2. ∑n xn diverges =⇒ ∑n yn diverges.

PROOF. For part 1. let

sn =
n

∑
k=N

xn and tn =
n

∑
k=N

yn.
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Thus {sn} is a non-decreasing sequences and sn 6 tn for all n > N. Since

∑n yn converges, we have tn → t for some and tn 6 t for all n because
{tn} is nondecreasing. Hence sn 6 t for all n > N and so {sn} is a non-
decreasing and bounded above sequence. Hence, by (the MCT) Proposi-
tion 1.8, so converges Therefore ∑n xn converges.

Part 2. is the contrapositive of 1.

Example 2.10. ∑∞
n=1

1√
n diverges. We have 0 6 1

n 6 1√
n for all n and ∑ 1

n

diverges.

The Ratio Test. Let xn > 0 for every n and suppose that xn+1
xn
→ L

as n→ ∞. Then

1. L < 1 =⇒ ∑ xn converges,

2. L > 1 =⇒ ∑ xn diverges,

3. L = 1 =⇒ ∑ xn many converge or diverge.

PROOF OF 1. Since L < 1, we have L < L + 1−L
2 = L+1

2 < 1.

ε

1L + 1
2

L

Hence there is N ∈N such that

n > N =⇒ xn+1

xn
<

L + 1
2

⇐⇒ xn+1 <
L + 1

2
xn.

It may be shown by induction that

xN+j <

(
i + 1

2

)j

xN , j > 0.

The series
∞

∑
i=N

(
i + 1

2

)n−N

xN

i.e. a geometric series and converges to 2xN
1−2 because i+1

2 < 1. Hence ∑n xn
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converges by the Comparison Test.

Thus the Ratio Test relies on comparing the given series with the
basic example of the geometric series.

PROOF OF 2. Since L > 1, we have

1 < L− i− 1
2

=
L + 1

2
< L.

LL + 1
2

1

Hence there is N ∈N such that

n > N =⇒ xn+1

xn
>

i + 1
2

⇐⇒ xn+1 >

(
i + 1

2

)
xn.

Hence xN+j >
( i+1

2

)j
xN , j > 0. Since

( i+1
2

)
> 1, it follows that xn → ∞ as

n→ ∞. Hence ∑n xn diverges.

∞

∑
n=1

n2

2n converges

PROOF. We have xn = n2

2n and so

xn+1

xn
=

(n+1)2

2n+1

n2

2n

=
1
2

(
1 +

1
n

)2

→ 1
2

as n→ ∞.

Since L = 1
2 < 1, the series converges.

∞

∑
k=0

2n

n!
converges

PROOF. We have xn = 2n

n! and so

xn+1

xn =

2n+1

(n+1)!
2n

n!

=
2

n + 1
→ 0 as n→ ∞.
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Since L = 0 < 1, the series converges.

∞

∑
n=1

nn

n!
diverges

PROOF. We have xn = nn

n! and so

xn+1

xn
=

(n+1)n+1

(n+1)!
nn

n!
=

{
1 +

1
n

}n

→ e > 1.

∞

∑
n=1

1
n

diverges

PROOF.
xn+1

xn
==

1
n+1

1
n

=
n

n + 1
→ 1 as n→ ∞.

∞

∑
n=1

1
n2 converges

PROOF.
xn+1

xn
=

1
(n+1)2

1
n2

=

(
n

n + 1

)2

→ 1

∞

∑
n=1

1
n2 converges

PROOF.

xn+1

xn
=

1
(n+1)2

1
n2

=

(
n

n + 1

)2

→ 1 as n→ ∞
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Remark. Thus the series may converge or may diverge when L = 1.

Other tests for convergence of series include the nth root test and the
limit form of the comparison test.

The comparison test applies to non-negative series and such series ei-
ther convergence or they diverge to infinity. Convergence of series where
not all terms have the same sign is more copmlicated.

Proposition 2.11. Let {xn} be a sequence of real numbers. If ∑n |xn| con-
verges, the ∑n xn converges.

PROOF. We have that

∀n; 0 6 xn + |xn| 6 2|xn|

Since ∑ |xn| is convergent ∑ 2|xn| is a converged by Proposition ??. Hence,
by the comparison test, ∑(xn + |xn|) is convergent.

We have xn = (xn + |xn|)− |xn| and both ∑(xn + |xn|) and ∑ |xn| are
convergent. Therefore,

∑
n

xn = ∑
n
(xn + |xn|)− |xn|

is convergent by Proposition ??.

Corollary 2.12. Let {xn} be a sequence of non-zero real numbers and sup-
pose that |xn+1|

|xn| → L.

1. L < 1 =⇒ ∑ xn converges,

2. L > 1 =⇒ ∑ xn diverges.

The converse of Proposition ?? is false. It is possible for ∑ xn to converge
while ∑ |xn| does not.

Example 2.13. We have already seen that ∑ 1
n diverges, but ∑ (−1)n+1

n con-
verges.

Consider the even partial sums

sik =
ik

∑
n=1

(−1)n+1

n

=

(
1− 1

2

)
+

(
1
3
− 1

4

)
+ · · ·+

(
1

2k− 1
− 1

2k

)
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is an increasing sequence because

s2(k+1) = s2k +

(
1

2k + 1
− 1

2k + 2

)
.

It is also bounded above because

s2k = 1−
(

1
2
− 1

3

)
−
(

1
8
− 1

5

)
− · · · − 1

2k
< 1.

Hence {sk} converges, s2k → s say.
For the odd partial sums we have

s2k+1 = s2k +
1

2k + 1
→ s + 0 = s as k→ ∞

by the Algebra of Limits. Hence sk → s as k→ ∞.

The fact that, if the even terms and the odd terms of a sequence
converge to the same limit, then the sequence as a whole converges
to that limit too, must be proved.

Thus
(−1)n+1

n
converges.

Definition 2.14. Suppose that ∑ xn is a series of real numbers.

1. ∑ |xn| converges =⇒ ∑ xn converges absolutely, converges abso-
lutely.

2. ∑ xn converges but ∑ |xn| diverges, we say that ∑ xn converges con-
ditionally.

Alternating Series Test. Suppose that {xn} is a decreasing sequence
(i.e. xn > xn+1, ∀n) and that xn → 0. Then the alternating series

∑(−1)n+1xn converges.

PROOF. (The same argument as the example.)

Consider s2k = ∑2k
n=1(−1)n+1xn. {s2k} is an increasing sequence boudned

by x1. Hence s2k → s, say, and

s2k+1 = s2k + xsk+1 → s + 0 = s as k→ ∞.

Therefore ∑∞
n=1(−1)n+1xn sums to s.
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Exercise 2.1. ∑ (−1)n

n2 converges absolutely

Exercise 2.2. ∑ 1√
n diverges

Exercise 2.3. ∑ (−1)n
√

n converges

Exercise 2.4. Find an non-alternating series which converge conditionally.

Conditional convergence is much more delicate than absolute conver-
gence. Care must be taken.

It can be shown that, if ∑ xn s absolutely convergent, then we can
rearrange the terms in any way and still get the same sum. e.g. Let
E = ∑ x2n be the sum of the even terms and 0 = ∑2n−1 be the sum of
the odd terms. Then ∑ xn = E + 0 when ∑ xn is absolutely convergent.
(Also, sum of the positive and sum of negative.)

Consider ∑∞
n=1

(−1)n+1

n though. The sum of the even terms is

∞

∑
k=1

(−1)2k+1

2k
=

∞

∑
k=1

−1
2k

= −p

and the sum of the odd terms is

∞

∑
k=1

(−1)2k

2k− 1
=

∞

∑
k=1

1
2k− 1

= ∞.

In fact, the order in which the terms in the series are added can be rear-
ranged so that it sums to any number at all.

