
-

MONOGRAPH

An Informal Derivation of the Standard Model of

Computation.

written by

Paul Vrbik

Department of Computer Science

Western University

London, Ontario, Canada

© Paul Vrbik 2015

Preface

This book is an adaptation of lectures notes written by the author and given

to undergraduate computer-science (CS) students in lieu of a text. The goal

of the class was to develop a precise mathematical meaning of computation

in order to demonstrate there are propositions falling outside the class of

computable problems.

The text is designed to be given over a single semester and can be under-

stood by students with basic training in the rules of inference. The narrative

has been tailored to appeal to CS students by framing the problem as ‘What

is a computer? ’, which inevitably leads to the investigation of the notion of

‘computation’ as an abstract concept.

After an introduction to set theory and brief refresher of logic and proof

techniques, the book unfolds in the following way:

1. We first establish ‘computation’ is fundamentally just membership test-

ing on languages, and strive then to build ‘machines’ which do just

that.

2. Finite State Machines (read-only machines) do not work as they cannot

read the simple language {anbn : n ∈ N}, and neither do their non-

deterministic counterparts (as there really is no functional distinction

between the two).

3. Write-only machines allow for the detection of {anbn : n ∈ N} (or more

generally the context free languages); but not the modestly more com-

plicated {anbncn : n ∈ N}.

4. Adding stack memory to Finite State Machines to get Push Down Au-

tomata does not fare any better: they are able to read {anbn : n ∈ N}
but {anbncn : n ∈ N} still escapes detection.

5. Finally, we describe machines which read and write (Turing machines)

and demonstrate these machines are ‘maximal’ in their detection ca-

pability.

ii

iii

6. Unfortunately, a side effect of Turing machines are machines which

never terminate. This necessitates a division of problems we can solve

with computers into ones which terminate on all inputs (computable

ones) and those which terminate on some (if any) inputs (incomputable

ones).

Moreover, the text is designed with a realistic assessment of the math-

ematical background of the typical upper-year CS student (for which this

course is usually standard curriculum). Specifically, I assume the students

have

1. limited exposure to proofs, and a

2. heightened understanding of algorithms.

Sensitive to this, I have provided a great level of detail in formal proofs,

presenting everything in the language of logic and justifying each step as

clearly as possible. In cases where proofs are constructive, algorithms are

preferred.

Lastly, I have opted to use a deliberately elaborate type of notation, e.g.

{(
qw0w1, q

′′) : ∃w0, w1 ∈ Σ; q q′ q′′
w0 w1

}

.

This serves to simplify the presentation as a clear correspondence is estab-

lished between transition state diagrams (the preferred way of defining ma-

chines) and the structures they encode.

Finally, into the book I have inserted many side notes with historical

anecdotes and general problem-solving strategies. This roots the material in

a historical context and exposes students to strategies and practical advice

which are sometimes overlooked.

Contents

Preface ii

1 Preliminaries 1

1.1 Set Theory . 1

1.1.1 Basics . 1

1.1.2 Class Abstraction . 8

1.1.3 Operations on Sets . 8

1.2 Binary and n-ary Relations 12

1.2.1 Properties of Relations 15

1.2.2 Equivalence Relations 21

1.3 Alphabets, Words, and Languages 23

1.3.1 More Set Constructs 23

1.4 Alphabets and Languages . 24

1.4.1 Operations on words 26

1.4.2 Operations on Languages 29

1.5 Proof Methods . 33

1.5.1 Direct Proof . 33

1.5.2 The Principle of Mathematical Induction 34

1.5.3 Contradiction . 36

1.5.4 The Pigeonhole Principle 37

1.6 End of Chapter Exercises . 39

1.7 Exercise Solutions . 41

2 Finite Automata 43

2.1 Finite State Machines . 43

2.1.1 Complete Machines . 48

2.2 The language of a Machine 50

2.2.1 Goto . 50

2.2.2 Eventually goes to (⊢∗) 51

2.3 Regular Languages . 54

2.3.1 FSM Shortcuts . 55

iv

CONTENTS v

2.3.2 Irregular Languages 57

2.3.3 FSM Scenic Routes . 57

2.3.4 Pumping Lemma . 59

2.4 Nondeterministic FSM . 62

2.4.1 NDFSM → DFSM conversion 65

2.4.2 NDFSM/DFSM equivalence 69

2.5 Properties of ndfsm Languages 69

2.5.1 ε-NDFSM . 70

2.5.2 Closure Properties . 76

2.6 End of Chapter Exercises . 83

3 Other Regular Constructs 84

3.1 Regular Expressions . 84

3.1.1 Kleene’s Theorem . 86

3.2 Regular Grammars . 99

3.2.1 Linear Grammar Machines 99

3.2.2 The language of a lgm 102

4 Context Free Grammars 105

4.1 Introduction . 105

4.2 Context Free Grammars . 107

4.3 CFG Language Proofs . 109

4.4 CFG Simplificitation . 112

4.4.1 Terminating Symbols 112

4.4.2 Reachable Symbols . 114

4.4.3 Empty productions . 114

4.4.4 Reduction . 116

4.4.5 ε-removal . 118

4.5 Chompsky Normal Form . 120

4.5.1 Unit Production Removal 121

4.5.2 Long Production Removal 122

4.5.3 Converting to CNF . 123

5 Pushdown Automata 128

5.1 Preliminaries . 128

5.1.1 The Stack . 128

5.2 Push Down Automata . 131

5.2.1 Using A Stack . 131

5.2.2 Formalizing pdas . 132

5.2.3 Acceptance by pda . 135

CONTENTS vi

5.3 Deterministic pdas . 136

5.3.1 Closure Properties of dpda 138

5.4 Context Free Pumping Lemma 139

5.4.1 Maximum Yields . 141

6 Turing Machines 143

6.1 Preliminaries . 143

6.2 Formalizing Turing Machines 145

6.2.1 Configurations . 147

6.2.2 Moving The Read Head 148

6.2.3 GOTO . 148

6.3 Recursive and Recursively Enumerable Languages 148

6.4 Computing with Turing Machines 150

6.5 Recursive Functions . 153

6.5.1 Representing N . 154

6.5.2 Primitive Recursive Functions 156

6.6 µ-recursion . 160

6.7 Undecidable Problems . 162

6.7.1 The Halting Problem 162

6.7.2 Reduction to the Halting Problem 163

Chapter 1

——X——

Preliminaries

“Begin at the beginning,” the King said, gravely, “and go on till you

come to an end; then stop.”

– Lewis Carroll, Alice in Wonderland

Sets, multisets, sequences, functions, relations, proof techniques, alpha-

bets, words, and languages.

§1.1 Set Theory

History of set theory. Cantor, Dedekind, axiom of choice, construction of

the integers.

§Basics

We start with a set.

Definition 1 (set). A Set, in the mathematical sense, is a finite or infinite

collection of unordered and distinct objects.

Anything surrounded by curly braces ‘{ }’ is a set.

Example 1. A set of integers.

A = {3, 8, 9, 10, 42,−3} .

Definition 2. A set’s cardinality (denoted by ‘| |’ or ‘#’) is the number

of elements the set contains (finite or otherwise).

Example 2. A has cardinality 6.

|A| = | {3, 8, 9, 10, 42,−3} | #A = # {3, 8, 9, 10, 42,−3}

1

set theory 2

= 6 = 6

Notation. There are standard sets with fixed names. We use the following:

1. the natural numbers: N = {0, 1, 2, . . .};

2. the whole numbers: N>0 = {1, 2, . . .};

3. the integers: Z = {. . . ,−2,−1, 0, 1, 2, . . .};i and

4. the rational numbers: Q =
{
a
b
: a, b ∈ Z ∧ b 6= 0

}
.

The most concise, or perhaps only, way to work with sets is to express

everything with a formal language of logical symbols. Let us quickly

review these symbols taking for granted the definitions and notions of im-

plication (=⇒ and ⇐⇒) as well as the meaning of ‘or’ and ‘and’ (∨ and

∧).

Definition 3 (Mapping). A mapping ‘connects’ elements of one set with

another. Writing

M : A→ B

a 7→ b.

expresses: M maps a ∈ A to b ∈ B.

Since functions are also maps—for instance, f(x) = x2 can be given as

the mapping:

f : Z→ Z

x 7→ x2

—the term ‘map’ and ‘function’ are sometimes used interchangeably.

When B = {true, false} = {⊤,⊥} in Definition 3 the map is called a

predicate.

Definition 4 (Predicate). An operator of logic that returns true (⊤) or false

(⊥) over some universe (e.g. Z, days of the week, or reserved words).

Example 3. A predicate given by

P : Z→ {⊤,⊥}

i Z because the German word for ‘number’ is ‘Zahlen’

set theory 3

P : x 7→
{

⊤ if x is prime

⊥ otherwise

evaluates to true only when x is a prime number:

P (7) = ⊤ P (8) = ⊥ P (101) = ⊤.

Sometimes a predicate is used so often as to merit a special symbol (math-

ematicians are, by necessity, inherently lazy when writing things down).

