
On Fulton’s Algorithm for Computing

Intersection Multiplicities

Steffen Marcus1 and Marc Moreno Maza2 and Paul Vrbik2

1 Department of Mathematics, University of Utah
2 Department of Computer Science, University of Western Ontario

Abstract. As pointed out by Fulton in his Intersection Theory, the in-
tersection multiplicities of two plane curves V (f) and V (g) satisfy a series
of 7 properties which uniquely define I(p; f, g) at each point p ∈ V (f, g).
Moreover, the proof of this remarkable fact is constructive, which leads
to an algorithm, that we call Fulton’s Algorithm. This construction, how-
ever, does not generalize to n polynomials f1, . . . , fn. Another practical
limitation, when targeting a computer implementation, is the fact that
the coordinates of the point p must be in the field of the coefficients of
f1, . . . , fn. In this paper, we adapt Fulton’s Algorithm such that it can
work at any point of V (f, g), rational or not. In addition, we propose
algorithmic criteria for reducing the case of n variables to the bivariate
one. Experimental results are also reported.

1 Introduction

Intuitively, the intersection multiplicity of two plane curves counts the number of
times these curves intersect. There are more formal ways to define this number.
The following one is commonly used, see for instance [9, 11, 12, 6, 18]. Given an
arbitrary field k and two bivariate polynomials f, g ∈ k[x, y], consider the affine

algebraic curves C := V (f) and D := V (g) in A2 = k
2
, where k is the algebraic

closure of k. Let p be a point in the intersection. The intersection multiplicity of
p in V (f, g) is defined to be

I(p; f, g) := dimk(OA2,p/ 〈f, g〉)

where OA2,p and dimk(OA2,p/ 〈f, g〉) are the local ring at p and the dimension of
the vector space OA2,p/ 〈f, g〉. The intersection multiplicity of two plane curves
at a point admits many properties. Among them are the seven below, which are
proved in [9, Section 3-3] as well as in [11, 12].

(2-1) I(p; f, g) is a non-negative integer for any C, D, and p such that C and D
have no common component at p. We set I(p; f, g) =∞ if C and D have a
common component at p.

(2-2) I(p; f, g) = 0 if and only if p /∈ C ∩D.
(2-3) I(p; f, g) is invariant under affine change of coordinates on A2.
(2-4) I(p; f, g) = I(p; g, f).



(2-5) I(p; f, g) is greater or equal to the product of the multiplicity (see [9, §3.1])
of p in f and g, with equality occurring if and only if C and D have no
tangent lines in common at p.

(2-6) I(p; f, gh) = I(p; f, g) + I(p; f, h) for all h ∈ k[x, y].
(2-7) I(p; f, g) = I(p; f, g + hf) for all h ∈ k[x, y].

Remarkably, Properties (2-1) through (2-7) uniquely determine I(p; f, g). This
observation is made by Fulton in [9, Section 3-3] where he exhibits an algorithm
for computing I(p; f, g) using (2-1) through (2-7) as rewrite rules.

In order to obtain a practical implementation of this algorithm, a main ob-
stacle must be overcome. To understand it, let us first recall that computer
algebra systems efficiently manipulate multivariate polynomials whenever their
coefficients are in the field of rational numbers or in a prime field. In particu-
lar, popular algorithms for decomposing the algebraic variety V (f1, . . . , fn) with
f1, . . . , fn ∈ k[x1, . . . , xn] rely only on operations in the field k, thus avoiding
to manipulate non-rational numbers, that is, elements of k \ k. For instance,
algorithms such as those of [4] represent the variety V (f1, . . . , fn) (which is a
subset of k

n
) with finitely many regular chains T1, . . . , Te of k[x1, . . . , xn] such

that we have
V (f1, . . . , fn) = V (T1) ∪ · · · ∪ V (Te). (1)

Now, observe that the intersection multiplicity I(p; f1, . . . , fn) of f1, . . . , fn at a
point p is truly a local notion, while each of the V (Ti) may consist of more than
one point, even if Ti generates a maximal ideal of k[x1, . . . , xn]. Therefore, in
order to use regular chains for computing intersection multiplicities, one needs
to be able to compute “simultaneously” all the I(p; f1, . . . , fn) for p ∈ V (Ti)

In Section 5 we propose an algorithm achieving the following task in the
bivariate case: given M ⊂ k[x, y] a maximal ideal, compute the common value
of all I(p; f, g) for p ∈ V (M). In Section 6, we relax the assumption ofM being
maximal and require only that a zero-dimensional regular chain T ⊂ k[x, y]
generates M. However, in this case, the values of I(p; f, g) for p ∈ V (T ) may
not be all the same. This situation is handled via splitting techniques as in [4].

Thus, for n = 2, we obtain a procedure TriangularizeWithMultiplicity(f1, . . . , fn)
which returns finitely many pairs (T1,m1), . . . , (Te,me) where T1, . . . , Te ⊂ k[x1,
. . . , xn] are regular chains and m1, . . . ,me are non-negative integers satisfying
Equation (1) and for each i = 1, . . . , e, we have

(∀p ∈ V (Ti)) I(p; f1, . . . , fn) = mi. (2)

We are also interested in generalizing Fulton’s Algorithm to n multivariate
polynomials in n variables—our ultimate goal being an algorithm that realizes
the above specification for n ≥ 2.