10−1

ε

For example, the series can be rearranged to sum to 2002: Add positive
(odd) terms until the sum is just greater than 2002.

1 +
1
3
+

1
5
+ · · ·+ 1

2`− 1
> 2002.

Then add negative (even) terms until the sum is just less than 2002.

1 +
1
3
+ · · ·+ 1

2k + 1
− 1

2
< 2002.

Then add more positive terms:

()− 1
2
+ () > 2002
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(· · ·)− 1
4
< 2002.

and so on.
All terms are eventually included in a series which sums to 2002. The

same is true of any conditionally convergent series.

Proposition 2.15. Let ∑ xn be conditionally convergent. Then the terms
can be rearranged so that the new series diverges or sums to any given
value S.

SKETCH OF PROOF. The proof is essentially the same argument as in the
example. If ∑ xn is conditionally convergent, then

∑(positive terms) = ∞ and ∑(negative terms) = ∞

2.1 Power Series

Power Series. A power series is a series of the form

∞

∑
n=0

an(x− c)n (2.3)

where x is a variable and an and c are constants. A series in this form
is said to be centred at c.

The series may converge for some values of x and diverge for others.
When it converges, the sum of the power series is a number, son, which
depends on x. Thus s is a function whose domain is the set of all x such
that 2.3 converges. Such power series functions are very useful.

The natural questions to ask are:

1. For which values of x does a power series converge?

2. What are the properties of functions given as the sum of a power
series?

3. Which functions can be realised as the sum of a power series?

We have already seen that the geometric series ∑∞
n=0 xn converges for

|x| < 1 and diverges for |x| > 1. For −1 < x < 1 we have
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∞

∑
n=0

xn =
1

1− x
.

10−1

ε

Thus the series converges on an interval and the centre of the interval is
the same as the centre of the series. The series diverges for x outside the
interval. We shall see that general power series behave in the same way.

The proofs of the theorems will not be given but they use the compar-
ison test to compare a given power series with the geometric series.

Proposition 2.16. Suppose that |an| 6 2 for every n. Then ∑∞
n=0 an(x− 3)n

converges absolutely for x ∈ (2, 4).

PROOF. We have |an(x− 3)n| 6 2|x− 3|n for all n. Since

∑
n

2|x− 3|n = 2 ∑
n
|x− 3|n converges

when |x− 3| < 1, it follows by the comparison test that ∑n |an(x− 3)n| con-
verges when |x− 3| < 1. Hence ∑n an(x− 3)3 converges when |x− 3| < 1.

Theorem 2.17. Let ∑∞
n=0 an(x − c)n be a power series centred at c. Then

either

1. the series converges for all x; or

2. the series converges for x = c only, or

3. there is a R > 0 such that the series converges for |x − c| < R and
diverges for |x− c| > R.

(Note. In case 3. we have not said what happens when |x − c| = R.
Anything can happen.

Radius of Convergence. The power series

∞

∑
n

an(x− c)n
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has radius of convergence equal to

∞ when the series converges for all x,

0 when the series converges for x = c only,

R when ∃R > 0 such that the series converges for |x − c| < R and
diverges for |x− c| > R.

The set on which the series converges is called the interval of conver-
gence. In case (1) the interval is R. In case (2) the interval of conergence is
{c}. In case (3) the interval of convergence will be (c− R, c + R), [c− R,
c + R), (cR, c + R], or [cR, c + R]. All possibilities may occur.

The ratio test may be used to find the radius of convergence. (Not
useful for proofs of general results.)

Question 2.18. For which values of x does the following series converge?

∞

∑
n=5

n2 − xn

3n−2 .

ANSWER. The terms of the series are aN = n2xn

3n−2 . We have

|an+1|
an

=

(n+1)2xn+1

3n−1

n2xn

3n−2

→ |x|
3

as n→ ∞

The limit L = |x|
3 < 1 when |x| < 3. Hence the series converges

absolutely when |x| < 3. The limit L = |x|
2 > 1 when |x| > 3. Hence the

series diverges when |x| > 3.
When x = 3, the series is

∞

∑
n=5

9n2

which diverges because 9n2 6→ 0.
When x = −3, the series is

∞

∑
n=5

(−1)n9n2

which diverges because
(−1)n9n2 6→ 0.

Hence the interval of convergence is (−3, 3). (The series is centred at 0).



2.1 Power Series 22

Exercise 2.5. 1.
∞

∑
n=1

(x− 2)n

n
,

2.
∞

∑
n=1

(2x)n

n2 ,

3.
∞

∑
n=0

xn

n!
,

4.
∞

∑
n=1

nn

(x + 5)n .

The answer to the first question is therefore that power series converge
on an interval. Each power series therefore defines a function

F(x) =
∞

∑
n=0

an(x− c)n

on its interval of convergence. What are the properties of functions defined
in this way?

Theorem 2.19. Suppose that

f (x) =
∞

∑
n=0

an(x− c)n

converges on (c− R, c+ R). Then f is differentiable on (c− R, c+ R)
and

f ′(x) =
∞

∑
n=1

nan(x− c)n−1,

and this power series for f ′ also converges absolutely on (c− R, c +
R).

The function f has an antiderivative

∫ x

c
f (t)dt =

∞

∑
n=0

an(x− c)n+1

n + 1

and this power series is absolutely convergent on (c− R < c + R).

PROOF. We will not prove this theorem in this course. It is harder than
you might think!

Example 2.20. We have

x ∈ (−1, 1) =⇒ 1
1− x

=
∞

∑
n=0

xn
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and so
d

dx

(
1

1− x

)
=

∞

∑
n=1

nxn−1.

Hence

x ∈ (−1, 1) =⇒ 1
1− x

2
=

∞

∑
n=0

(n + 1)xn.

Example 2.21. Since
1

1 + x
=

∞

∑
n=0

(−1)nxn

we have ∫ x

0

1
1 + t

dt =
∞

∑
n=0

(−1)n

n + 1
xn+1

or ln(1 + x) = ∑∞
n=1

(−1)n+1

n xn, −1 < x < 1.

Note: Unlike ∑∞
n=0 xn, the series on the right hand side converges when

x = 1 by the alternating series test. It can be shown that the equation holds
for x = 1 as well:

ln 2 =
∞

∑
n=1

(−1)n+1

n

= 1− 1
2
+

1
2
− · · · .

This requires a separate proof, the theorem does not imply it.
The theorem may be stated in words as “power series may be inte-

grated and differentiated term by term”. Other operations on power series
may be carried out term by term.

Addition. If f (x) = ∑∞
n=0 an(x− c)n and g(x) = ∑∞

n=0 bn(x− c)n are
two power series which both converge on (c− T, c + T) (i.e. T 6 the
radius of convergence of both series)< then

f (x) + g(x) =
∞

∑
n=0

(an + bn)(x− c)n.

Multiplication. This is more complicated but works just as multipli-
cation of polynomials does. e.g. f (x) = 1 + x and g(x) = 1 + x− 24

are power series (with infinite radius of convergence).

f (x)g(x) = 1 + 2x + x2 − 2x4 − 2x5
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1
1− x

= 1 + x + x2 + · · ·

(
1

1− x2

)2

= 1 + x + x2 + · · ·
+ x + x2 + x3 + · · ·

+ x2 + x3 + · · ·
= 1 + 2x + 3x2 + · · · .

Composition. Let f (x) = ∑∞
n=0 anxn and (x) = ∑∞

n=0 bnxN and sup-
pose that g(0) = b0 has modulus less than the radius of convergence
of ∑∞

n=0 anxn. Then a composite power series is obtained:

∞

∑
n=0

an

(
∞

∑
k=0

bkxk

)n

.

The series converges to f ◦ g(x).