There are many of these in set theory.

Definition 5 (Element). The symbol ∈, read ‘is an element of’, is a predicate

with definition

∈ : (element,Universe)→ {⊤,⊥}
∈ : (e, U) 7→ e is an element of U

(Note: The symbol ε, which will later denote the empty word, should not

be used for set inclusion.)

Example 4. Over the universe of even numbers E = {2, 4, 6, . . .} we deduce

2 ∈ E ⇐⇒ ∈ (2, E) ⇐⇒ 2 is an element of {2, 4, 6, . . .}
⇐⇒ ⊤

and

17 ∈ E ⇐⇒ ∈ (17, E) ⇐⇒ 17 is an element of {2, 4, 6, . . .}
⇐⇒ ⊥

which can be abbreviated as 2 ∈ E and 17 6∈ E (both evaluate to true).

Example 4 utilises a widely employed short form for invoking binary map-

pings (those mappings taking two inputs to one). Consider the addition

function which takes two integers and maps them to their sum

+ : Z× Z→ Z

+ : (x, y) 7→ x+ y.

It is universally understood that 2 + 5 is a short form for +(2, 5). When

functions and mappings on sets are defined, keep it in the back of your

mind that we are applying binary mappings in this way.

set theory 4

Definition 6 (Existence). The logical statement ‘there exists’ (alternatively

‘there is’) is denoted by ∃. It is used to express that there is some element

of the predicate’s universe for which the predicate is true:

∃x ∈ {x0, x1, . . .} ; P (x) ⇐⇒ P (x0) ∨ P (x1) ∨ · · · .

Example 5. Using the prime test predicate of Example 3:

∃xP (x) = ⊤

when P ’s universe is Z (in fact Z contains all the primes). But when P ’s

universe is {4, 6, 8, . . .}

∃xP (x) = ⊥ ⇐⇒ ¬∃xP (x)

as no even number—excluding 2—is prime!ii (The later statement reads

‘there is no x ∈ {4, 6, 8, . . .} for which x is a prime’.)

To address this subtlety it is common to make the universe explicit,

∃x ∈ Z; P (X).

Definition 7 (Every). The symbol ∀ denotes ‘for all ’ (alternatively ‘for

every ’, ‘for each’) and is called the universal quantifier. ∀ is used to

make assertions ‘universally’ over an entire set:

∀x ∈ {x0, x1, . . .} ; P (x) ⇐⇒ P (x0) ∧ P (x1) ∧ · · ·

Proposition 1. For any predicate P : U → {⊤,⊥}

¬∀x ∈ U ; P (x) ≡ ∃x ∈ U ; ¬P (x).

In prose: P (x) is not true for every x ∈ U only when there is x ∈ U for

which P (x) is false (and vice versa)

Proof.

Example 6. Let Q(x) given over Z be true only when x is divisible by two:

Q(x) ⇐⇒ 2
∣
∣ x ⇐⇒ ∃y ∈ Z; 2y = x.

It is not true that

∀x ∈ Z; Q(x)

ii There is some disagreement as to whether 2 should be a prime as it is only so by sheer
accident.

set theory 5

because

∃x ∈ Z; ¬Q(x).

That is to say, there is some x ∈ Z (7 for instance) which is not divisible by

2.

If we provide another predicate R(x) ⇐⇒ 2
∣
∣ x− 1 then

∀x ∈ Z; Q(x) ∨ R(x) = ⊤

since it is true that every integer is either even or one more than an even

(i.e. all integers can be expressed as 2x or 2x+ 1).

Now we are finally able to enumerate the basic rules of set theory, of

which there are seven, and from which all of set theory (and to some ex-

tent mathematics) is a consequence of. Important, basic and unproveable

assumptions of this kind are called ‘axioms’. Let us investigate some (but

not all) axioms of set theory:

Our first axiom states the condition for two sets, A and B, to be identical.

Axiom 1 (Axiom of Extensionality). If every element of A is also in B (and

vice versa) then A and B are equal:

[
∀x; x ∈ A ⇐⇒ x ∈ B

] def.
⇐⇒ A = B.

Example 7. Although seemingly trivial, we deduce two important proper-

ties from Axiom 1.

{1, 2, 3} = {3, 1, 3, 2, 1} = {2, 1, 3, 2, 1, 3, 3} .

Sets are not ordered! And. Duplicate elements are ignored!

Exercise 1. Is {2, 2, 2, 3, 3, 4} a set? If so, what is its cardinality?

Exercises are placed liberally throughout. Practicing is vital to learning

mathematics. Attempt as many as possible. Each can be answered using

information that precedes it. For instance, Example 1 and Definition 1.

The notion of set equality can be weakened,

Definition 8 (Subset). A is a subset of B when each element of A is also

an element of B,

[
∀x; x ∈ A =⇒ x ∈ B

] def.
⇐⇒ A ⊆ B

set theory 6

and weakened again,

Definition 9 (Proper/Strict subset).

A ⊂ B
def.
⇐⇒

[
[A ⊆ B] ∧ ¬ [B ⊆ A]

]
.

Unfortunately there is some disagreement (mostly cross-culturally and

cross-disciplinary) regarding the symbols used to distinguish subsets from

proper subsets. Although we use ⊆ and ⊂, it is handy to know that other

people/texts instead use ⊂ and (to distinguish subset and proper subset

(i.e. subset but not equal).

Example 8. For A = {1, 2, 3}, B = {3, 1, 2} and C = {1, 2, 3, 4}

A ⊆ A, A ⊆ B, A ⊆ C,

and

¬ [A ⊂ A] , ¬ [A ⊂ B] [A ⊂ C] .

(In logic everything written should be true. To express something false, state

the negation as true.)

Exercise 2. Show ∀A; A ⊂ A ≡ ⊥.

Proposition 2. A ⊆ B ∧ B ⊆ A =⇒ A = B.

Proof. The premise A ⊆ B ∧ B ⊆ A can be rewritten as

A ⊆ B ∧ B ⊆ A
⇐⇒

[
∀x; x ∈ A =⇒ x ∈ B

]
∧

[
∀x; x ∈ B =⇒ x ∈ A

]
Defn. 8

⇐⇒ ∀x; x ∈ A =⇒ x ∈ B ∧ x ∈ B =⇒ x ∈ A
⇐⇒ ∀x; x ∈ A ⇐⇒ x ∈ B
⇐⇒ A = B Axiom 1

(Only statements that are logical consequences of the line before can forgo

justification.)

Axiom 2 (Set Existence Axiom). There is at least one set.

∃A : A = A.

set theory 7

(Notice this axiom uses ‘=’ from Axiom 1 and thus could not have been

first.)

The wonderful (and deliberate) consequence of this axiom is the existence

of the empty set ∅.

Theorem 1. There is a unique set (say, ∅) with no members,

∃!∅ ∀x; x 6∈ ∅.

(‘ !’ is a short form for ‘unique’.)

Proof. Challenge. Unfortunately, this proof (and more proofs to come) are

beyond the scope of this course. All proofs labelled ‘Challenge’ are optional.

Definition 10 (Empty set). The empty set

∅

is the unique set with no members.

Distinguish carefully between ∅ (the empty set) and φ/ϕ (the greek letter

‘phi’)!

Proposition 3. The empty set satisfies:

1. ∀x; x 6∈ ∅,

2. ∀A; ∅ ⊆ A, and

3. ∀A; A ⊆ ∅ =⇒ A = ∅

Proof.

A natural question to raise is that of the universal set—the set con-

taining everything (the complement of the empty set).

Intuitively, the Universal set can not exist because it would, paradoxi-

cally, contain itself (see Exercise 2). German mathematician Ernst Zermelo

(1831–1916) formalized and proved this statement.

Theorem 2 (Russell’s Paradox). There is no universal set.

¬∃A : ∀x; x ∈ A.

Proof. Google.

set theory 8

(The name ‘Russell’s Paradox’ is an example of a weird tendency among

mathematicians to sometimes name things after the last person to publish

them, in this case Bertrand Russell).

§Class Abstraction

There are several ways to express a set. We could specify the members

outright:

A = {1, 2, 4, 9, 16, . . .} ;

use set builder notation or class abstraction by providing a predi-

cate (with implicit universe):

B = {x ‘such that’ x is a prime number}
= {x : x is a prime number}
= {2, 3, 5, 7, 11, . . .} ,

C = {x : x is an english word and also a palindrome}
= {a, dad, mom, . . .} ,

D = {x : x is a positive integer divisible by 3 and less than 10}
= {3, 6, 9} ;

or, recursively (§ ??)

1. 2 ∈ E,

2. a, b ∈ E ⇐⇒ a · b ∈ E.

Notice the ‘. . .’ of C are somewhat meaningless and that D is a finite set.

Exercise 3. What is the definition of E using set building notation?

§Operations on Sets

We have already discussed the subset operation on sets and, expectedly,

there are more.

The Power Set

Definition 11 (Power set). The power set of A, denoted P(A), is the set

of all subsets of A.