We denote by An the n-dimensional affine space over k. Let f1, . . . , fn ∈ k[x1,
. . . , xn] be n polynomials generating a zero-dimensional ideal with (necessarily
finite) zero set V (f1, . . . , fn) ⊂ An. Let p be a point in the intersection V (f1) ∩
· · ·∩V (fn), that is, V (f1, . . . , fn). The intersection multiplicity of p in V (f1, . . . ,
fn) is the generalization of the 2-variable case (as in [6, 18])

I(p; f1, . . . , fn) := dimk (OAn,p/ 〈f1, . . . , fn〉) ,



where OAn,p and dimk(OAn,p/ 〈f1, . . . , fn〉) are (respectively) the local ring at
the point p and the dimension of the vector space OAn,p/ 〈f1, . . . , fn〉.

Among the key points in the proof of Fulton’s algorithmic construction is that
k[x1] is a principal ideal domain. Fulton uses Property (2-7) in an elimination
process similar to that of the Euclidean Algorithm. Since k[x1, . . . , xn−1] is no
longer a PID for n ≥ 3, there is no natural generalization of (2-1) through (2-7)
to the n-variate setting (up to our knowledge) that would lead to an algorithm
for computing I(p; f1, . . . , fn).

To overcome this obstacle, at least for some practical examples, we propose
an algorithmic criterion to reduce the n-variate case to that of n− 1 variables.
This reduction requires two hypotheses: V (fn) is non-singular at p, and the
tangent cone of V (f1, . . . , fn−1) at p and the tangent hyperplane of V (fn) at p
meet only at the point p. The second hypothesis ensures that each component
of the curve V (f1, . . . , fn−1) meets the hypersurface V (fn) without tangency at
p. This transversality assumption yields a reduction from n to n − 1 variables
proved with Theorem 1.

In Section 7, we discuss this reduction in detail. In particular, we propose
a technique which, in some cases, replaces f1, . . . , fn by polynomials g1, . . . , gn
generating the same ideal and for which the hypotheses of the reduction hold.
Finally, in Section 8 we give details on implementing the algorithms herein and
in Section 9 we report on our experimentation for both the bivariate case and
the techniques of Section 7.

We conclude this introduction with a brief review of related works. In [5],
the Authors report on an algorithm with the same specification as the above
TriangularizeWithMultiplicity(f1, . . . , fn). Their algorithm requires, however, that
the number of input polynomials is 2. In [17], the Authors outline an algorithm
with similar specifications as ours. However, this algorithm is not complete,
even in the bivariate case, in the sense that it may not compute the intersection
multiplicities of all regular chains in a triangular decomposition of V (f1, . . . , fn).

In addition, our approach is novel thanks to an important feature which
makes it more attractive in terms of performance. We first compute a triangular
decomposition of V (f1, . . . , fn) (by any available method) thus without trying to
“preserve” any multiplicity information. Then, once V (f1, . . . , fn) is decomposed
we work “locally” at each regular chain. This enables us to quickly discover points
p of intersection multiplicity one by checking whether the Jacobian matrix of f1,
. . . , fn is invertible at p. We have observed experimentally that this strategy
leads to massive speedup.

2 Regular Chains

In this section, we recall the notions of a regular chain. From now on we assume
that the variables of the polynomial ring k[x1, . . . , xn] are ordered as xn > · · · >
x1. For a non-constant f ∈ k[x1, . . . , xn], the main variable of f is the largest
variable appearing in f , while the initial of f is the leading coefficient of f
w.r.t. the main variable of f . Let T ⊂ k[x1, . . . , xn] be a set of n non constant



polynomials. We say that T is triangular if the main variables of the elements
of T are pairwise different. Let ti be the polynomial of T with main variable xi.
We say that T is a (zero-dimensional) regular chain if, for i = 2, . . . , n the initial
of ti is invertible modulo the ideal 〈t1, . . . , ti−1〉. Regular chains are also defined
in positive dimension, see [1, 15].

For any maximal ideal M of k[x1, . . . ,xn] there exists a regular chain T
generatingM, see [14]. Therefore, for any zero-dimensional ideal I of k[x1, . . . ,
xn] there exist finitely many regular chains T1, . . . , Te ⊂ k[x1, . . . , xn] such
that we have V (I) = V (T1) ∪ · · · ∪ V (Te). Various algorithms, among them
those published in [20, 10, 14, 19, 4], compute such decompositions. The Trian-
gularize command of the RegularChains library [16] in Maple implements the
decomposition algorithm of [4]. This library also implements another algorithm
of [4] that we will use in this paper and which is specified hereafter. For a
regular chain T ⊂ k[x1, . . . , xn] and a polynomial p ∈ k[x1, . . . , xn], the opera-
tion Regularize(p, T ) returns regular chains T1, . . . , Te ⊂ k[x1, . . . , xn] such that
we have V (T ) = V (T1) ∪ · · · ∪ V (Te) and for all i = 1, . . . , e we have either
V (p) ∩ V (Ti) = ∅ or V (T ) ⊂ V (p). We will make use of the following result
which can easily be derived from [4]: if Regularize(p, T ) returns T1, . . . , Te, then
we have

(∀p ∈ V (Ti)) Regularize(p, Ti) = Ti. (3)

3 Intersection Multiplicity

As above, let f1, . . . , fn ∈ k[x1, . . . , xn] be n polynomials in n variables such that
the ideal 〈f1, . . . , fn〉 they generate is zero-dimensional. Let p ∈ V (f1, . . . , fn)
and denote the maximal ideal at p byMp. When needed, denote the coordinates
of p by (α1, . . . , αn), so that we haveMp = 〈x1 − α1, . . . , xn − αn〉.