Example 2.22 (Very simple example).

f (x) =
1

1 + x
= 1− x + x2 − x3 + · · ·

g(x) = x2.

Then

( f ◦ g)(x) =
1

1 + x2 = 1− x2 + (x2)2 − (x2)3 + · · ·

= 1− x2 + x4 − x6 + · · ·

This series converges when x2 6 1, i.e. −1 6 x 6 1.
Integrating, we have

arctan x =
∫ x

0

1
1 + t2 dt = x− 1

3
x3 +

1
5

x5 − · · ·

and when x = 1, this yields

1− 1
3
+

1
5
− 1

7
+ · · · = arctan 1 =

π

4
.

In all these operations power series behave like infinite degree polyno-
mials and it often helps to PAGE CUT OFF 51.
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Example 2.23 (A less simple example). 1
1+x+2x2 = f ◦ g(x) where f (x) =

1
1+x , g(x) = x + 2x2. Hence

1
1 + (x + 2x2)

= 1− (x + 2x2) + (x + 2x2)2 + (x + 2x2)3 + · · ·
= (1− x− 2x2 + · · · ) + (x2 + 4x3 + 4x4 + · · · )− (x3 + 6x4 + 12x5 + 8x6 + · · · ) + (x4 + 6x5)

= 1− x− x2 + 3x3 − x4 − 4x5 − · · ·

Converges for |x + 2x2| < 1 i.e. −1 < x < 1
2 . Since the centre of conver-

gence is 0, radius of convergence is in fact at least 1 for −1 < x < 1.

2.1.1 Which functions may be represented as power series?

If f is represented by a power series on (c− R, c + R), then by Theorem
?? f is differentiable and f ′ is the sum of a power series on (c− R, c + R).
Hence f cannot be |x− c| for example.

Applying the theorem to f ′, we see that f is twice differentiable. An in-
duction argument shows that f is infinitely differentiable on (c−R, c+R).
The coefficients of the power series can be recovered from the derivatives.

Proposition 2.24. Suppose that f (x) = ∑∞
n=0 anxn on (c− R, c + R). Then

f is infinitely differentiable on (c− R, c + R) and

an =
f (n)(c)

n!
.

PROOF. First of all,

f (c) =
∞

∑
n=0

an(0)n = a0 + a10 + a20 + · · · = a0.

Next, by Theorem ??

f ′(x) =
∞

∑
n=1

nan(x− c)n−1 =⇒ f ′(c) = a.

By induction,

f (k)(x) =
∞

∑
n=k

n(n− 1) · · · (n− k + 1)an(x− c)n−k.

Hence f (k)(c) = k!ak.
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Taylor Series. Let f be infinitely differentiable at c. Then the Taylor
series for f centred at c is

∞

∑
n=0

f (n)(c)
n!

(x− c)n.

When c = 0, the series ∑∞
n=0

f (n)(0)
n! is also known as the MacClaurin

series for f .
The nth sum of the Taylor series

Tn( f , c)(x) =
n

∑
k=0

f (k)(c)
k!

(x− c)k

is called the degree n Taylor polynomial for f (centred at c).

Note:

1. The degree n Taylor polynomial is the unique degree n (or less) poly-
nomial p such that p(k)(c) = f (k)(c) for k = 0, 1, . . . , n.

2. y = T1( f , c)(x) is the equation of the straight tangent to y = f (x) at
x = c.

PICURE PAGE 55.

Question 2.25. Does the Taylor series for f at c converge to f near c?

ANSWER. In general, no.
However, for most familiar functions it does and is used to compute

the functions. The next result is used to prove convergence of Taylor series
to the functions.

Taylor’s Theorem. Suppose that f is n + 1 times continuously differ-
entiable on (c− R, c + R). Then for each x ∈ (c− R, c + R), there is
d between x and c such that

f (x) =
n

∑
k=0

f (k)(c)
k!

(x− c)k +
f (n+1)(d)
(n + 1)!

(x− c)n+1

= degree n Taylor polynomial at c + Remainder term.

= Tn( f , c) + Rn(x).
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It is always possible to write

f (x) = Taylor polynomial + something.

The point of the theorem is that it tells what the something is. This al-
lows us to estimate the size of the error if we approximate f by its Taylor
polynomial.

The proof of Taylor’s Theorem is beyond the scope of this course.

Example 2.26. Let f (x) = sin x.

f (n)(x) =



cos x n = 4j + 1

− sin x n = 4j + 2

− cos x n = 4j + 3

sin x n = 4j.

For the Taylor series centred at 0,

|Rn(x)| =
∣∣∣∣± sin d or ± cos d

(n + 1)!
(x− c)n

∣∣∣∣
6
|x− c|n
(n + 1)!

→ 0 as n→ ∞

and

f (n) =


1 n = 4j + 1

0 n = 4j or 4j + 2

−1 n = 4j + 3.

Hence, for odd n, the degree n Taylor polynomial is

Tn(sin, 0)(x) = x− 1
3!

x3 +
1
5!

+ · · · ± 1
n!

xn

=
k

∑
j=0

(−1)j

(2j + 1)!
x2j+1,

where n = 2k + 1.
Since Rn(x)→ 0 for all x, we have sin x = ∑∞

j=0
(−1)j

(2j+1)! x
ij+1.

Taylor’s Theorem allows us to estimate the error when we approxi-
mate by a Taylor polynomial. e.g. Use the degree 5 Taylor polynomial to
approximate sin 1 and estimate the error. We have

T5(sin, 0)(1) = 1− 1
3!

+
1
5!
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= 1− 1
6
+

1
1210

= 0.8416.

The error is

|R5(1)| =
∣∣∣∣± sin d

6!

∣∣∣∣ 6 1
6!

= 0.00138.

In fact, T5(sin, 0) = T6(sin, 0) and so the error is

|R6(1)| =
∣∣∣∣± cos d

7!

∣∣∣∣ 6 1
7!

= 0.00019 . . .

when d ∈ (0, 1).

2.2 The Generalised Binomial Theorem

Theorem 2.27 (Generalised Bionmail Theorem). Let r be nay real
number. Then

(1 + x)r =
∞

∑
n=0

(
r
n

)
xn for |x| < 1

where
(

r
n

)
=

r(r− 1) · · · (r− n + 1)
n!

.

(Note: For some values of r the series converges for some x with |x| > 1
as well.)
PROOF. The nth derivative of (1 + x)r is

dn

dxn (1 + x)r = r(r− 1) · · · (r− n + 1)(1 + x)n−r.

When x = 0, this equals r(r− 1) · · · (r− n + 1).
It follows the coefficient of xn is

r(r− 1) · · · (r− n + 1)
n!

=

(
r
n

)
To show that the series converges for |x| < 1 use the ration test. We

have an = (r
n)xn and do

an+1

an
=

∣∣∣∣∣ (
r

n+1)

xn+1

(
r
n

)
xn

∣∣∣∣∣ =
∣∣∣∣ r− n
n + 1

· x
∣∣∣∣→ |x| as n→ ∞.
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Therefore ?? converges when |x| < 1.

Notice we have not shown that the series converges to (1 + x)r. For
this we must show that (r

n)|x|n → 0 as n→ ∞.

Exercise 2.6. Prove
(

r
n

)
|x|n → 0 as n→ ∞.

We check a couple of cases:

r = 1 (
−1
n

)
=
−1(−2) · · · (−n)

n!
= (−1)n

and hence the binomial theorem in this case is;

(1 + x)−1 = 1− x + x2 − · · · ,

That is to say, the sum of a geometric series.

r = 1
2 ( 1

2
n

)
=

1
2

(
− 2

1

) (
− 3

2

)
n! · · ·

( 3
2 − n

)
n!