P(A) = {B : B ⊆ A} .

set theory 9

Example 9. If A = {1, 2, 3} then the power set of A is

P(A) = {∅, {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3}} .

As ∅ ⊂ A for any set A, notice ∅ is automatically a member of every power

set—including the power set of itself!

Exercise 4. What is P (∅)? In particular, is P (∅) = ∅?

The notion of ∅ as distinct from {∅}, is a subtle yet incredibly power-

ful idea. All objects of mathematics, at their very core, are sets of sets.

For instance the natural numbers (as described by Italian mathematician

Giuseppe Peano in 1890) are given in this way:

0 = ∅

1 = 0 ∪ {0} = ∅ ∪ {∅}
2 = 1 ∪ {1} = ∅ ∪ {∅} ∪ {∅ ∪ {∅}}

...

n+ 1 = n ∪ {n}

Later we will define addition over these numbers and ‘prove’

1 + 1 = 2

something that is (supposedly) quite difficult.

Some prefer to regard the power set from the perspective of Combina-

torics (a branch of mathematics concerned with counting arrangements of

discrete objects). Occupiers of this camp would characterize the power set

as enumerating the ways one can include/exclude elements.

Example 10. Again let A = {1, 2, 3} and consider this encoding of the

subsets, where we will regard � as an element that has been removed.

000 = {�,�,�} = {} = ∅

001 = {�,�, 3} = {3}
010 = {�, 2,�} = {2}
011 = {�, 2, 3} = {2, 3}
100 = {1,�,�} = {1}
101 = {1,�, 3} = {1, 3}

set theory 10

110 = {1, 2,�} = {1, 2}
111 = {1, 2, 3} = {1, 2, 3} .

Realizing the encoding is simply the 3-bit binary numbers (of which there

are 23 = 8) written in ascending order, and that there is a one-to-one corre-

spondence between these binary encodings and the subsets they encode, we

can easily write down an equation for the cardinality of a power set.

Proposition 4. The cardinality of A’s power set is 2|A|,

|P(A)| = 2|A|.

(This is likely the motivation for the alternative notation 2A for the power

set of A.)

Proof. Challenge.

Example 11. The set B = {0, 1, . . . , 299} corresponds to a power set with

cardinality 2300 (i.e. huge—for comparison, the number of atoms in the

known universe is approximately 2265).

Basic Operations on Sets

Let us review the notions of Intersection, Set Difference, and Union. For the

sake of brevity, but mostly because what follows is widely known, we eschew

a lengthy discussion and assume that those who desire it will sample the

literature[1].

Definition 12 (Set difference). ‘A without B’ written A \B is given

A \B = {z : z ∈ A ∧ z 6∈ B} .

Example 12. {1, 2, 3} \ {3, 4, 5} = {1, 2}.

Proposition 5. z ∈ A \B ⇐⇒ {z ∈ A ∧ z 6∈ B} .

Proof. An important lesson about context.

Definition 13 (Intersection). ‘A intersect B’ denoted A ∩B is given by

A ∩B = {z : z ∈ A ∧ z ∈ B} .

Proposition 6. z ∈ A ∩B ⇐⇒ z ∈ A ∧ z ∈ B.

Proof.

set theory 11

Example 13. {1, 2, 3, 4, 5} ∩ {2, 3, 4} = {2, 3, 4}.

Exercise 5. What is C ∩∅?

Definition 14 (Disjoint). We say that A and B are disjoint when

A ∩B = ∅.

Example 14. {1, 2} and {3, 4} are disjoint. {1, 2, 3} and {3, 4} are not

disjoint as {1, 2, 3} ∩ {3, 4} = {3} 6= ∅.

Definition 15 (Union). A ‘union’ B denoted A ∪B is given by

z ∈ A ∪B ⇐⇒ (z ∈ A ∨ z ∈ B) .

Example 15. If A = {a, b, c} and B = {b, c, d, e} then A∪B = {a, b, c, d, e}.

Exercise 6. Prove

Identity. X ∪∅ = X,

Associativity. {X ∪ Y } ∪ Z = X ∪ {Y ∪ Z},

Reflexivity. X ∪X = X, and

Commutativity. X ∪ Y = Y ∪X.

of the union operation.

The various parts of the next theorem, which combines \, ∩, and ∪, are

the namesake of British mathematician Augustine De Morgan (1806-1871)

who also formalized the ‘Principal of Mathematical induction’ (Theorem 4).

Theorem 3 (De Morgan’s Laws). For sets A, B, and C

1. A ∩ {B ∪C} = {A ∩B} ∪ {A ∩ C},

2. A ∪ {B ∩C} = {A ∪B} ∩ {A ∪ C},

3. A \ {B ∩ C} = {A \B} ∩ {A \ C}, and

4. A \ {B ∩ C} = {A \B} ∩ {A \ C}.

Recognize these points as being exactly similar to the De Morgan’s Laws

of logic with the substitutions

¬ ← \ ∨ ← ∪ ∧ ← ∩

binary and n-ary relations 12

Figure 1.2: Indian born British logician
Augustine De Morgan was teased as a
child because a vision problem in his left
eye prevented him from participating in
sports. Later, a crater on the moon would
be named in his honour.

Proof of 2.

Proof of 1,2, and 4. Challenge.

§1.2 Binary and n-ary Relations

Sets define ordered pairs.

Definition 16 (Ordered Pair). The ordered pair ‘x followed by y’ is

denoted (x, y) and satisfies

(x, y) = {{x} , {x, y}}

Proposition 7.

(x, y) = (A,B) ⇐⇒ x = A ∧ y = B

Proof. Challenge.

Example 16. (2, 3) and (3, 2) are (both) ordered pairs. These two ordered

pairs are distinct despite despite having identical elements.

In general, an ordered n-tuple is written

(x0, . . . , xn−1)

binary and n-ary relations 13

and is the natural extension of Definition 16. (As a matter of convention we

call say a: 2-tuple is a ‘tuple’; 3-tuple is a ‘triple’; 4-tuple is a ‘quadruple’;

and so on.)

A binary relation, or simply relation, is just a collection (set) of ordered

pairs (and in general ordered n-tuples).

Example 17. R = {(0, 0), (2, 5), (7, 5)} is a relation.

Notation. We write aRb when (a, b) ∈ R. In Example 17 0R0, 2R5, and

7R5 (but not 5R2 or 5R7).

This is an important fact that bears repeating: any set of ordered pairs

is a relation.

Read ⊕ as ‘o-plus’.

Definition 17 (Relation). ⊕ is an n-ary relation when

∀x; x ∈ ⊕ =⇒ x is an ordered n-tuple.

In particular ⊕ is a (binary) relation when

∀x; x ∈ ⊕ =⇒ x is an ordered pair.

Exercise 7. Show ∅ satisfies the definition of (and is consequently) a rela-

tion.

The cartesian product quickly builds sets of ordered pairs and thus rela-

tions as well.

Definition 18 (Cartesian product). The Cartesian product of sets A and

B is denoted A×B and given by

A×B = {(a, b) : a ∈ A ∧ b ∈ B} .

Example 18.

{2, 3} × {x, y, z} = {(2, x), (2, y), (2, z), (3, x), (3, y), (3, z)}

Notation. When A = B in Definition 18 we may write A2 for A×A.

Relations are utterly pervasive in mathematics. For instance, < and =

are relations.

binary and n-ary relations 14

Over the naturals N the ‘less than’ symbol is the relation

‘ < ’ = {(0, 1), (0, 2), . . . , (1, 2), (1, 3), . . .}
= {(a, b) : a < b ∧ a, b ∈ N}

and, ‘equals to’ (also over N) is

‘ = ’ = {(0, 0), (1, 1), (2, 2), (3, 3), . . .}
= {(a, a) : a ∈ N} .

This viewpoint is somewhat obscured by the implied understanding of x < y

as short form for (x, y) ∈ ‘ < ’.

Example 19. Taking ‘ < ’ as a relation over N

1 < 2 ⇐⇒ (1, 2) ∈ ‘ < ’ ⇐⇒ ⊤

and

3 < 0 ⇐⇒ (3, 0) ∈ ‘ < ’ ⇐⇒ ⊥.

In fact any binary predicate can be fashioned into a relation using class

abstraction:

Proposition 8. Suppose P is a predicate with definition

P : A×A→ {⊤,⊥}
(a, b) 7→ P (a, b)

then

{(a, b) : P (a, b) ∧ (a, b) ∈ A×A}

is a relation.

Proof. Immediate consequence of the definition of Relation.

To disavow ourselves of the idea that all relations have infinite size, con-

sider the following relation of finite cardinality.

binary and n-ary relations 15

Example 20. Place the unit square in Z× Z as such

(0,0)

(1,1)(0,1)

(1,0)

and let ⊕ = {(0, 0), (0, 1), (1, 0), (1, 1)}. This relation tests if an element of

Z× Z is a vertex: 0⊕ 2 ⇐⇒ ⊥, 0⊕ 2 ⇐⇒ ⊥, 0⊕ 1 ⇐⇒ ⊤, and so on.