Definition 1. The intersection multiplicity of p in V (f1, . . . , fn) is given by
the length of OAn,p/ 〈f1, . . . , fn〉 as an OAn,p-module.

Since we consider An as defined over the algebraically closed field k, we know
(see, for instance, [8]) that the length of this module is equal to its dimension
as a k vector space, which is precisely the definition of Section 1. Our algorithm
depends on the fact that the intersection multiplicity satisfies a generalized col-
lection of properties similar to (2-1) through (2-7) for the bi-variate case. They
are the following:

(n-1) I(p; f1, . . . , fn) is a non-negative integer.
(n-2) I(p; f1, . . . , fn) = 0 if and only if p /∈ V (f1, . . . , fn).
(n-3) I(p; f1, . . . , fn) is invariant under affine change of coordinates on An.
(n-4) I(p; f1, . . . , fn) = I(p; fσ(1), . . . , fσ(n)) for any σ ∈ Sn.
(n-5) I(p; (x1−α1)

m1 , . . . , (xn−αn)
mn) = m1 · · ·mn, for all non-negative integers

m1, . . . ,mn.
(n-6) If g, h ∈ k[x1, . . . , xn] make f1, . . . , fn−1, gh a zero-dimensional, then I(p; f1,

. . . , fn−1, gh) = I(p; f1, . . . , fn−1, g) + I(p; f1, . . . , fn−1, h) holds.



(n-7) I(p; f1, . . . , fn−1, g) = I(p; f1, . . . , fn−1, g + h) for all h ∈ 〈f1, . . . , fn−1〉.

In order to reduce the case of n variables (and n polynomials) to that of n−1
variables (see Section 7) we require an additional property when n > 2. Of course,
the assumptions necessary for this property may not hold for every polynomial
system. However, we discuss in Section 7 a technique that can overcome this
limitation for some practical examples.

(n-8) Assume the hypersurface hn = V (fn) is non-singular at p. Let vn be its
tangent hyperplane at p. Assume furthermore that hn meets each component
of the curve C = V (f1, . . . , fn−1) transversely, that is, the tangent cone
TCp(C) intersects vn only at the point p. Let h ∈ k[x1, . . . , xn] be the degree
1 polynomial defining vn. Then, we have

I(p; f1, . . . , fn) = I(p; f1, . . . , fn−1, hn).

Recall that the tangent cone TCp(C) can be thought of as the set of tangents
given by limiting the secants to C passing through p. If g1, . . . , gs ∈ k[x1, . . . , xn]
are polynomials generating the radical of the ideal 〈f1, . . . , fn−1〉, then TCp(C)
is also given by TCp(C) = 〈in(g1), . . . , in(gs)〉 where in(gi), for i = 1, . . . , s, is
the initial form of gi, that is, the homogeneous component of gi of the lowest
degree.

Theorem 1. I(p; f1, . . . , fn) satisfies the properties (n-1) through (n-8).

Proof. For the first seven properties, adapting the proofs of [9, 12] is routine,
except for (n-6), and we omit them for space consideration. For (n-6) and (n-8),
as well as the others, the reader is refered to our technical report with the same
title and available in the Computing Research Repository (CoRR).

4 Expansion of a Polynomial Family about at an

Algebraic Set

The tools introduced herein help build an algorithm for computing the intersec-
tion multiplicity of f1, . . . , fn at any point of V (f1, . . . , fn), whenever the ideal
〈f1, . . . , fn〉 is zero-dimensional and when, for n > 2, certain hypothesis are met.

Let y1, . . . , yn be n new variables with ordering yn > · · · > y1. Let F 1,
. . . , Fn ∈ k[x1, . . . , xn, y1, . . . , yn] be polynomials in x1, . . . , xn, y1, . . . , yn with
coefficients in k. We order the monomials in y1, . . . , yn (resp. x1, . . . , xn) with
the lexicographical term order induced by yn > · · · > y1 (resp. xn > · · · > x1).
We denote by SF 1 , . . . , SFn the respective monomial supports (i.e. the set of
monomials with non-zero coefficients) of F 1, . . . , Fn, regarded as polynomials in
the variables y1, . . . , yn and with coefficients in k[x1, . . . , xn]. Let i be any integer
index in 1, . . . , n. Write

F i =
∑

µ∈S
Fi

F i
µµ, (4)



where all F i
µ are polynomials of k[x1, . . . , xn]. In particular, the F i

1 represent F i
µ

when µ = y01 · · · y
0
n = 1. Denote by F i

<yn
the polynomial of k[x1, . . . , xn][y1, . . . ,

yn−1] defined by

F i
<yn

=
∑

µ ∈ Si
F

deg(µ, yn) = 0

F i
µµ.

Let I be a (proper) ideal of k[x1, . . . , xn]. We denote by NF(f, I) the normal
form of f w.r.t. the reduced lexicographical Gröbner basis of I for xn > · · · > x1.

Let p ∈ An with coordinates α = (α1, . . . , αn). For a monomial µ = ye11 · · · y
en
n ,

we denote by shift(µ, α) the polynomial of k[x1, . . . , xn] defined by

shift(µ, α) = (x1 − α1)
e1 · · · (xn − αn)

en .