Note that
∣∣∣( 1

2
n)| <

1
2n

∣∣∣ and so |Rn(x) < |x|n
2n → 0 whenever |x| 6 1.

Hence (1 + x)
1
2 =

∞

∑
n=0

( 1
2
n

)
xn for |x| 6 1.



3 Differential Equations

Example 3.1. Population growth and compound interest are modelled by
exponential growth.

Example 3.2 (Concrete Situation). A lump of lead at 100◦C is out in a room
where the temperature is 20◦C. After one hour the lead is 60◦C. What will
its temperature be after three hours?

Example 3.3 (Scientific Observation). Newton’s Law of Cooling, the rate
of change of temperature of a cooling body is proportional to the differ-
ence between its temperature and the surrounding temperature.

Let T(t) be the temperature of the lead at time t. Then

T(0) = 100◦C

T′(t) = k(T(t)− Ta) for some k

where Ta = 20◦C is the ambient temperature.

3.1 Differential Equations

A differential equation (DE) is an equation involving an unknown func-
tion and its derivatives. An ordinary differential equation (ODE) is a DE
in which the unknowns is a function of one variable.

Example 3.4. If y is a function of x: y′ = 2y.

Definition 3.5 (Order). The order of an ODE is the highest order derivative
appearing.

Example 3.6. y′ = 2y is a first-order ODE

y′′ + y′ + y = x2 + x + 1

is a second-order ODE.

30
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Definition 3.7. A solution to an ODE is a function which satisfies the
equation.

Example 3.8. y = e2x is a solution of y′ = y because

y′ = 2e2x by chain rule

2y = 2e2x

Example 3.9. y = x2 − x is a solution of y′′ + y′ + y = x2 + x + 1 because

y = x2 − x

y′ = 2x− 1

y′′ = x2 + x + 1.

Example 3.10. y′ = f (x) has solution y =
∫

f (x)dx. The solution is not
unique, there is a constant of integration. We shall see that there are typi-
cally infinitely many solutions to an ODE.

Differential Equations generally arise from mathematical models.

picture page 64

3.1.1 Application: Radioactive Decay

Concrete Situation: A radioactive material (e.g. uranium) emits radiation
as it decays to another element. (Uranium decays to thorium and then in
a chain of other reactions to lead eventually.)
Scientific Observation: The rate of decay is proportional to the mass of
radioactive material (provided there is not enough mass for a chain reac-
tion). Let M(t) be the mass of material at time t. The

M′(t) = kM(t)

Mathematics: Every solution to this equation has the form M(t) = Cekt

for some C. In fact, C = M(0) = mass at time 0. Note that k is a constant
determined by measurement (experiment).

We can then predict how much radioactive material will remain in 100

years (say). This situation, where the rate of change of a function is pro-
portional to the value of the function is very common.

Proposition 3.11. If y(x) is a differentiable function such that y′(x) =
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ky(x), for some constant k, then

y(x) = y(0)ekx.

PROOF. Consider e−kxy. We have

d
dx

(
e−kxy

)
= −ke−kxy + e−kxy′ product rule

= −ke−kxy + e−kx(ky) y substituting the DE

= 0.

Hence e−kxy = c, constant. Hence y(x) = ce−kx. Substituting x = 0 yield
c = y(0).

It follows that situations of this sort, where the rate of change is pro-
portional to the value of the function lead to

exponential decay when k < 0 for which the derivative is negative, or

exponential growth when k > 0 for which the derivative is positive.

Example 3.12 (Exponential Decay). Radioactive decay. Newton’s law of
coding. Transmission of light.

Mathematics: Hence, if D(t) = T(t) − Ta, then D′(t) = kD(t), D(0) =

100− 20 = 80. Therefore,
D(t) = 80ekt.

We do not know what k is yet but have one more piece of information

T(1) = 60, and so D(1) = 60− 20 = 40.

Therefore, 40 = 80ek which implies

ek =
1
2

, k = ln
1
2

and so D(t) = 80
( 1

2

)t
.

Prediction: At t = 3, T(3) = Tn + D(3) = 20 + 80
( 1

2

)3
= 30◦C.

Example 3.13 (Radioactive Decay). 238
92 U has a half-life of 4 · 5× 109 year

(about the age of the solar system) before it decays to the 234
90 Th (which is

also radioactive and decays in steps to lead).

Exercise 3.1. How long does it take 10 grams of 235
92 U to decay to decay in

1 gram of 235
92 U (and other elements)?
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Scientific Observation: The rate of decay of an element is proportional to
the amount:

M′(t) = kM(t),

if M(t) is the amount of material at time t. Hence M(t) = M(0)ekt. At
t1 = 4.5× 109 years we have M(t1) =

1
2 M(0) (the time for half to decay is

independent of M(0) and so

ekt1 =
1
2

=⇒ kt1 = ln
1
2

=⇒ k =
ln 1

2
4

.

Prediction: If M(0) = 10, the time t when M(t) = 1 satisfies

1 = 10ekt =⇒ 1
10

= ekt

=⇒ t =
ln 1

10
k

=
ln 1

10

ln 1
2

× 4.5× 109.

We have seen:

1. y′ = f (x) =⇒ y =
∫

f (x)dx + c.

2. y′ = ky =⇒ y = cekt.

In both cases the general solution has arbitrary constant. Further infor-
mation is used to evaluate the constant. This is usually the value of the
function at some value of x (or t).

Question 3.14. How do we find the general solution?

ANSWER. There is no general method for finding closed solutions (like
integration). Numerical techniques may be used.

There are techniques which apply to certain commonly occuring types
of ODE’s.

3.1.2 Separable ODE’s

Separable ODE. A 1st-order ODE of the form

y′ = f (x)g(y)

is called separable.
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To solve a separable ODE, we “separate the variables”:

y′ = f (x)g(y) ⇐⇒ 1
g(y)

y′ = f (x)

=⇒
∫ 1

g(y)
y′ dx =

∫
f (x)dx

=⇒
∫ 1

g(y)
dy =

∫
f (x)dx.

Where we have used a change of variable on the left by substitution.
Integrating both sides gives

1. function of y(x) = function of x,

2. solution for y if possible.

Question 3.15. Solve y′ = y2 = 1.

ANSWER. Write as
dy
dx

= y2 + 1

separate variables
1

y2 + 1
dy = dx

Integrates

∫ 1
y2 + 1

dy =
∫

1 dx =⇒ arctan y = x + c

=⇒ y = tan(x + c).

If we are given the initial value problem y′ = y2 + 1, y(0) = 1, then

1 = tan(0 + c) =⇒ c =
π

4

and so y = tan
(

x + π
4

)
.

Notes:

1. Only put constant of integration on one side.

2. Put it in when integrating y = tan x + c is not a solution.

3. Check your answer. y = tan
(
x + π

4

)
=⇒ y′ = sec2 (x + π

4

)
.

y2 + 1 = tan2
(

x +
π

4

)
+ 1

=
sin2 (x + π

4

)
+ cos2 (x + π

4

)
cos2

(
x + π

4

)
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= sec2
(

x +
π

4

)
.

Hence y′ = y2 + 1.

Question 3.16. Solve y′ = x2y(y− 1).

ANSWER.

Question 3.17. Solve y′ = 2xy.

ANSWER.

3.2 First Order Linear ODEs

Linear ODE. An ODE in the function y is linear if all terms in y, y′,
y′′, . . . are linear.

Example 3.18. 1. y′ + P(x)y = Q(x) is a 1st order linear ODE.

2. y′′ + P(x)y′ + Q(x)y = R(x) is a 2nd order linear ODE.

3. y′ = y2 is not linear (but you know how to solve it because it is
separable).