Relations of finite size can be drawn as graphs.

Definition 19 (Directed graph). A directed graph G = (N,E) is a collection

of nodes N , and a set of directed edges, E ⊆ N ×N .

(Notice the striking similarities between the definition of graph and that

of a relation. In particular, both are essentially defined as a set of ordered

pairs.)

Example 21. The relation of Example 20 as a directed graph.

0 1

This graph has nodesN = {0, 1} and, denoting the directed path a b

as (a, b), directed edges E = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Exercise 8. How many distinct directed edges can a graph of n-nodes have?

§Properties of Relations

A relation ⊕ ⊆ A × A can be reflexive, symmetric, antisymmetric, and/or

transitive.

Definition 20 (Reflexive). ⊕ is reflexive when

a ∈ A =⇒ a⊕ a.

binary and n-ary relations 16

(Each node in the graph loops back to itself.)

Proposition 9. ⊕ is reflexive ⇐⇒ {(a, a) : a ∈ A} ⊆ ⊕.

Proof.

Example 22 (Reflexive). A = {1, 2, 3, 4} and

⊕ = {(1, 1), (2, 2), (3, 3), (4, 4)} ∪ {(1, 3)} .

1

2

3

4

is reflexive.

Exercise 9. Let A = {0, 1, 2, 3, 4} in Example 22. Is ⊕ still reflexive?

Definition 21 (Symmetric). ⊕ is symmetric when

a⊕ b =⇒ b⊕ a

(If a b then b a .)

Example 23 (Symmetric). A = {1, 2, 3, 4} and

⊕ = {(1, 2), (2, 1)} ∪ {(2, 3), (3, 2)} ∪ {(3, 4), (4, 3)} .

1

2

3

4

binary and n-ary relations 17

Definition 22 (Antisymmetric). ⊕ is antisymmetric when

a⊕ b ∧ b⊕ a =⇒ a = b.

The ‘anti’ in antisymmetry describes how these types of relations prohibit

nontrivial symmetry among its nodes. The ‘trivial’ symmetries, which are

just loops, are okay.

Example 24 (Antisymmetric). A = {0, 1, 2, 3, 4} and

⊕ = {(3, 3)} ∪ {(1, 2), (1, 3), (1, 4), (2, 4), (2, 4)} .

1 2

34

Definition 23 (Transitive). ⊕ is transitive when

a⊕ b ∧ b⊕ c =⇒ a⊕ c.

(If there is an indirect path from a to c then there must be a

direct path as well.)

Example 25. A = {0, 1, 2, 3} and

⊕ = {(0, 0)} ∪ {(1, 2), (2, 3)} ∪ {(1, 3)} .

0 1 2 3

Exercise 10. Is ⊕ = {(1, 2) , (4, 8) , (3, 5)} transitive?

Exercise 11. What is the ‘smallest’ (by set cardinality) transitive relation?

Composition and Closures

Recall two functions

f : A→ B and g : B → C.

binary and n-ary relations 18

can be combined into a new function

f ◦ g : A→ B → C

via function composition.

This composition is applicable to relations as well.

Definition 24 (Composition of a relation). The composition of a relation

R ⊆ A×B with S ⊆ B × C is denoted R ◦ S and defined

R ◦ S = {(a, c) : (a, b) ∈ R ∧ (b, c) ∈ S} .

Or, to express this with ⊕ = R and ⊗ = S:

⊕ ◦ ⊗ = {(a, c) : a⊕ b ∧ b⊗ c}

Example 26. Let

R = {(1, a), (2, a), (2, b)} and S = {(a, α), (b, β), (b, γ)}

then

R ◦ S = {(1, α), (2, α), (2, β), (2, γ)} .

If R is a relation over A×A then R can be composed with itself:

R0 = {(a, a) : a ∈ A}
R1 = R

R2 = R ◦R
...

Rℓ = R ◦Rℓ−1.

In particular, when ℓ→∞ we define

Definition 25 (Transitive closure). The transitive closure of R ⊆ A×A
is denoted R+ and given by

R+ =

∞⋃

i=1

Ri.

Definition 26 (reflexive transitive closure). The reflexive transitive

closure of R ⊆ A×A is denoted R∗ and given by

R∗ = R+ ∪R0.

binary and n-ary relations 19

It is best to demonstrate these with examples, but first notice Defini-

tion 25 and Definition 26 imbue R with transitivity and reflexivity. In other

words, the transitive closure of R is transitive (even if R was not) and simi-

larly, the transitive reflexive closure of R is reflexive and transitive.

One way of calculating the transitive closure is to draw the relation as a

graph and add the minimum amount of edges to draw in direct paths when

there are indirect paths. Reflexivity is easily obtained by giving every node

a closed loop.

Example 27. Let A = {a, b, c, d, e} and

R = {(a, b), (b, c), (c, d), (d, c)} .

R1 = R

R2 = R1 ◦R = {(a, c), (b, d), (c, c), (d, d)}
R3 = R2 ◦R = {(a, d), (c, d), (d, c), (b, c)}
R4 = R3 ◦R = {(a, c), (d, c), (c, d), (b, d)} (no new pairs)

Thus, the transitive closure is

R+ = R ∪ {(a, c), (a, d), (b, d), (c, c), (d, d)}

a

b

cd

e

and the reflexive transitive closure (found by adding all the remaining closed

loops to R+) is

R∗ = R+ ∪ {(a, a), (b, b), (e, e)}.

binary and n-ary relations 20

a

b

cd

e

Example 28. Let A = {1, 2, 3, 4, 5} and

R = {(1, 3), (1, 4), (2, 5), (3, 2), (4, 1)}.

The transitive closure is

R+ = R ∪ {(1, 1), (1, 2), (1, 5), (3, 5), (4, 2), (4, 3), (4, 4), (4, 5)}

1

2

34

5

and the reflexive transitive closure is

R∗ = R+ ∪ {(2, 2), (3, 3), (5, 5)}

binary and n-ary relations 21

1

2

34

5

§Equivalence Relations

Recall the relation ‘=’ induces.

Exercise 12. ‘ = ’ defines the following relation (over N)

‘ = ’ = {(x, x) : x ∈ N} .

Demonstrate why this relation is reflexive, symmetric, and transitive but not

antisymmetric.

More generally, relations like that of Exercise 12 define a class of relations

called ‘equivalence relations’.

Definition 27 (Equivalence relation). A binary relation ≃ over A (that is

to say, ≃⊆ A×A) is an equivalence relation when ≃ is

1. reflexive,

2. symmetric, and

3. transitive.

Example 29. Recall the C-operator ‘%’ (modulo) that computes remain-

ders. For example,

7%2 ≡ 1 since 7 = 2 · 3 + 1

12%3 ≡ 0 since 9 = 3 · 4 + 0

21%8 ≡ 5 since 21 = 8 · 2 + 5.

(If you are having trouble understanding this, imagine you are counting on

a clock. 17:00≡5:00pm because 17%12 ≡ 5).

binary and n-ary relations 22

Now consider a relation that relates two numbers if they have the same

remainder ‘modulo’ 5.

‘%5’ = {(0, 0), (5, 0), (10, 0), . . . , (0, 5), (5, 5), (10, 5), . . .
(1, 1), (6, 1), (11, 1), . . . , (1, 6), (6, 1), (11, 1), . . .

...

(4, 4), (9, 4), (13, 4), . . .}
= {(x, y) : x, y ∈ N ∧ x%5 = y%5}

(We will abandon trying to give quasi-explicit versions of relations as it will

become progressively futile.)

Exercise 13. Verify ‘%5’ is an equivalence relation.

An equivalence relation ‘ ≃ ’ over A partitions A into disjoint subsets

called ‘equivalence classes’.iii

Definition 28 (Equivalence Class). The equivalence class of a ∈ C for

the equivalence relation ≃ is denoted [a]≃ and given by

[a]≃ = {b : b ∈ C ∧ a ≃ b} .

Example 30. The equivalence classes induced by %5 are the disjoint parti-

tioning of the integers corresponding to the following modular images. (Re-

member x%5 = 0 is notation for ∃y ∈ N such that (x, y) ∈ ‘%5’.)

[0]%5 = {x ∈ N : x%5 = 0}
= {0, 5, 10, 15, . . .}

[1]%5 = {x ∈ N : x%5 = 1}
= {1, 6, 11, 16, . . .}
...

[4]%5 = {x ∈ N : x%5 = 4}
= {4, 9, 14, 19, . . .}

so that
4⊔

i=0

[i]%5 = [0]%5 ⊔ · · · ⊔ [4]%5 = N

where ⊔ is used to indicate that the union is over disjoint sets.

iii Since ∼ is a called a ‘sim’, some call ≃ “sim-equals”.

alphabets, words, and languages 23

Proposition 10. Let ≃ be an equivalence relation in Z2, then ∀(x, y) ∈ Z×Z

[x]≃ = [y]≃ ∨ [x]≃ ∩ [y]≃ = ∅.