We denote byMα the maximal ideal of k[x1, . . . , xn] generated by x1 − α1, . . . ,
xn − αn. When no confusion is possible, we simply write F and f instead of F i

and fi. We denote by eval(F, α) the polynomial

eval(F, α) =
∑

µ∈SF

NF(Fµ,Mα) shift(µ, α) (5)

in k[x1, . . . , xn]. We call this the specialization of F at α. Let W ⊂ An be an
algebraic set over k, that is, the zero set V (P ) in A

n of some P ⊂ k[x1, . . . , xn].
Finally, consider a family (fα, α ∈ W ) of polynomials of k[x1, . . . , xn].

We say that F is an expansion of f about W if for every point α of W we
have f = eval(F,α). More generally, we say that F is an expansion of the
polynomial family (fα, α ∈ W ) about W if for every point α of W we have
fα = eval(F,α). We conclude this section with a fundamental example of
the concepts introduced below. For µ = ye1 · · · yen , we denote by c(f, µ) the

polynomial of k[x1, . . . , xn] defined by c(f, µ) = 1
e1!···en!

∂e1+···+enf

∂x
e1
1

···∂x
en
n

. (One should

recognize these as the coefficients in a Taylor expansion.) Let SC(f) be the set
of the ye1 · · · yen monomials such that ei ≤ deg(f, xi) holds for all i = 1, . . . , e.
Then, the polynomial C(f) =

∑

µ∈SC(f) c(f, µ)µ is an expansion of f about W .

5 Computing Intersection Multiplicities of Bivariate

Systems: Irreducible Case

We follow the notations introduced in Section 4. Let F 1, . . . , Fn be the expan-
sions of f1, . . . , fn about an algebraic set W ⊂ A

n. In this section, we assume
W = V (M) holds for a maximal idealM of k[x1, . . . , xn] and that n = 2 holds.

Theorem 2. The intersection multiplicity of f1, f2 is the same at any point
of V (M); we denote it by I(M; f1, f2). Moreover, Algorithm 1 computes this
multiplicity from F 1, F 2 by performing arithmetic operations in k[x1, x2] only.



Algorithm 1: IM2(M;F 1, F 2)

Input: F 1, F 2 ∈ k[x1, x2, y1, y2] andM⊂ k[x1, x2] maximal such that F 1, F 2

are expansions of f1, f2 ∈ k[x1, x2] about V (M) and 〈f1, f2〉 is a
zero-dimensional ideal.

Output: I(M; f1, f2).

1 if NF(F 1
1 ,M) 6= 0 then

2 return 0;

3 if NF(F 2
1 ,M) 6= 0 then

4 return 0;

5 r := deg(F 1
<y2

mod M, y1);
6 s := deg(F 2

<y2
mod M, y1);

7 if r = 0 then

8 return tdeg(F 2
<y2

mod M, y1) + IM2(M;
F1

−F1
<y2

y2
, F 2);

9 if s = 0 then

10 return tdeg(F 1
<y2

mod M, y1) + IM2(M;F 1,
F2

−F2
<y2

y2
);

11 a1 := lc(F 1
<y2

mod M, y1);
12 a2 := lc(F 2

<y2
mod M, y1);

13 if r ≤ s then
14 let b1 ∈ k[x1, x2] such that a1 b1 ≡ 1 mod M;

15 H := F 2 − a2b1y
s−r
1 F 1;

16 return IM2(M;F 1, H);

17 let b2 ∈ k[x1, x2] such that a2 b2 ≡ 1 mod M;

18 H := F 1 − a1b2y
r−s
1 F 2;

19 return IM2(M;H,F 2);

This first claim in Theorem 2 should not surprise the expert reader. The
length of the module OAn,p/ 〈f1, . . . , fn〉 over a non-algebraically closed field
is not necessarily equal to the dimension as a k vector space, though length
equals dimension when the field is algebraically closed. The dimension, however,
remains the same over both k and k.

Proof. We show that IM2(M;F 1, F 2), as returned by Algorithm 1, computes
I(p; f1, f2) uniformly for all p ∈ V (M) and performs operations in k[x1, xn]
only. Algorithm correctness and termination follows from three claims.

Claim 1: If I(p; f1, f2) = 0 holds for some p ∈ V (M), then IM2(M;F 1, F 2)
correctly returns 0.
Claim 2: If I(p; f1, f2) > 0 holds for all p ∈ V (M), and if either deg(F 1

<y2
mod M,

y1) = 0 or deg(F 2
<y2

mod M, y1) = 0 holds, then IM2(M;F 1, F 2) correctly

invokes IM2(M;G1, G2) where each Gi ∈ k[x1, x2, y1, y2] is an expansion of
a polynomial family about V (M) such that min(deg(G1, y2), deg(G

2, y2)) <
min(deg(F 1, y2), deg(F

2, y2)).
Claim 3: If I(p; f1, f2) > 0 holds for all point p ∈ V (M), and if deg(F 1

<y2
mod M,

y1) > 0 and deg(F 2
<y2

mod M, y1) > 0 both hold, then the call IM2(M;F 1, F 2)



correctly invokes IM2(M;G1, G2) where each Gi ∈ k[x1, x2, y1, y2] is an ex-
pansions of a polynomial family about V (M) such that min(deg(G1

<y2
, y1),

deg(G2
<y2

, y1) is strictly less than min(deg(F 1
<y2

, y1), deg(F
2
<y2

, y1).