Equations such as the ones in Example 3.18 are called linear by analogy
with the linear transformations you have been studying. In fact, they do
correspond to a linear transformation on the (infinite-dimensional) space
of functions. (See 3rd year courses on Hilbert Space and Linear Operators).

Every 1st order linear ODE may be put in the form y′ + P(x)y = Q(x).
(If the coefficient of y′ is not 1, divide through by it.) To solve it, we use
the method integrating factor which involves putting the equation into a
different form. The integrating factor is the function

I(x) = e
∫

P(x)dx.

We multiply through by this factor to obtain the equation.

e
∫

P(x)dxy′ + P(x)e
∫

P(x)dxy = e
∫

P(x)dxQ(x).

Notice now that I′(x) = P(x)e
∫

P(x)dx and so the equation is

I(x)y′ + I′(x)y = e
∫

P(x)dxQ(x).



3.2 First Order Linear ODEs 36

The left-hand-side if (I(x)y)′, by the product rule and so

(I(x)y)′ = e
∫

P(x)dxQ(x).

Hence
I(x)y =

∫
e
∫

P(x)dxQ(x)dx + c

and so

y =
1

I(x)

(∫
e
∫

P(x)dxQ(x)dx + c
)

= e−
∫

P(x)dx
(∫

e
∫

P(x)dxQ(x)dx + c
)

.

Question 3.19. Solve the initial value problem

y′ +
2
x

y− x3 = 0, y(1) = 1.

ANSWER. This is equivalent to

y′ +
2
x

y = x3,

so P(x) = 2
x , Q(x) = x3 and the integrating factor is

I(x) = e
∫ 2

x
d

dx = e2 ln x = x2.

Multiplying by I(x) gives the equation

x2y′ + 2xy = x5

i.e. (x2y)′ = x5. Integrating yields

x2y =
1
6

x6 + c

and so y(x) = 1
6 x4 + c

x2 .
When x = 1 then

1 =
1
6
+

c
1

and so c = 5
6 .

The solution to the initial value problem is

y(x) =
1
6
+

5
6x2 .
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3.2.1 Mixing Problems

Question 3.20. A tank contains 1000L of water in which 100 gm of salt are
dissolved. Solutions flows out of the tank at a rate of 20 L/min but

20 L/min water
1 g/L salt

20 L/min

1000 L water

100 g salt

but a 1gm/100L solution flows in at 20 L/min.
Find the amount of salt in the tank as a function of time.

ANSWER. The initial concentration of salt is 10gm/100L. Over time, we
expect the concentration to approach that of the incoming solution, i.e.
1gm/100L.

Total amount of salt will be 1
100 × 1000 = 10 gm.

100 g

10 g

t

Sa
lt

(g
)

Let A(t) = number of grams of salt in the tank after t minutes and thereby
A(0) = 100.

A′(t) = (in flow of salt)− (out flow of salt)

=
1

100
× 20− 20

1000
A(t).

Hence
A′(t) + 0.02A(t) = 0.2.



3.2 First Order Linear ODEs 38

The integrating factor is

I(t) = e
∫

0.02 dt = e0.02t.

Multiplying through by I(t) yields

e0.02t A′(t) + 0.02e0.02t A(t) = 0.2e0.02t

i.e.
(
e0.02t A(t)

)′
= 0.2e0.02t. Hence

e0.02t A(t) = 10e0.02t + c =⇒ A(t) = 10 + ce−0.02t.

The initial condition yields

100 = 10 + ce0 =⇒ c = 90.

Hence
A(t) = 10 + 90e−0.02t.

Note that e−0.02t → 0 as t→ ∞ and so A(t)→ 10 as t→ ∞, as expected.

Question 3.21. Now suppose that 30L/min flows out.

20 L/min water
1 g/L salt

30 L/min

1000 L water

100 g salt

Express the amount of salt in the tank as a function of time. In this ques-
tion, the volume of water changes.

ANSWER. Let V(t) = volume of solution after t minutes then

V ′(t) = in flow− out flow

= 20L/min− 30L/min

= −10L/min.

V(0) = 1000L,
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V(t) = 1000− 10t

and after 100 minutes the tank is empty.
Let A(t) = number of grams of salt in the tank after t minutes then A(0) =

1000 and

A′(t) = in flow− out flow =
1

100
× 20− 30

1000− 10t
A(t).

Hence
A′(t) +

3
100− t

A(t) = 0.2.

I(t) = e
∫ 3

100−t dt = e−3 ln(100−t) = (100− t)−3.

(100− t)−3A′(t) + 3(100− t)−4A(t) = 0.2(100− t)−3

that is (
A(t)

(100− t)3

)′
= 0.2(100− t)−3

3.3 The Logistic Equation

Logistic Equation. The ODE

dp
dt

= k(M− P)P

where P is a function of t and k and M are constants is called the
logistic equation.

The logistic equation usually is used to model populations,

P(t) = population at time t

M = max population which can be supported (e.g. by food supply).

When P is small we have

dP
dt
≈ kMP, P(t) ≈ P0ekMt
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and so population grown is exponential

expected growth of population

exponential growth

P0 •

M

As P increases, the rate of growth decreases. As P → M the rate of
growth levels out.

P′ = k(M− P)P

is a separable ODE.

Question 3.22. Solve
dp
dt

(M− P)P
= k

by separation of variables.

ANSWER. ∫ 1
(M− P)P

dP
dt

dt =
∫

k dt

⇐⇒
∫ 1

(M− P)P
dP = kt + C

⇐⇒ 1
M

∫ 1
M− P

+
1
P

dP = kt + c

⇐⇒ 1
M

[− ln(M− P) + ln P] = kt + c

⇐⇒ ln PM− P = kMt + cM

⇐⇒ P
M− P

= ecMekMt

⇐⇒ M
P
− 1 = e−cMe−kMt

=⇒ P(t) =
M

1 + e−cMe−kMt
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We still have to find the integration constant c: Let P(0) = P0. Then

P0 =
M

1 + e−cm =⇒ e−cM =
M
P0
− 1.

Hence substitute in:

P(t) =
M

1 + (M
P0
− 1)e−kMt

=
MP0

P0 + (M− P0)e−kMt .

Therefore P(t) < M for all t.
When P0 << M,

P(t) ≈ MP0

Me−kMt = P0ekMt

(exponential growth). As t→ ∞, e−kMt → 0. Hence

P(t)→ MP0

P0
= M as t→ ∞.

3.4 2nd Order Linear ODE’s with constant coefficients

These are ODE’s of the form

ay′′ + by′ + cy = f (x),

where a, b, c are constants.

Such equations occur in models of electric circuits and also in models
of weights on springs and pendulums. The same mathematics describes
these physically quite different situations.

Note: going to 2nd order makes the linear ODE more difficult but we
have simplified by assuming constant coefficients.

There is a general solution for such equations. We saw that the gen-
eral solution of 1st order equations involves one constant (a constant of
integration). The solution of 2nd order equations generally involves the
constants (need to ‘integrate’ twice to find the solution).



3.4 2nd Order Linear ODE’s with constant coefficients 42

In the case of 1st order equations, an initial value condition, y(a) = b,
is used to determine the constant and find a unique solution.

In the case of 2nd order equations, there are two types of conclusions
use:

Boundary Value Problems

Where y(a) = y1, y(b) = y2 Typically, we are interested in the values of the
function between a and b, given that we know its values at the endpoints
(boundary).

Initial Value Problems

Specifically y(0) and y′(0). Mass bouncing on a spring.

Given position and speed of the mass at time t = 0, describes its subse-
quent motion. Because the equation is linear the set of solutions to the
ODE has a special form.

Proposition 3.23. Let yp be a particular solution to the ODE

ay′′ + by′ + cy = f (x).