That is to say, two equivalence classes can not have nontrivial intersection.

Proof. Suppose [a]≃ ∩ [b]≃ 6= ∅,

[a]≃ ∩ [b]≃ 6= ∅

=⇒ ∃x : x ∈ [a]≃ ∧ x ∈ [b]≃ Defn. of ∩
=⇒ a ≃ x ∧ b ≃ x Defn. of class

=⇒ a ≃ b symmetry and transitivity

=⇒ ∀c ∈ Z; a ≃ c =⇒ b ≃ c symmetry and transitivity

=⇒ ∀x ∈ [a]≃;
[
a ≃ x ∧ b ≃ x

]
=⇒ x ∈ [b]≃ Defn. of class

=⇒ [a]≃ ⊆ [b]≃

By similar argument [b]≃ ⊆ [a]≃ giving [a]≃ = [b]≃. Thus either [a]≃ = [b]≃
or [a]≃ ∩ [b]≃ = ∅.

§1.3 Alphabets, Words, and Languages

We have already seen how sets extend to define ordered n-tuples. Now we

extend sets to our principal object of study: languages.

§More Set Constructs

In contrast to the definition of a set, a multiset is a set where duplicates are

counted (ordering is still ignored).

Definition 29 (Multiset). A multiset is a set where duplicate elements are

counted.

Example 31. A = {1, 2, 2, 3, 3, 3} and B = {2, 1, 3, 3, 3, 2} are multisets

satisfying

A = B

and |A| = |B| = 6.

Unfortunately we have no way of distinguishing sets from multisets in

writing (both use {}). We assume that sets omit duplicates and sets with

duplicates present are mutisets.

alphabets and languages 24

Exercise 14. Is {x} = {x, x}?

Definition 30 (Sequence). A sequence is an ordered -multiset. Sequences

are denoted

S = (x0, x1, . . . , xn−1) (1.1)

and have this short form: Si = xi (like array indexing). The length of a

sequence is the cardinality of the sequence when viewed as a multiset.

Two sequences, A and B are equal when ∀i Ai = Bi.

Infinite sequences are given explicitly, recursively, or using a type of class

abstraction called the ‘closed form’.

The which Fibonacci sequence models a rabbit population on a secluded

island.

Example 32 (Fibonacci sequence). The Fibonacci sequence is given/generated

by

Explicitly F = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .)

(explicit is a misnomer as ‘. . .’ means the reader is left to determine

the pattern.)

Recursively Fn−2 = Fn − Fn−1 with F0 = 0, F1 = 1.

Closed Form Let ϕ = 1+
√
5

2 and ψ = 1−
√
5

2

Fn =
ϕn − ψn

ϕ− ψ =
ϕn − ψn

√
5

. (1.2)

ϕ = 1+
√
5

2
or the golden ratio is pervasive in industrial and everyday

design. For instance the pantheon and any credit card share the same

relative dimensions because of the golden ratio.

§1.4 Alphabets and Languages

Outside of mathematics a language is a collection of words which in turn

are sequences of letters taken from some alphabet.iv

Example 33. The English language has an alphabet consisting of letters ‘a’

through ‘z’

iv Languages also have grammars §??.

alphabets and languages 25

{a, b, c, . . . , z},

and a language consisting of english words taken from the dictionary.

To make this mathematically precise:

Definition 31 (Alphabet). An alphabet is a set of symbols denoted by

Σ.

Definition 32 (Word). A word over an alphabet Σ is a finite sequence of

letters taken from Σ.

Equivalently a word is any element of

ΣN = Σ× · · · ×Σ
︸ ︷︷ ︸

N−times

(1.3)

for N <∞ (that is, for N arbitrarily large but finite).

Example 34. For Σ = {a, . . . , z}

(e, x, a, m, p, l, e)

is a word.

Notation. When a sequence is a word it is understood that

example

is written in place of the more cumbersome

(e, x, a, m, p, l, e).

Furthermore, we write unknown words, like x, as

x = x0x1 · · · xn.

Definition 33 (Language). A language is a set of words (languages can

be, and usually are, infinite).

Example 35. The collection of words

{They, came, from, behind}

is a language (and a sublanguage of the full english language).

alphabets and languages 26

Exercise 15. (a, 1) and a1 are two ways to write a word of

{a,b} × {1, 2, 3, 4}

write the remaining seven words (in both ways).

Definition 34 (Universal language). The universal language, denoted

Σ∗, is the set of all words constructible from an alphabet Σ.

Σ∗ = Σ× Σ× Σ× · · · = Σ∞. (1.4)

To build infinite languages of more precise form we must first define the

following operations on words and letters.

§Operations on words

Definition 35 (word length). The length of a word x is denoted

|x|

and is the length of the sequence x is associated to. In other words, it is the

numbers of letters that make up the word.

Example 36. Over Σ = {a, . . . , z}

|woot| = |(w, o, o, t)| = 4.

However, over Σ = {a, . . . , z} ∪ {oo}

|woo t| = |(w, oo, t)| = 3.

Definition 36 (σ-length). The σ-length of a word x is denoted

|x|σ

and is equal to the number of occurrences of the letter σ in x.

Example 37. Over Σ = {a, . . . , z}

|korra|r = 2 |korra|v = 0.

Definition 37 (Empty word). The empty word ε is the unique word

satisfying

|ε| = 0. (1.5)

alphabets and languages 27

It corresponds to the empty sequence ().

Definition 38 (Concatenation). The concatenation of two words

x = x0x1 · · · xn
y = y0y1 · · · yn

is written xy and given by

xy = x0x1 · · · xny0y1 · · · yn.

Example 38. Let w1 = fancy and w2 = pants,

w1w2 = fancypants.

Proposition 11. The empty word satisfies

1. xε = εx = x, and

2. εε = ε.

Proof.

The power of a word, written xn for a word x is the word obtained

by concatenating x with itself n-times:

xn = xx · · · x
︸ ︷︷ ︸

n−times

.

Consider the ‘normal’ power operation:

2n = 2 · 2 · 2 · · · 2.

The power of a word is exactly similar to this if we swap multiplication for

concatenation.

More concisely, we express the power of a word as follows.

Definition 39 (Power of a word).

x0 = ε

xi = xxi−1 for i ≥ 1

alphabets and languages 28

Example 39. Let b = badger, m = mushroom, and s = snake then

b3m2 = badgerbadgerbadgermushroommushroom

and

s0 = ε.

Exercise 16. Take b,m and s as in Example 39. What is b(bm)2? Namely,

is b(bm)2 = b3m2?

Definition 40 (Prefix). x is a prefix of y when

∃z : xz = y.

Example 40. Let t = TARDISv, then

ε, T, TA, TAR, TARD, and , TARDI, TARDIS

are the prefixes of t.

Proposition 12. For x a word

1. ∀x, ε is a prefix of x, and

2. ∀x, x is a prefix of x.

Proof.

Definition 41 (Suffix). x is a suffix of y when

∃z : zx = y.

Example 41. Let t = TARDIS, then

ε, S, IS, DIS, RDIS, ARDIS, and TARDIS

are the suffixes of t.

Definition 42 (subword). Let x E y denote ‘x is a subword of y’, then

x E y
def.
⇐⇒ ∃w, z : wxz = y.

Example 42. The subwords of bite are

ε, b, bi, bit, bite, i, it, ite, t, te, e

v Time and Relative Dimension in Space.

alphabets and languages 29

Exercise 17. What are the subwords of 0000?

Exercise 18. Is every suffix a subword? Is every subword a suffix?

Exercise 19. What is the maximum number of subwords a word of n letters

can have?

Exercise 20. Suppose we are given a word x with |x| = n. How many

subwords of x would we need to reconstruct x? Note: we do not get to pick

the subwords.

Definition 43 (Proper prefix, suffix, subword). x is a proper prefix, proper

suffix, or proper subword of y when x 6= ε and x 6= y.

Definition 44 (Reversal). The reversal of the word x, denoted xR, is the

word x written in reverse and has recursive defintion

1. x = ε =⇒ xR = x

2. x = ay =⇒ xR = yRa

for a ∈ Σ and y a word.

Example 43. The reversal of w = badong is wR = gnodab.vi

Definition 45 (Palindrome). A word x is a palindrome when

x = xR.

That is, when the word is the same written forwards and backwards.

Example 44. ‘racecar’ is a palindrome as well as

“able was I ere I saw elba”

which is a famous english palindrome, attributed to Napoleon Bonaparte

after he was exiled to Elba, a Mediterranean island in Tuscany.

§Operations on Languages

Here we extend the operations on words to the languages they inhabit. Let

us first give an alternate—recursive—definition of the universal language

(Definition 34).

vi “Killing is wrong. And bad. There should be a new, stronger word for killing like
badwrong or badong. Yes, killing is badong. From this moment I will stand for the
opposite of killing: gnodab.”
Excerpt from the movie “Kung Pow!”.

alphabets and languages 30

Definition 46 (Universal language (recursive)). Given Σ (some alphabet),

Σ∗ has recursive definition

1. ε ∈ Σ∗, and

2. x ∈ Σ∗ =⇒ ∀a ∈ Σ, ax ∈ Σ∗

Exercise 21. Show Definition 46 and Definition 34 are equivalent.