Proof (of Claim 1). Assume that there is p ∈ V (M) such that I(p; f1, f2) = 0
holds. From (2-2), this implies that we have p 6∈ V (f1, f2). SinceM is maximal,
we deduce that W ∩ V (f) = ∅ holds. Thus, the intersection multiplicity of f1, f2
is null at any point of V (M). Moreover, deciding whether this latter fact holds
amounts to testing whether one of NF(F 1

1 ,M), NF(F 2
1 ,M) is zero or not, which

can be computed in k[x1, x2] with a regular chain generatingM.

Remark 1. From now on, we assume that I(p; f1, f2) > 0 holds for all p ∈ V (M).
Since M is maximal, this implies that W ⊆ V (F 1

1 ) and W ⊆ V (F 2
1 ) both hold.

Besides, the idealM is one of the associated primes of 〈f1, f2〉 ⊂ k[x1, x2].

Proof (of Claim 2). Assume that either

deg
(

F 1
<y2

modM, y1
)

= 0 or deg
(

F 2
<y2

mod M, y1
)

= 0

holds. Since the role of f1 and f2 can be exchanged, using (2-4), we assume that
deg(F 1

<y2
mod M, y1) = 0 holds. Consider any point α = (α1, α2) of V (M).

Since F 1
1 is null moduloM, the relation deg(F 1

<y2
modM, y1) = 0 implies that

the whole polynomial F 1
<y2

is actually null moduloM. Thus, the specialization
eval(F 1, α) can be divided by x2 − α2. Applying (2-6), we have

I(p; f1, f2) = I(p;x2 − α2, f2) + I(p; f1
x2−α2

, f2), (6)

where I(p;x2 − α2, f2) is the trailing degree of f2 evaluated at x2 = α2 (via
(2-5)). Since F 1, F 2 are expansions of f1, f2 about V (M), Equation (6) yields

IM2(M;F 1, F 2) = tdeg(F 2
<y2

mod M, y1) + IM2(M;
F 1

−F 1
<y2

y2
, F 2) (7)

where tdeg(F 1
<y2

mod M, y1) is the trailing degree of F 1
<y2

regarded as a poly-
nomial in y1 with coefficients in the field k[x1, x2]/M.

Proof (of Claim 3). We assume that

deg(F 1
<y2

modM, y1) > 0 and deg(F 2
<y2

modM, y1) > 0

both hold. Since the role of f1 and f2 can be exchanged, using (2-4),

deg(F 1
<y2

mod M, y1) ≤ deg(F 2
<y2

mod M, y1)

is assumed to hold. Let a1, a2 ∈ k[x1, x2] be polynomials and r ≤ s be positive
integers such that a1y

r
1 and a2y

s
1 are the leading terms of F 1

<y2
and F 2

<y2
regarded

as polynomials in y1 with coefficients in k[x1, x2]/M. Since W ∩ V (a1) = ∅ holds
there exists a polynomial b1 ∈ k[x1, x2] such that we have a1 b1 ≡ 1 mod M.
Define H := F 2−a2b1y

s−r
1 F 1. Clearly, this an expansion of a polynomial family

(hα, α ∈ V (M)) about V (M) such that we have eval(H,α) = hα where

hα := f2 − a2(α)b1(α)(x1 − α1)
s−rf1. (8)

Using (2-7), we have I(p; f1, f2) = I(p; f1, hα), for all p ∈ V (M), yielding

IM2(M;F 1, F 2) = IM2(M;F 1, H). (9)



6 Computing Intersection Multiplicities of Bivariate

Systems: Zero-Dimensional Case

The generalization from irreducible zero-dimensional algebraic sets V (M) to
arbitrary ones relies on standard techniques for computing triangular decompo-
sition of polynomial systems (see for instance [20, 10, 14, 19, 4]).

Algorithm 2 is the adaptation of Algorithm 1 for n = 2 variables. In this
algorithm we use two yet unmentioned methods: LT and Tdeg, and one yet
unmentioned language construct: output. Similar to Regularize, the call LT(F i,
T ), or leading term of F i modulo 〈T 〉, returns a list of pairs, (C, aF i ), where
C ⊂ k[x1, x2] is a regular chain and aF i is the lexicographical leading term of
F i when viewed as a polynomial in y1 < y2 with coefficients in k[x1, x2]/〈C〉;
moreover the union of V (C)’s form a partition of V (T ). The specification for
TDeg “trailing degree” is analogue. Finally, as we are returning a sequence we
use the language construct output(x, y) to indicate that (x, y) has been added
to the sequence that will ultimately be returned.

Theorem 3. Algorithm 2 terminates and works correctly.

Proof. We distinguish two cases: Algorithm 2 does not split the computations
and does split the computations. In this proof, C1, . . . , Ce ⊂ designate regular
chains of k[x1, . . . , xn] such that V (T ) is the disjoint union of V (C1),. . . ,V (Ce).