Then ever solution to the equation has the form

y = yp + yn,

where yn is a solution to the homogeneous equation

ay′′ + by′ + cy = 0.
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PROOF. Since the differential map y 7→ y′ is a linear tfn on functions, i.e.

(y1 + y2)
′ = y′1 + y′2 and

(dy)′ = dy′

d a constant. The proof is exactly the same as the proof that the general
solution to the system of linear equations.

Ax = b

has the form x = x0 + xn, where x0 is a particular solution and Axn = 0.

The similarly extends to the solution set of the homogenous equation
as well.

Proposition 3.24.

1. The solutions of the homogeneous ODE

ay′′′ + by′ + cy = 0

from a linear space, i.e. if y1 and y2 are two solutions, then so is
αy1 + βy2.

2. The solution space is two-dimensional. Thus if y − 1 and y2 are
independent solutions, then every solution has the form αy1 + βy2.
((y1, y2) is a basis for the space of solutions.)

PROOF. Exercise.

Solving the second order linear ODE with constant coefficients thus
reduces to two steps

1. Find two independent solutions y1 and y2 to ay′′ + by′ + cy = 0.

2. Find a particular solution yp to ay′′ + by′ + cy = f (x).

The general is then
y = yp + αy1 + βy2.

The constants α and β are these emerging when we ‘integrate’ the sec-
ond order equation:

a B.V.P. y(a) = A, y(b) = B

or an I.V.P. y(0) = A, y′(0) = B,
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when substituted into the general solution

y = yp + αy1 + py2,

give two linear equations in the two unknowns α and β.
In fact, all of the above discussion applies to linear second order ODEs

with constant coefficients. However, with constant coefficients, the first
problem is easily solved.

Problem 1 Find two independent solutions of the homogeneous equa-
tion. As for the first order equation (ay′ + by = 0), solutions have the form
y = emx. Then

y′ = memx and y′′ = m2emx.

Hence

ay′′+ by′+ cy = 0 ⇐⇒ am2emx + bmemx + cemx = 0 ⇐⇒ am2 + bm+ c = 0

(because emx 6= 0 always).
This is a quadratic equation in the unknown m. It is called the charac-

teristic equation of the ODE.
If the characteristic equation has two distinct real solutions, m1 and m2,

then

y1 = em1x and y2 = em2x

are independent solutions of1

ay′′ + by′ + cy = 0

and the general solution is

y = αem1x + βem2x.

If the characteristic equation has one real (repeated) root, k say, then
ekx and xekx are independent solutions and the general solution is

y = αekx + βxekx = (α + βx)ekx.

Lemma 3.25. xekx is a solution.

1Prove em1x and em2x are independent.
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PROOF. If the characteristic equation has a repeated root m1, then it is

a(m− k)2 = 0 or a(m2 − 2km + k2) = 0

and the ODE was
ay′′ − 2aky′ + ak2y = 0.

Exercise 3.2. Check that these solutions are independent.

Try y = xekx. Then

y′ = ekx + kxek+x and y′′ = 2kekx + k2xekx.

Hence

ay′′ − 2aky′ + ak2y

= 2akekx + ak2xekx − 2akekx − 2ak2xekx + ak2xekx

= 0.

Question 3.26. Write down the general solution to

y′′ + 3y′ − 4y = 0.

ANSWER. The characteristic equation is given by

m2 + 3m− 4 = 0 ⇐⇒ (m + 4)(m− 1) = 0

and hence m = −4 or m = 1. The general solution is given by y =

αe−4x + βex.

Question 3.27. Write down the general solution to

y′′ − 4y′4y = 0.

ANSWER. The characteristic equation is given by

m2 − 4m + 4 = 0 ⇐⇒ (m− 2)2 = 0

and hence m = 2 is a repeated root. The general solution is given by
y = (α + βx)e2x.
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What if the characteristic equation does not have real roots? Then the
roots are complex and have the form m = r± is.

(Note: the ODE has real coefficients and so the complex roots are con-
jugates.)

We still try for a solution of the form

emx = e(r+is)x or e(r−is)x

but we have to make sense of this so that

d
dx

(
e(r+is)x

)
= (r + is)e(r+is)x

That is what is needed to make the argument using the characteristic equa-
tion work.

Define

e(r+is)x = erx · eisx

= erx(cos sx + i sin sx).

Then
d

dx
e(r+is)x = · · ·

Thus erx(cos sx + i sin sx) and erx(cos sx − i sin sx) are solutions, but
are complex.

However
1
2

(
e(r+is)x + e(r−is)x

)
= erx cos x

and
1
2i

(
e(r+is)x − e(r−is)x

)
= erx sin x

and these are independent real solutions. Hence the general solution is

y = αerx cos sx + βerx sin sx

= erx(α cos sx + β sin sx)

where r± is are the solutions to the characteristic equation.

Question 3.28. Solve
y′′ + y′ + y = 0.

ANSWER. The characteristic equation

m2 + m + 1 = 0 ⇐⇒ m =
−1±

√
−3

2
= −1

2
±
√

3i
2
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and so

y = e−
1
2 x

(
α cos

√
3

2
x + β sin

√
3

2
x

)
is the general solution

Problem 2 Find a particular solution to

ay′′ + by′ + cy = f (x).



4 Calculus of Several Variables

4.1 Functions of Two Real Variables

These are functions defined on some D ⊆ R2. The function f : D → R

associates to each (x, y) ∈ D a real number f (x, y). D is called the domain
of f .

Example 4.1. The following are functions on two real variables:

f (x, y) = distance of (x, y) from (1, 2)

f (x, y) = x2 + y2 − 1

f (x, y) = sin(xy)

f (x, y) =
√

x2 − y2

all have domain R2.

Question 4.2. What is the domain of f (x, y) =
√

x2 − y2?

ANSWER.

x

−x

48
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Graph. The graph of f : D ⊆ R2 → R is the set of points given by

{(x, y, z) : z = f (x, y), (x, y) ∈ D} ⊆ R3.

The graph of a function of 1 variable is a curve in the plane. The graph
of a function of two variables is a surface in three dimensional space — it
is harder to draw and to imagine.

Example 4.3. Let z = 2− 2x− y. This is the equation of a plane. First plot
in the intercepts with the axes

(1, 0, 0)

(0, 0, 2)

(0, 2, 0)

x y

z

Note: the vertical line through each point in the domain intercepts the
graph exactly once.

Example 4.4. z = distance of (x, y) from (1, 2).

Picture page 102
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Example 4.5. z = x2 + y2 − 1.

−2
0

2 −2

0
2

0

2

4

x
y

z

In the (x, z)-plane, (i.e. y = 0) and z = x2 − 1 is a parabola.
In the (y, z)-plane, (i.e. x = 0) and z = y2 − 1 is a parabola.

Some ideas for graphing functions of two variables was seen in the ex-
amples, namely, find the intercepts with the axes and graph the functions
found by restricting to the axes.

Another idea is to look at the contour liner or level sets of the function.
These are the curves in the (x, y)− plane that satisfy f (x, y) = c.

Example 4.6. f (x, y) = 2− 2x− y.

picture.

Example 4.7. f (x, y) = distance from (x, y) to (1, 2) = ||(x, y)− (1, 2)||

picture page 105.

Example 4.8. f (x, y) = x2 + y2 − 1.

picture page 105.

Note: contours get closer together as the curve gets steeper.

You see contours of a two-variable function in a weather report.

page 106

Introduce coordinates to the map. Then the air pressure at each point
(measured by a barometer) gives a function of two variables. The isobars
seen on a weather map are curves of constant air pressure, i.e. are the
contours of the air pressure function.
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Making weather forecasts involves making a mathematical model which
includes many functions of two (or more) variables and differential equa-
tions relating them. To predict the weather, solve the DEs.