Recall a language L over an alphabet Σ is merely a subset of Σ∗, i.e.

L ⊆ Σ∗. Consequently over any Σ,

1. ∅ is a language, and

2. {ε} is a language.

Exercise 22. What is ∅∗?

Definition 47 (Concatenation of languages). The concatenation of two

languages L1 and L2 over Σ is denoted L1L2 and given by

L1L2 = {uv : u ∈ L1 ∧ v ∈ L2} .

We may view L1L2 as the collection of all possible concatenations of

words from L1 with words from L2.

Exercise 23. The concatenation of languages is not symmetric (more cor-

rectly: not commutative). Namely, L1L2 need not equal L2L1. Under

what conditions would the concatenation operation be commutative?

Example 45. Let L1 = {super, ad} and L2 = {man, market, visor}.

L1L2 = {superman, supermarket, supervisor,

adman, admarket, advisor}

Example 46.

{a, ab} {bc, c} = {abc, ac, abbc} .

Note: abc was generated twice!

Exercise 24. Suppose |L1| = n and |L2| = m. What is the maximum (easy)

and minimum (hard) cardinality of L1L2?

To apply the concatenation of languages multiple times we use language

power.

alphabets and languages 31

Definition 48 (Powers of Languages). For L a language

L0 = {ε}
Ln+1 = LnL, for n ≥ 1.

Exercise 25. What is {ε}0? What is {∅}0?

Exercise 26. It is not necessarily the case that Li ⊆ Li+1. What is the

condition on L for Li ⊆ Li+1?

Exercise 27. Suppose |L| = n, what is
∣
∣Lj

∣
∣? Prove your answer using

induction (see §??).

Notation. For L a language

L+ =

∞⋃

i=1

Li L∗ =
∞⋃

i=0

Li = {ε} ∪ L+.

Note ε ∈ L+ ⇐⇒ ε ∈ L.

Proposition 13. For a language L

L+ = {w ∈ Σ∗ : w = w1w2 · · ·wn ∧ wi ∈ L ∧ n ≥ 1} ,
L∗ = {w ∈ Σ∗ : w = w1w2 · · ·wn ∧ wi ∈ L ∧ n ≥ 0} .

Proof. Exercise.

Example 47. Suppose L = {ab, b}.

L0 = {ε}
L1 = L = {ab, b}
L2 = {abab, abb, bab, bb}

and

L+ = L1 ∪ L2 ∪ · · · = {ab, b} ∪ {abab, abb, bab, bb}
L∗ = L+ ∪ {ε} .

Definition 49 (reversal of languages). The reversal of a language L, denoted

LR, is simply the language consisting of word reversals of L.

LR =
{
xR : x ∈ L

}
.

alphabets and languages 32

Exercise 28. What is the condition on L for LR = L?

Proposition 14 (properties of reversals). For languages A and B

1. (A ∪B)R = AR ∪
BR,

2. (A ∩B)R = AR ∩

BR,

3. (AB)R = BRAR,

4. (A+)
R
= (AR)+,

5. (A∗)R = (AR)∗.

Proof. Exercise.

An interesting concept is that of the complement of a language, that

is, all words a language does not include.

Definition 50 (language compliment). Given a language L ⊆ Σ∗, the com-

pliment of L denoted L is

L = Σ∗ \ L.

Complementation is tied to those words originally available; that is, the

complement of identical languages over different alphabets will be different.

Moreover, languages with explicit definition do not (necessarily) admit com-

plements where explicit definition is possible.

Example 48. Let L = {anbn : n ≥ 0}, namely, the collection of words

which are a sequence of n many a’s followed by n many b’s. Over Σ = {a, b}

L =
{
aibj : i 6= j ∧ i, j ∈ N

}

whereas over Σ = {a, b, c}

L = {aibjck : i 6= j ∧ i, j, k ∈ N}.

Example 49. Let Σ = {a} =⇒ Σ∗ =
{
ai : i ∈ N

}
and L =

{
a2i : i ∈ N

}
,

then

L =
{
a2i+1 : i ∈ N

}
.

Exercise 29. What is Σ∗ and Σ+?

Summary of Language Operations

Properties of language concatenation. For languages L1,L2 and L3,

Associativity L1(L2L3) = (L1L2)L3

Identity L {ε} = {ε}L = L

proof methods 33

Zero L∅ = ∅L = ∅

Distributivity (of concatenation) L1 (L2 ∪ L3) = L1L2 ∪ L1L3

Distributivity (of ∪) (L1 ∪ L2)L3 = L1L3 ∪ L2L3

Note: distributivity does not hold with respect to ∩.

Properties of plus and kline.

Proposition 15. For L a language

1. L∗ = L+ ∪ {ε},

2. L+ = LL∗,

3. (L+)
+
= L+,

4. (L∗)∗ = L∗,

5. ∅+ = ∅,

6. ∅∗ = {ε},

7. ∅0 = {ε},

8. {ε}+ = {ε},

9. {ε}∗ = {ε},

10. L+L = LL+,

11. L∗L = LL∗.

Proof. Exercise.

§1.5 Proof Methods

Much to the dismay of students, there is no ‘recipe’ for doing proofs (or

solving problems in general). However, there are some established strategies

and tools that often do the trick. We review them now.

§Direct Proof

Let us substitute a formal description of a direct proof with a story about a

direct proof.

The misbehaving (and still unrealized genius of number theory) Gauß

(1777-1855), was exiled to the corner of his classroom and told not to return

until he had calculated the sum of the first ten thousand numbers. (Suffice

it to say the teacher was fed up.)

Sadly, and to the astonishment of the teacher, Gauß returned with the

correct answer in a matter of minutes—the pupil had deduced what the

teacher could not:

1 + 2 + 3 + · · ·+ 5000 + 5001 + · · · + 9998 + 9999 + 10 000

= (1 + 10 000) + (2 + 9999) + (3 + 9998) + · · ·+ (5 000 + 5001)

= (10 001) + (10 001) + (10 001) + · · · + (10 001)

proof methods 34

Figure 1.3: Gauß as pictured on the German 10-Deutsche Mark banknote (1993;
discontinued). The Normal, or ‘Gaussian’ distribution is depicted to his left.

=

(
10 000

2

)

· (10 000 + 1)

An application—perhaps even discovery—of the general form of this equation

given in Theorem 16.

§The Principle of Mathematical Induction

The principle of mathematical induction (or ‘PMI’ or just ‘induc-

tion’), states simply that a proposition P : m→ {⊤,⊥} is true for all m ∈ N

if

1. P (m) =⇒ P (m+ 1) for any m ∈ N; and

2. P (0).

(It is implicit that P (0) means P (0) ≡ ⊤.)

To elaborate, the first point is a weakening of the intended conclusion

and is equivalent to validating the following chain of implications:

P (0) =⇒ P (1) =⇒ · · · =⇒ P (n) =⇒ P (n+ 1) =⇒ · · ·

Provided that P (0) ≡ ⊤ (the second point) each proposition in the chain is

shown true and thus it is proved that ∀nP (n).

proof methods 35

Only φ ≡ ⊤ satisfies (⊤ =⇒ φ) ≡ ⊤.

Remark 1. How one proves ∀n; P (n) =⇒ P (n+ 1) is often the source of

confusion. The direct way of demonstrating φ =⇒ ψ is to assume φ and

show ψ is a consequence. The case of φ ≡ ⊥ is not ignored, but is considered

too trivial to write as ⊥ =⇒ φ ≡ ⊤ (such statements are called ‘vacuous’).

As is the case, induction proofs contain the bizarre statement ‘assume for

any n ∈ N that P (n) ≡ ⊤’ which is seemingly what requires proof. However,

there is gulf of difference between

(∀nP (n)) =⇒ P (n+ 1)

and

∀n (P (n) =⇒ P (n+ 1)) . (1.6)

We are not assuming ∀nP (n), rather we are assuming, for any n, the an-

tecedent of (1.6).

In the same spirit, assuming ‘there is’ some n for which P (n) ≡ ⊤ is also

wrong. Demonstrating ∃n; P (n) =⇒ P (n+ 1) is insufficient.

Formally, the PMI is given this way.

Theorem 4 (The Principle of Mathematical Induction). For every predicate

P : N→ {⊤,⊥}

{P (0) ∧ ∀m ∈ N [P (m) =⇒ P (m+ 1)]} =⇒ {∀m ∈ N [P (m)]}

(we use superfluous bracketing to express something more meaningful).

To apply this theorem, let us prove ‘Gauss’ formula’ using induction

rather than deduction.

Proposition 16. For any n ∈ N

0 + 1 + 2 + · · ·n =

n∑

i=0

i =
n · (n+ 1)

2
.