Non-splitting case: Assume that IM2(T ;F
1, F 2) computed by Algorithm 2

does not split the computation, thus returning a single pair (T,m). Using Rela-
tion (3), one can check that IM2(Ci;F

1, F 2) returns (Ci,m), for each i = 1, . . . , e.
Assume that C1, . . . , Ce generate maximal ideals. One can check that, when it
does not split, Algorithm 2 performs the same computation as Algorithm 1. By
virtue of Theorem 2, Algorithm 1 works correctly with input maximal ideals, thus
each call IM2(Ci;F

1, F 2) correctly returns (Ci,m). Consequently, IM2(T ;F
1, F 2)

correctly returns (T,m) also, since is the disjoint union of V (C1),. . . ,V (Ce).
Splitting case: From now on, assume now that the call IM2(T ;F

1, F 2) com-
puted by Algorithm 2 splits and returns pairs (C1,m1), . . . , (Ce,me), where
we no longer assume that C1, . . . , Ce generate maximal ideals. From the non-
splitting case and Relation (3), we know that each call IM2(Ci;F

1, F 2) correctly
returns (Ci,m). We conclude again with the fact that V (T )

7 Reduction to the bivariate case

We return to the n-variate case, using the same notations as in Sections 3. We
discuss how this n-variate case can be reduced to the bivariate one, for which
Algorithm 2 computes the intersection multiplicity of two plane curves (without
common components) at any point of their intersection.

We start by considering Property (n-8) of Section 3. Let p ∈ V (f1, . . . , fn).
Assume the hypersurface hn = V (fn) is non-singular at p. Let vn be its tangent
hyperplane at p. Assume furthermore that the tangent cone TCp(C) intersects



Algorithm 2: IM2(T ;F
1, F 2)

Input: F 1 and F 2 as given in Algorithm 1
Output: Finitely many pairs (Ti,mi) where Ti ⊂ k[x1, . . . , xn] are regular

chains and mi ∈ Z
+ such that Equation (1) holds and for all

p ∈ V (T i) we have I(p; f1, . . . , fn) = mi.
1 for T ∈ Regularize

(

F 1
1 , T

)

do
2 if F 1

1 6∈ 〈T 〉 then
3 output(T, 0);

4 else
5 for T ∈ Regularize

(

F 2
1 , T

)

do
6 if F 2

1 6∈ 〈T 〉 then
7 output(T, 0);

8 else
9 for (T, aF1) ∈ LT

(

F 1
<y2

, T
)

do
10 for (T, aF2) ∈ LT

(

F 2
<y2

, T
)

do
/* Wlog deg(F 1

<y2
) ≤ deg(F 2

<y2
) */

11 if aF1 ∈ 〈T 〉 then
12 for (T, d) ∈ TDeg

(

F 2
<y2

, T
)

do

13 for (T, i) ∈ IM2(T,
F1

−F1
<y2

y2
, F 2) do

14 output(T, (d+ i));

15 else
16 H ← F 2 − aF2 · Inverse

(

a1
F , T

)

· F 1;
17 output

(

IM2(T, F
1,H)

)

;

vn only at the point p. Let h ∈ k[x1, . . . , xn] be the degree 1 polynomial defining
vn. Finally, recall (Theorem 1) that I(p; f1, . . . , fn) = I(p; f1, . . . , fn−1, h) holds.

Up to re-numbering the variables, we can assume that the coefficient of xn

in h is non-zero, thus h = xn − h′, where h′ ∈ k[x1, . . . , xn−1]. Hence, we can
rewrite the ideal 〈f1, . . . , fn−1, h〉 as 〈g1, . . . , gn−1, h〉 where gi is obtained from
fi by substituting xn with h′. If instead of a point p, we have a zero-dimensional
regular chain T ⊂ k[x1, . . . , xn], we use the techniques developed in Sections 5
and 6 to reduce to the case of a point. Assuming x1 < · · · < xn, this leads to
I(p; f1, . . . , fn) = I(T ∩ k[x1, . . . , xn−1]; g1, . . . , gn−1).

In practice, this reduction from n to n − 1 variables does not always apply.
For instance, this is the case for Ojika 2 ⊆ k[x, y, z]:

x2 + y + z − 1 = x+ y2 + z − 1 = x+ y + z2 − 1 = 0. (10)

However, using the equation x2+y+z−1 = 0 to eliminate z from the other two,
we obtain two bivariate polynomials f, g ∈ k[x, y]. At any point of p ∈ V (h, f, g)
the tangent cone of the curve V (f, g) is independent of z; in some sense it is



“vertical”. Moreover, at any point of p ∈ V (h, f, g) the tangent space of V (h) is
not vertical. Thus, the reduction applies without computing any tangent cones.

We conclude this section by explaining how the tangent cone TCp(C) is com-
puted when the above trick does not apply. For simplicity, assume k = C and
assume that none of the V (fi) are singular at p. For each component G through
p of C = V (f1, . . . , fn−1), we proceed as follows: There exists a neighborhood B
of p such that V (fi) is not singular at all q ∈ (B ∩ G) \ {p}, for i = 1, . . . , n− 1.
Let vi(q) be the tangent hyperplane of V (fi) at q. Regard v1(q) ∩ · · · ∩ vn−1(q)
as a parametric variety with the coordinates of q as parameters. Then, we have
TCp(G) = v1(q) ∩ · · · ∩ vn−1(q) when q approaches p, which we compute by a
variable elimination process. Finally, TCp(C) is the union of all the TCp(G). This
approach avoids standard basis computation and extends easily for working with
the zero set V (T ) of a zero-dimensional regular chain T instead of a point p.

8 Implementation

We have done an implementation in Maple that depends heavily on the Regular-
Chains library. As this implementation is sufficiently different from the theoretical
algorithm it is meaningful to discuss how we realized it.