4.2 Limits and Continuity

Limit. Suppose that f (x, y) is defined for all (x, y) near (a, b).

f (x, y)→ L as (x, y)→ (a, b) ⇐⇒
∀ε > 0; ∃δ > 0 : 0 6 ||(x, y)− (a, b)|| < δ =⇒ | f (x, y)− L| < ε.

Where ||(x, y)− (a, b)|| =
√
(x− a)2 + (y− b)2.

Hence the definition says that f (x, y) is close to L wherever (x, y) is
sufficiently close to (a, b). This may also be written:

lim
(x,y)→(a,b)

f (x, y) = L.

Note: One important difference between limits of one-variable func-
tions and limits of two-variable functions is that, in the one-variable case
we may think of approaching a from the right or left:

picture page 108

but in the two-variable case we may approach (a, b) from infinitely many
directions

picture page 108.

Question 4.9. Show lim(x,y)→(1,1)
xy

x2+y2 = 1
2 .

ANSWER. We have

xy
x2 + y2 −

1
2
=
− 1

2 (x− y)2

x2 + y2 .

When (x, y) is close to (1, 1), x− y is close to 1− 1 = 0. The top line can
be made as close to 0 as we wish by choosing (x, y) sufficiently close to
(1, 1). When (x, y) is close to (1, 1), x2 + y2 is close to 12 + 12 = 2. Hence

xy
x2 + y2 −

1
2
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can be made as close to 0 as we wish by choosing (x, y) sufficiently close
to (1, 1).

Question 4.10. Show lim(x,y)→(0,0)
xy

x2+y2 does not exist.

ANSWER. Consider what happens as we approach (0, 0) from different
directions.

picture page 109

Along the x-axis we have y = 0 and so xy
x2+y2 = 0. Along the y-axis we

have x = 0 and so xy
x2+y2 = 0. However, observe the limit is not 0.

Approaching along the y = x axis. Then

xy
x2 + y2 =

x2

x2 + x2 =
1
2
6→ 0 as (x, x)→ (0, 0).

Note: the function need not be defined at (a, b).

Continuous. Suppose that f (x, y) is defined at all (x, y) near (a, b)
and also at (a, b). Then f is continuous at (a, b) if

lim
(x,y)→(a,b)

f (x, y) = f (a, b).

Moreover, f is continuous on D if it is continuous at every every
point in D.

Proposition 4.11. The usual algebra of limits applies to functions of two
(or more) variables. It follows that sums, products and quotients of con-
tinuous except where the denominator is zero.

Corollary 4.12. Polynomials in two variables are continuous everywhere
in R2. Quotients of polynomials are continuous except where the denom-
inator is zero.

Example 4.13. 1. f (x, y) = xy
x2+y2 is continuous everywhere except at

(0, 0).

2. f (x, y) = x2y2

x2+y2 is continuous everywhere except at (0, 0).
In the second case however

lim
(x,y)→(0,0)

x2y2

x2 + y2 = 0.
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Could use a similar argument to earlier example, or could use polar coor-
dinates: Set

x = r cos θ and y = r sin θ

Then (x, y)→ (0, 0) means r → 0.

picture page 112

We have

x2y2

x2 + y2 =
r2 cos2 θr2 sin2 θ

r2 → 0 as r → 0

(independent of the value of θ).

4.3 Partial Derivatives

The derivative of a function of one variable gives a measure of the rate
of change of the function as the variable increase. With functions of two
or more variables the situation is more complicated because the variables
may change in many directions. We will see that the general situation can
be understood by varying the variables one at a time. This leads to the
notion of a partial derivative.

Partial derivative. Let f be a function defined at and near (a, b) ∈ R2.
Then the partial derivative of f with respect to x at (a, b) is

∂ f
∂x

(a, b) = lim
h→0

f (a + h, b)− f (a, b)
h

and the partial derivative with respect to y is

∂ f
∂y

(a, b) = lim
h→0

f (a, b + h)− f (a, b)
h

.

Thus the partial derivatives are found by keeping one variable fixed
and taking the derivative as usual with respect to the other.

Question 4.14. Let f (x, y) = x2 + y3. Find ∂ f
∂x (1, 1).

ANSWER.

∂ f
∂x

(1, 1) = lim
h→0

(1 + h)2 + 13 − (12 + 13)

h
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= lim
h→0

2h + h2

h
= 2.

∂ f
∂x (a, b) is a number. Finding the partial derivative provided it exists at

every point in the domain of f gives as another 2-variable function ∂ f
∂x . We

find ∂ f
∂x by regarding y as a constant and differentiating wrt x in the usual

way.

Question 4.15. Find ∂ f
∂x and ∂ f

∂y for the functions

1. f (x, y) = x2y + y3,

2. f (x, y) = sin(x2y + y3).

ANSWER.

1.
∂

∂x
(x2y + y3) = 2xy,

∂

∂y
(x2y + y3) = x2 + 3y2.

2.
∂

∂x
(
sin(x2y + y3)

)
= cos(x2y + y3) · (2xy),

and
∂

∂y
(
sin(x2y + y3) = cos(x2y + y3) · (x2 + 3y2).

Find the derivative, at (1, 1) say, simply by substituting.

∂

∂x
(x2y + y3)

∣∣∣
(1,1)

= 2xy
∣∣∣
(1,1)

= 2.

The familiar differentiation rules for sums, product etc apply. We have
used some in the above examples.

4.3.1 Higher Order Partial Derivatives

Since ∂ f
∂x is a function of two variables, we may find its partial derivative

with respect to x.
∂

∂x

(
∂ f
∂x

)
=

∂2 f
∂x2

and also with respect to y.

∂

∂y

(
∂ f
∂x

)
=

∂ f
∂y∂x

.
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There are four 2nd order partial derivatives

∂2 f
∂x2 ,

∂2 f
∂y∂x

,
∂2 f

∂x∂y
,

∂2 f
∂y2 .

Example 4.16.

1.
∂

∂x
(x2y + y3) = 2xy,

2.
∂2

∂x2 (x2y + y3) =
∂

∂x
(2xy) = 2y,

3.
∂2

∂y∂x
(x2y + y3) =

∂

∂y
(2xy) = 2x,

4.
∂

∂y
(x2y + y3) = x2 + 3y2,

5.
∂2

∂y2 (x2y + y3) =
∂

∂y
(x2 + 3y2) = 6y,

6.
∂2

∂x∂y
(x2y + y3) =

∂

∂x
(x2 + 3y2) = 2x.

In the example,
∂2 f

∂x∂y
=

∂2 f
∂y∂x

. Is this coincidence?

Proposition 4.17. Suppose that f is a function of two variables and that
both and order derivatives ∂2 f

∂x∂y and ∂2 f
∂y∂x exist and are continuous near

(a, b). Then
∂2 f

∂x∂y
(a, b) =

∂2 f
∂y∂x

(a, b).

PROOF. Consider the function, d, of h defined by

d(h) = f (a + h, b + h)− f (a + h, b)− f (a, b + h) + f (a, b).

If we unite g1(x) = f (x, b + h)− f (x, b), then

d(h) = g1(a + b)− g1(a).

By the mean value theorem, there is c1 between a and a + h such that

d(h) = hg1
1(c1) = h

(
∂ f
∂x

(c1, b + h)− ∂ f
∂x

(a, b)
)

= h
(

h
∂2 f

∂y∂x
(c1, d1)

)
for sure d1 between b and b + h.
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On the other hand, if we write g2(y) = f (a + h, y)− f (a, y), then

d(h) = g2(b + h)− g2(b)

= hg′2(d2) some d2 between b and b + h

= h
(

∂ f
∂y

(a + h, d2)−
∂ f
∂y

(a, d2)

)
= h2 ∂2 f

∂x∂y
(c2, d2) some c2 between a and a + h

As h→ 0, c1, c2 → a, and d1, d2 → b. Hence

d(h)
h2 =

∂2 f
∂y∂x

(c1, d1)→
∂2

∂y∂x
(a, b), and

d(h)
h2 =

∂2 f
∂x∂y

(c2, d2)→
∂2

∂x∂y
(a, b).