Proof. Proceeding with induction it is clear that n = 0 is satisfied as

[
n∑

i=0

i

]

n=0

=
0∑

i=0

i = 0 (1.7)

proof methods 36

and [
n · (n + 1)

2

]

n=0

=
0 · (0 + 1)

2
= 0.

(the ‘Base case’).

Assume for arbitrary m ∈ N the validity of

0 + 1 + 2 · · · +m =

m∑

i=0

i =
m · (m+ 1)

2

(the ‘Induction hypothesis’).

Using this deduce

0 + 1 + 2 · · · +m+ (m+ 1)
IH
=
m · (m+ 1)

2
+ (m+ 1)

(by Induction Hypothesis)

=
m · (m+ 1) + 2 (m+ 1)

2

=
m2 + 3m+ 2

2

=
(m+ 1)(m+ 2)

2

which shows (1.7) holds for n = m+ 1 provided it holds for n = m.

By the PMI (1.7) is valid ∀n ∈ N.

§Contradiction

Contradiction is a proof technique where, in order to show some predicate

P true, we assume ¬P and deduce ⊥. (That is, we show invalid P has an

absurd consequence).

Logically, proof by contradiction can be expressed as

Theorem 5 (Proof by Contradiction). For any predicate P

(¬P =⇒ ⊥) =⇒ P.

We give two standard examples (in ascending difficulty) for which con-

tradiction is applicable.

Example 50.
√
2 can not be expressed as a fraction (i.e.

√
2 is an irrational

number)

proof methods 37

(Note: Read a
∣
∣ b as ‘a divides b’ which means ∃c : ac = b. E.g. 2

∣
∣ 6.)

Proof. Towards a contradiction (TAC for short), suppose
√
2 can be ex-

pressed as √
2 =

a

b
(1.8)

with a, b ∈ N. Assume further that a
b

is a reduced fraction so that gcd (a, b) =

1.

Squaring (1.8) yields

2 =
a2

b2
=⇒ 2b2 = a2.

Trivially 2
∣
∣ 2b2 and so 2

∣
∣ a2.

But 2 cannot be decomposed (it is prime) so it must be that 2
∣
∣ a and thus

4
∣
∣ a2. Similarly (applying this argument in the reverse direction) 4

∣
∣ 2b2 =⇒

2
∣
∣ b2 and thus 2

∣
∣ b.

However, if both a and b are divisible by 2 it must be the case that a
b

is

not reduced, i.e. gcd(a, b) = 2 6= 1. vii

Example 51. There are infinitely many prime numbers.

Proof. TAC suppose there are finitely many prime numbers P = {p0, p1, p2, . . . , pℓ}
and consider n ∈ N given by

n = p0 · p1 · p2 · · · pℓ + 1.

As every integer has a prime divisor (this is the fundamental theorem of

algebra) there must be some pi ∈ P : pi
∣
∣n. Clearly pi

∣
∣ p0 · p1 · · · pi · · · pℓ so

it follows

pi
∣
∣ (n− p0 · p1 · · · pn)

(It is readily shown that a
∣
∣ b ∧ a

∣
∣ c =⇒ a

∣
∣ (b− c).)

Consequently, pi
∣
∣ 1 =⇒ pi = 1 (by definition 1 is not a prime) and thus

pi 6∈ P.

§The Pigeonhole Principle

The pigeonhole principle is the mathematical formalization of the state-

ment:

vii There are many symbols for contradiction, among them: ⇒⇐, , =, and ※. Feel free
to use whichever one you like!

proof methods 38

If you put n+ 1 pigeons into n holes then there is (at least) one

hole with two pigeons.viii

This result may seem fairly obvious but there are some interesting com-

puter science applications none-the-less. For instance, the PHP is used to

show

1. collisions are inevitable in a hash tables no matter how sophisticated

the hash function is, and

2. lossless compression algorithms will always make some images larger.

Recall the Euclidean distance between two points in the plane:

∣
∣
∣(x1, y1)(x2, y2)

∣
∣
∣ =

√

(x1 − x2)2 + (y1 − y2)2.

Proposition 17. If 5 points are drawn within the interior (i.e. not on the

edge) of unit square then there are two points that have Euclidean distance

< 1√
2
.

Proof. The diagonal of a unit square has length
√
2 (Pythagoras’ theorem)

and a subsquare 1
4 the area has diagonal length

√
2
2 ,

√
2

√
2
2

Therefore, any points within the same subsquare can be at most
√
2
2 = 1√

2
units apart.

By PHP, if five points are drawn within the interior of a square, then two

points must be in the same subsquare (there are only four such subsquares).

Thus there are two points with Euclidean distance less than 1√
2
.

viii The motivation for placing pigeons into holes eludes the Author (who is also bothered
by the notion of cramming two pigeons into a hole meant for one).

end of chapter exercises 39

§1.6 End of Chapter Exercises

Exercise 1. Prove that the power set operation is monotonic, that is,

A ⊆ B =⇒ P(A) ⊂P(B). (1.9)

Exercise 2. What is P(P(∅))?

Exercise 3. Suppose ¬ (A ⊆ B) and ¬ (B ⊆ A). What conclusions, if any,

can be made about A ∩B?

Exercise 4. Prove the following are equivalent for sets X and Y .

1. X ⊂ Y ,

2. X ∪ Y = Y , and

3. X ∩ Y = X.

(Hint: you only need to show 1 =⇒ 2 =⇒ 3 =⇒ 1 to establish

equivalence—in fact any permutation of 1,2,3 will do.)

Exercise 5. Is there a relation satisfying all properties of Definition ???

That is, is there a reflexive, symmetric, antisymmetric, and transitive rela-

tion? (If you decide to provide an example, ensure you establish it is indeed

a relation.)

Exercise 6. Draw a graph with at least 3 nodes that is reflexive, symmetric,

and transitive (i.e. all but antisymmetry).

Exercise 7. For each property below, draw a graph which does not have

that property.

1. reflexive,

2. transitive,

3. symmetric.

Exercise 8. In the definition of antisymmetry loops like

1 2

were disallowed. In the same spirit, what should be disallowed for graphs

that are antisymmetric and transitive?

end of chapter exercises 40

Exercise 9. For a, b, c ∈ N show

a
∣
∣ b ∧ a

∣
∣ c =⇒ a

∣
∣ (b− c) .

Exercise 10. Prove the concatenation operations is associative, namely, for

words x, y, and z:

(xy)z = x(yz).

Exercise 11. Prove plus and kline are monotonic. That is

A ⊆ B =⇒ A+ ⊆ B+

and

A ⊆ B =⇒ A∗ ⊆ B∗.

exercise solutions 41

§1.7 Exercise Solutions

Exercise 1. {2, 2, 2, 3, 3, 4} = {2, 3, 4} is a set with cardinality 3.

Exercise 2. Placeholder.

Exercise 3. E = {2n : n ∈ N}.

Exercise 4. Placeholder.

Exercise 5. Placeholder.

Exercise 6. Placeholder.

Exercise 7. Placeholder.

Exercise 8. Placeholder.

Exercise 9. As (0, 0) 6∈ ⊕ and 0 ∈ A, ⊕ can not be reflexive.

Exercise 10. Yes. It never fails to be transitive.

Exercise 11. ∅ is the smallest transitive relation (it has no members and

thus cannot fail to be transitive).

Exercise 12. Placeholder.

Exercise 13. Placeholder.

Exercise 14. For our purposes {x} 6= {x, x} because the later set is assumed

to be a multiset.

Exercise 15. (a,2), (a,3), (a,4), a2, a3, a4, (b,2), (b,3), (b,4), b2, b3, b4.

Exercise 17. The subwords are 0, 00, 000, 0000.

Exercise 18. Yes every suffix is a subword. However, subwords are not

necessarily suffixes.

Exercise 19. Placeholder.

Exercise 21. Placeholder.

Exercise 22. ∅∗ = {ε}.

Exercise 23. Placeholder.

Exercise 24. Placeholder.

exercise solutions 42

Exercise 25. {ε}0 = ε and {∅}0 = ε.

Exercise 26. Placeholder.

Exercise 28. w ∈ L =⇒ w is a palindrome.

Exercise 29. Σ∗ = ∅ and Σ+ = {ε}?

Chapter 2

——X——

Finite Automata

“Destiny has cheated me

By forcing me to decide upon

The Woman that I idolize

Or the hands of an Automaton.”

– Philip J. Fry, Futurama

Deterministic finite state machines (DFSM), nondeterministic finite state

machines (NDFSM), transformation from NDFSM to DFSM, properties of

finite automata, and pumping lemma.

§2.1 Finite State Machines

Automata is a fancy word for a machine. From here we introduce a simple

machine and add mechanisms to it in order to make the machine more robust.

Despite these humble beginnings our simple automatas will ultimately extend

to encode and classify the space of all computable (and uncomputable!)

problems.

Our first machine, a state machine, is merely a more robust directed

graph. The extra sophistication is afforded by the addition of transition

rules or, more simply, a labelling of previously ‘naked’ directed edges.