These differences can be traced back to a common origin: the data struc-
ture simulating the expansions F i defined in Section 4 for the purpose of the
algorithms of Sections 5 and 6. Recall that the expansions F 1, . . . , Fn belong
to k[x1, . . . , xn, y1, . . . , yn] where x1, . . . , xn are the variables of the input poly-
nomials f1, . . . , fn and where y1, . . . , yn are essentially “placeholders”. But our
algorithms fundamentally treat F 1, . . . , Fn as vectors, performing only additions
and subtractions on them.

While these expansions F 1, . . . , Fn are a nice trick to manipulate “simultane-
ously” Taylor expansions at several points of a variety, a naïve implementation
could suffer from performance bottleneck (hardly surprisingly when doubling the
number of variables). In particular, we observe that during the execution of the
algorithms, all the partial derivatives of f1, . . . , fn may not be needed. Therefore,
one may wish to take advantage of lazy or delayed evaluation.

A structure utilizing delayed computation is well suited for this. To demon-
strate why, suppose that F i is a data structure implementing F i such that F i(a1,
. . . , an) = F i

µ for µ = ya1

1 · · · y
an
n . To determine F i(a1, . . . , an + 1) one must

only compute 1
an+1

∂Fi(ai,...,an)
∂xn

. Combining this rule with F i (a1, . . . , an−1, 0) =

F i (a1, . . . , an−1) and F i(0) = fi gives a recursive function whose output matches
our specification. We call these “lazy Taylor expansions” (LTEs).

Moreover these LTEs have a very useful property: F i (a1, . . . , an−1) ≡ F i
<yn

.
They are also surprisingly straightforward to implement in Maple.

Notice that the “data structure” for the LTEs are in fact procedures. There-
fore any method processing LTEs, like Subtract for instance, will take as input
procedures and return a procedure. This notion may be unusual but requires
very little overhead (practically undetectable in our experiments). We outline
the remaining important methods for our algorithms:



Division by yn:

F i(a1, . . . , an)

yn
= F i(a1, . . . , an + 1)

Multiplication by µ: Let F i(a1, . . . , an) = 0 if there is i for which ai < 0, then

F i(a1, . . . , an) ·
(

yb11 · · · y
bn
n

)

= F i(a1 − b1, . . . , an − bn)

Substitute yn = h1y1 + · · · + hn−1yn−1. For every b1, . . . , bn with bn > 0,
F(b1, . . . , bn)← 0 and

F(a1 + k1, . . . , an−1 + kn−1)← F(a1, . . . , an−1)+

∑

k1+···+kn−1=bn

(

bn
k1, . . . , kn−1

)

hk1

1 · · ·h
kn−1

n−1 .

Using these LTEs along with careful, and repeated, invocations of the Regu-
larChains[Regularize] command, our algorithms can be realized.

9 Experiments

We have fully implemented the bivariate case, that is, Algorithm 2, on top of the
RegularChains library in Maple. As this is the base case for the n-variate algo-
rithm it is of paramount importance that it runs fast and correctly. The n-variate
implementation is a work in progress and there is large room for improvements.

We choose to study systems taken from [2] and [13]—a suite of examples used
for benchmarking and testing bivariate system solvers. All timings are given in
seconds and the base field has characteristic 962592769 in all cases. It should be
noted that, despite 962592769 being a so-called FFT-prime, we are not using the
FastArithmeticTools package of the RegularChains library. This is because our
current implementation is only generic and works in any characteristic. However,
some of the systems in [13] are too challenging for being directly solved in char-
acteristic zero without using an approach based on modular, or other advanced,
techniques. Results are in Table 1.

We are happy with the results of these experiments for two reasons. First,
we could not find an instance where Triangularize produced regular chains for
which our algorithm IM2 could not correctly and expeditiously determine the
intersection multiplicities. Secondly, applying Property (2-5) from Section 1 to
our bivariate code admits a speedup factor in the hundreds. Indeed this property
enables us to determine if the intersection multiplicity is one simply by checking
the invertibility of the Jacobian of f1, f2 modulo the current regular chain.

Our n-variate implementation is based on the techniques discussed in Sec-
tion 7. As with the bivariate case, our experiments are done in characteristic
962592769. We have taken examples from [7] (a paper on intersection multiplic-
ity) and from [3] (a test suite for benchmarking homotopy solvers). Observe that



Table 1. (LEFT) Input Polynomials (after specialization to bivariate). (RIGHT)
Experimental results for the bivariate case. Dimension is calculated by Maple’s
PolynomialIdeals:-NumberOfSolutions command which gives the number of solutions
counted with multiplicity. Time(△ize) is time required by RegularChains:-Triangularize

to decompose the system into N=#rc’s many regular chains and Time(rc_im) =
Time(rc_im(rc1)) + · · ·+ Time(rc_im(rcN )): the total time for rc_im, our imple-
mentation of Algorithm 3, to determine intersection multiplicities of an entire system.