These limit must be equal. Hence

∂2

∂y∂x
(a, b) =

∂2

∂x∂y
(a, b).

There are many notations for the partial derivative:

∂ f
∂x

fx f1 D1 f D2 f .

4.4 Linear Approximation and tangent Planes

Partial derivatives have a geometrical interpretation, just as the derivative
of a function of one variable does. The derivative of a 1-variable function
is the slope of the tangent line to the graph. The partial derivative give
the equation of the tangent plane to a surface.

Tangent Plane. Suppose that f has continuous partial derivatives
near the point (x0, y0). Then the surface z = f (x, y) has a tangent
plane with equation

z− z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y− y0).

PROOF. The proof is omitted but note that, if the surface has a tangent
plane, then its equation must be this one. The equation of a plane passing
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through (x0, y0, z0) is

z− z0 = a(x− x0) + b(y− y0).

Differentiating this equation yields

∂z
∂x

= a and
∂z
∂y

= b

and so, if the plane is tangent to the surface, then

a = fx(x0, y0) and b = fy(x0, y0).

Question 4.18. Find the tangent plane to the surface z = −(2x2 + y2) at
(1, 1).

ANSWER. The level surfaces 2x2 + y2 = −c are ellipses. Cross-sections are
parabolas. At (1, 1), z = −(2 + 1) = −3.

∂− (2x2 + y2)

∂x

∣∣∣
(1,1)

= −4

∂− (2x2 + y2)

∂y

∣∣∣
(1,1)

= −2.

Equation of tangent plane is

z− (−3) = −4(x− 1)− 2(y− 1) ⇐⇒ z = 3− 4x− 2y.

The part of the proof which is omitted is that of the statement “Then
the surface z = f (x, y) has a tangent plane.” The statement of the propo-
sition includes the hypothesis,

“Suppose that the partial derivatives are continuous.”

This hypothesis is necessary and must be used in the proof.

Example 4.19. The function

f (x, y) =


xy

x2+y2 (x, y) 6= (0, 0)

0 (x, y) = (0, 0)
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has partial derivatives at every point in R2:

fx(x, y) =


y(y2−x2)
(x2+y2)2 (x, y) 6= (0, 0)

0 x = (0, 0).

fx(0, 0) = limx→0
f (x,0)− f (0,0)

x−0 = limx→0
0−0
x−0 = 0

and

fy(x, y) =

 (x, y) 6= (0, 0)

0 (x, y) = (0, 0).

However fx and fy are not continuous at (0, 0) — and neither is f as we
have already seen.

z =
xy

x2 + y2

does not have a tangent plane at (0, 0).
When a surface has a tangent plane at a point, the plane may be used to

approximate the surface near the point just as we approximate a curve by
its tangent line in the 1-variable case. Thus the partial derivatives may
be used to make linear approximations to functions of more than one
variable.

Hence, if f has a continuous partial derivatives near (x0, y0). Then, for
∆x and ∆y small,

f (x + ∆x, y0 + ∆y) ≈ f (x0, y0) + fx(x0, y0)∆x + fy(x0, y0)∆y

(c.f. equation of tangent plane).

Example 4.20. Let f (x, y) =
√

2x2 + y2. Estimate f (1.9, 1.1). Take x0 = 2,
y0 = 1, ∆x = −0.1, and δy = 0.1.

We have

fx(x, y) =
1
2
(2x2 + y2)−

1
2 · (4x)

fx(2, 1) =
1
2
(2 · 4 + 1)−

1
2 · 8 =

4
3

fy(x, y) =
1
2
(2x2 + y2)−

1
2 · (2y)

so fy(2, 1) = 1
2 ·

1
3 · 2 = 1

3 and thus√
2(1.9)2 + (1.1)2 ≈

√
2 · 4 + 1 +

4
3
(−0.1) +

1
3
(0.1) = 3− 0.1 = 2.9.
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4.5 The Chain Rule

The Chain Rule. Suppose that f (x, y) has continuous partial deriva-
tives and that x = x(t), y = y(t) are differentiable functions of the
parameter t. Then f (x(t), y(t)) is a differentiable function of t and

d f
dt

=
∂ f
∂x

∂x
∂t

+
∂ f
∂y

dy
dt

.

The corresponding formula holds for functions of more than two
variables.

PROOF. Omitted. Recall that even for functions of one variable the proof
of the chain rule is tricky. Given in MATH 2330 analysis.

There is a similar formula if x and y are functions of 2 variables, s and
t say, with x = s(x0, t) and y = y(s, t).

∂ f
∂s

=
∂ f
∂x

∂x
∂s

+
∂ f
∂y

∂y
∂s

∂ f
∂t

=
∂ f
∂x

∂x
∂t

+
∂ f
∂y

∂y
∂t

Example 4.21. Polar coordinate

x = r cos θ y = r sin θ

∂x
∂r

= cos θ
∂x
∂θ

= −r sin θ

∂y
∂y

= sin θ
∂y
∂θ

= r cos θ

∂ f
∂r

=
∂ f
∂x

cos θ +
∂ f
∂y

sin θ
∂ f
∂θ

= −r sin θ
∂ f
∂x

+ r cos θ
∂ f
∂y

(Away form (x, y) = (0, 0).)

4.6 The Gradient

The equation for the approximation to f (x0 + ∆x, y0 + ∆y) may be written
in a vector form which makes it look more like the 1-variable version.
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Let x = (x, y), x0 = (x0, y0), ∆x = (∆x, ∆y). Then

f (x0 + ∆x) ≈ f (x0) +∇ f (x0) · ∆x,

where ∇ f = ( fx, fy) is called the gradient of the 2-variable function f .

Gradient. If f = f (x1, . . . , xn) is a function of n variables the gradient
of f is the n-dimensional vector valued function

∇ f =

(
∂ f
∂x1

,
∂ f
∂x2

, . . . ,
∂ f
∂xn

)
.

The same approximation formula holds in n-dimensions, provided that
all partial derivatives are continupus next x0.

The gradient also appears in directional derivatives.

4.7 Directional Derivatives

The partial derivatives show the rate of change of a 2-variable function in
the x- and y- directions. There is no reason why these directions should
be preferred, x and y, are often just a matter of how a problem has been
parametrised. We may find a derivative in any direction.

Directional Derivative. Directions in R2 are specified by unit vectors,

u = (r, s) = r i + s j, r2 + s2 = 1.

The directional derivative of f at (a, b) in the direction of u is

Du f (a, b) =
d

dh
f ((a, b) + hu)

∣∣∣
h=0

= lim
h→0

f (a + hr, b + hs)− f (a, b)
h

.

Note: Du f (a, b) is a number. It is the rate of change of f in the
direction of u.

Proposition 4.22. Suppose that the partial derivatives of f are continuous
at (a, b). Then

Du f (a, b) =
∂ f
∂x
· r + ∂ f

∂y
· s = f (a, b) · u.
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PROOF. (Use the chain rule.)

∂

∂h
f (a + hr, b + hs)

=
∂ f
∂x

(a + hr, b + hs) · d(a + hr)
dr

+
d f
dy

(a + hr, b + hs) · d(b + hs)
dh

=
∂ f
∂x

(a + hr, b + hs) · r + d f
dy

(a + hr, b + hs) · s.

Exercise 4.1. Find the direction derivative of

f (x, y) = x3y− x2y2 + 2x2 − 3y

at (2,−3) in the direction of the vector (1, 2).