Label Name terms degree

1 hard_one 30 37

2 L6_circles 4 24

3 spiral29_24 63 52

4 tryme 38 59

5 challenge_12 49 30

6 challenge_12_1 64 40

7 compact_surf 52 18

8 degree_6_surf 467 42

9 mignotte_xy 81 64

10 SA_4_4_eps 63 33

11 spider 292 36

System Dim Time(△ize) #rc’s Time(rc_im)

〈1, 3〉 888 9.7 20 19.2

〈1, 4〉 1456 226.0 8 9.023

〈1, 5〉 1595 169.4 8 25.4

〈3, 5〉 1413 22.5 27 28.6

〈4, 5〉 1781 218.4 9 13.9

〈5, 1〉 1759 113.0 10 15.8

〈6, 8〉 1680 99.7 12 37.6

〈6, 9〉 2560 299.3 10 22.9

〈6, 10〉 1320 131.9 7 8.4

〈6, 11〉 1440 59.8 17 27.5

〈7, 8〉 1152 32.8 12 16.2

〈7, 9〉 756 18.5 16 11.2

〈8, 9〉 1984 374.5 10 11.3

〈8, 10〉 1362 232.5 7 9.3

〈8, 11〉 1256 49.6 17 45.7

〈9, 11〉 1792 115.1 16 17.2

〈10, 11〉 1180 40.9 17 21.3

Table 2. Experimental results for the n-variate case. Dimension is again the dimen-
sion of the vector space k[x1, . . . , xn]/〈f1, . . . , fn〉 and Points is the degree of the variety
V (f1, . . . , fn). △ize and rc_im are the same as in Table 1. Cones and COV give (re-
spectively) the time to calculate the tangent cones or to do a change of variables of
the system. Finally, Total is the sum of the previous three columns and Success is
the number of points (counted with multiplicity) for which the bivariate reduction was
success full over the dimension of of the vector space k[x1, . . . , xn]/〈f1, . . . , fn〉.

Name Dim Points △ize Cones COV rc_im Total Success

Nbody5 99 49 1.60 0.00 0.06 1.90 2.00 51/99

mth191 27 18 0.56 5400.00 0.04 0.01 5400.00 23/27

ojika2 8 5 0.20 8.20 0.13 0.47 8.80 8/8

E-Arnold1 45 30 0.89 1100.00 0.01 1800.00 2900.00 45/45

ShiftedCubes 27 25 0.66 0.00 0.00 0.52 0.52 27/27



the reduction techniques of Section 7 apply successfully for 3 examples and par-
tially for 2 examples. We also note that tangent cone computations are currently
a bottleneck. A new algorithm for this task is work in progress.
Acknowledgements. This project has benefited from useful conversations with
Dr. Roi Docampo and Dr. Noah Giansiracusa, and was funded, in part, by grants
from Maplesoft, MITACS and NSERC of Canada.

References

1. P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets. J.

Symb. Comp., 28(1-2):105–124, 1999.
2. E. Berberich, P. Emeliyanenko, and M. Sagraloff. An elimination method for

solving bivariate polynomial systems: Eliminating the usual drawbacks. CoRR,
abs/1010.1386, 2010.

3. D. Bini and B. Mourrain. Polynomial test suite. http://www-
sop.inria.fr/saga/POL/. Accessed: April 1, 2012.

4. C. Chen and M. Moreno Maza. Algorithms for computing triangular decomposi-
tions of polynomial systems. In Proc. ISSAC’11, pages 83–90. ACM, 2011.

5. J.-S. Cheng and X.-S. Gao. Multiplicity preserving triangular set decomposition
of two polynomials. CoRR, abs/1101.3603, 2011.

6. D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Graduate Text in
Mathematics, 185. Springer-Verlag, New-York, 1998.

7. B. H. Dayton and Z. Zeng. Computing the multiplicity structure in solving poly-
nomial systems. In Proceedings of ISSAC ’05, pages 116–123. ACM, 2005.

8. W. Fulton. Introduction to intersection theory in algebraic geometry, volume 54 of
CBMS Regional Conference Series in Mathematics. Published for the Conference
Board of the Mathematical Sciences, Washington, DC, 1984.

9. W. Fulton. Algebraic curves. Advanced Book Classics. Addison-Wesley, 1989.
10. M. Kalkbrener. A generalized euclidean algorithm for computing triangular repre-

sentations of algebraic varieties. J. Symb. Comp., 15:143–167, 1993.
11. F. Kirwan. Complex algebraic curves, volume 23 of London Mathematical Society

Student Texts. Cambridge University Press, Cambridge, 1992.
12. Anthony W. Knapp. Advanced algebra. Cornerstones. Birkhäuser Boston Inc.,

Boston, MA, 2007. Along with a companion volume ıt Basic algebra.
13. O. Labs. A list of challenges for real algebraic plane curve visualization software.

In I. Z. Emiris, F. Sottile, and T. Theobald, editors, Nonlinear Computational

Geometry, pages 137–164. Springer New York, 2010.
14. D. Lazard. Solving zero-dimensional algebraic systems. J. Symb. Comp., 15:117–

132, 1992.
15. F. Lemaire, M. Moreno Maza, W. Pan, and Y. Xie. When does (T) equal Sat(T)?

In Proc. ISSAC’20008, pages 207–214. ACM Press, 2008.
16. F. Lemaire, M. Moreno Maza, and Y. Xie. The RegularChains library. In Ilias S.

Kotsireas, editor, Maple Conference 2005, pages 355–368, 2005.
17. Y. L. Li, B. Xia, and Z. Zhang. Zero decomposition with multiplicity of zero-

dimensional polynomial systems. CoRR, abs/1011.1634, 2010.
18. I. R. Shafarevich. Basic algebraic geometry. 1. Springer-Verlag, Berlin, second

edition, 1994.
19. D. M. Wang. Elimination Methods. Springer, 2000.
20. W. T. Wu. A zero structure theorem for polynomial equations solving. MM

Research Preprints, 1:2–12, 1987.