These transition rules dictate how we can move amongst the states.

Definition 51 (State machine). A state machine is a graph with labelled

directed edges. We call the nodes of a state machine states and the directed

edges transitions.

State machines are expressed via state diagrams (a literal drawing of

the states and transitions as a graph).

43

finite state machines 44

Example 52. A state diagram, M1, with three states and three transitions.

a

b c

1

1

1

M1

Notation (start state). In Example 52—and in general—the arrow on a

is used to designate the starting state.

To move from state to state (to state), we write

a1 ⊢ b

to convey: a goes to b on 1.

For now ⊢ is used as notation but we will soon be properly define it as a

relation.

More generally we write

a111 ⊢ b11 ⊢ c1 ⊢ a

to denote the sequence of moves illustrated below. (Movement throughout

the machine is communicated using colour: A black state is currently occu-

pied whereas a white one is not.)

a

b c

1

1

1

111

a a

b c

1

1

1

�11

b

finite state machines 45

a

b c

1

1

1

��1

c

a

b c

1

1

1

���

a

The input word 111 depletes (left to right) as we move through the graph.

This is illustrated above using � to denote processed letters.

When the number of states is finite the machine is a finite state ma-

chine. Moreover, when the transitions are defined in a particular way, the

machine is called a deterministic finite state machine.

A FSM is a special case of the more general state transition system

which is allowed to have an infinite number of states.

As Determinism is best explained by Nondeterminism, let us take this

term for granted until §??.

Definition 52 (FSM). A deterministic finite state machine or simply

finite state machine is a quintuple (Q,Σ, s0, δ, F) where

Q finite, non-empty, set of states,

Σ input alphabet,

s0 ∈ Q initial state,

δ : Q× Σ→ Q state transition function, and

F ⊆ Q set of final states.

Notation. Let fsm be the set of all deterministic finite state machines,

fsm = {(Q, Σ, s0, δ, F) : Q,Σ, s0, δ, F are as given in Defn. 61}

Example 53. Let us extend M1 to include transitions in the other direction:

finite state machines 46

a

b c

1

1

1
0

0

0

M2

Following Definition 61, M2 = (Q, Σ, s0,

δ, F) with

Q = {a, b, c} ,
Σ = {0, 1} ,
s0 = a, and

F = ∅ (because we do not yet know how

to draw them).

The transition function δ can be given in three ways:

1. state diagram (e.g. M2),

2. transition table

δ 0 1

a c b

b a c

c b a

, or

3. explicitly

δ(a, 0) = c δ(b, 0) = a δ(c, 0) = b

δ(a, 1) = b δ(b, 1) = c δ(c, 1) = a

The first, a diagram, is typically used when M is known outright. The

remaining two are usually delegated to proofs (although even then a picture

may be more appropriate)

Example 54. M3 is M2 with final states {c}.

a

b c

1

1

1
0

0

0

M3

Notation (final state). Concentric circles are used to designate final

states.

finite state machines 47

Let us (informally) call input terminating at a final state accepted. For

instance,

Example 55. 001 is accepted by M3

a

b c

1

1

1
0

0

0

001

a a

b c

1

1

1
0

0

0

�01

c

a

b c

1

1

1
0

0

0

��1

b

a

b c

1

1

1
0

0

0

���

c

Example 56. 110 is not accepted by M3

a

b c

1

1

1
0

0

0

110

a a

b c

1

1

1
0

0

0

�10

b

finite state machines 48

a

b c

1

1

1
0

0

0

��0

c

a

b c

1

1

1
0

0

0

���

b

§Complete Machines

So far, we have only dealt with complete machines. That is, we have yet

to encounter a state with some undefined (and required) transition. Put

differently: moves were defined at every state, for every possible input.

Example 57. Let M4 be given by

a

b c

1

1

0

0

0

M4

and consider (final) state c. This state has no outgoing transitionsi for 1, or

equivalently, ¬∃q ∈ Q : c1 ⊢ q.

FSMs (like in Example 57) with undefined moves are called incom-

plete. More precisely,

Definition 53 (Total function). A function, δ : A→ B, is a total function

when

∀a ∈ A; ∃b ∈ B : δ(a) = b.

(Output is defined for every possible input.)

i The theoretical analogue of a segmentation fault : something is supposed to be there,
but isn’t.

finite state machines 49

Practically speaking, when δ is a total transition function it precludes

the possibility of undefined transitions like that of Example 57.

Definition 54 (Complete FSM). M = (Q, Σ, s0, δ, F) ∈ fsm is complete

when δ is total and incomplete otherwise.

Completing Graphs

It may seem incomplete machines are not of much worth—and to some extent

this is true. However, this incompletenessii can be easily rectified. Consider

this simple rewriting of M4:

a

b c d

1

1

0, 1

0, 1

00

M5

d is called a sink state because all input at c is taken to d and becomes

trapped.

Notation. Let Σ = {σ0, . . . , σn}, we abuseiii notation and say the following

are equivalent.

σ0, . . . , σn Σ

Definition 55 (sink state). Any state which can transition only to itself.

E.g. (not drawing incoming transitions):

Σ

ii Not to be confused with the incompleteness Gödel proved. iii We characterize this
as abuse for transitioning on Σ technically indicates a move on the entire set, not the
individual letters.

the language of a machine 50

Figure 2.1: xkcd.com/292

In general any complete graph can be ‘completed’ by adding a sink state.

Here, the natural theorem to write would say:

For every incomplete FSM there is an equivalent complete

FSM.

However at the moment we lack the tools to express this with sufficient

mathematical rigour. In particular, we cannot show the language generated

by M ∈ fsm is invariant to the addition of sink state until we first describe

precisely what it means for ‘M to generate a language L’ !

§2.2 The language of a Machine

Simply put, the language a machine generates is the set of input words that

‘take’ M to a final state. Expressing this mathematically requires some work.

§Goto

We first need to formalize what is meant by:

qw ⊢ · · · ⊢ q′,

which was intended to convey

Input word w, starting at q, terminates at q′.

Definition 56 (⊢). The goto function is given by:

⊢ : QΣ∗ → QΣ∗

qw0w 7→ q′w

with wow the concatenation of w0 ∈ Σ and w ∈ Σ∗. (Read qw0 ⊢ q′ as “q

goes to q′ on w0”.)

the language of a machine 51

Writing w0w is a convenient way for us to remove the first letter of a word.

The intention is to have a function which outputs q′w given qw0w (i.e. a

function telling us where to move next while depleting the input).

We use ⊢R and ⊢F to speak about goto as a relation or as a function.

However, when it is clear from contextiv we will simply use ⊢.
An integer function f(x) can easily be used to generate:

{(x, f(x)) : x ∈ Z} ,

which is trivially a relation.

In this fashion ⊢Fv generates:

‘ ⊢R ’ = {(qw, ⊢F (qw0w)) : w ∈ Σ ∧ q ∈ Q} .

Thus, although we have chosen to define goto as a function it can also be

given as a relationvi.

‘ ⊢R ’ =
{(
qw0w, q

′w
)
: q q′

w0
}

.

In some sense, qw0w ⊢R q′w answers:

Does q go directly to q′ on w0w?

Whereas ⊢F (q, w0w) answers:

Where does q go on w0w?

A subtle—yet important—difference.

§Eventually goes to (⊢∗)

Notation (E). Let E denote subword and ⊳ denote strict subword.

Exercise 30. ⊤ or ⊥? If w = w0w1 · · ·wn, then

∀ℓ ∈ {0, . . . , n} ; w0 · · ·wℓ ⊳ w.

iv ‘Clear from context’, is another shortcut used commonly in mathematical writing. It
means ambiguous notation will be used when ambiguity is not possible. v The ‘F’ is

for function. vi The ‘R’ is for relation.

the language of a machine 52

Viewing ⊢ as a relation, let us show qw ⊢∗ qw′ means: there is a subword

of w taking q to q′.
We have established calculating R∗ merely requires us to directly relate

objects which are related via some transitive chain. In this context,

qw ⊢∗ q′w′ ⇐⇒ ∃u = u0 · · · uℓ E w ∈ Σ∗ : qu0 · · · uℓ ⊢ q1u1 · · · uℓ ⊢ · · · ⊢ qℓuℓ ⊢ q′ε

In fact this is already sufficient to demonstrate our original assertion, but let

us go into more detail anyways.

Let us simplify the relation ‘ ⊢ ’ and say

⊢ =
{(
qw0, q

′) : ∃w0 ∈ Σ; q q′
w0

}

That is, we do the sensible thing and only define transitions on letters (nec-

essarily finite) and not words (usually infinite).

We generate ⊢∗ through repeated invocation of ◦ (relation composi-

tion).vii Namely,

⊢0 = {(q, q) : q ∈ Q}

which says any state can get to itself by not moving (more properly: ∀q ∈ Q;

qε ⊢ q), and

⊢1 = ⊢

⊢2 =
{(
qw0w1, q

′′) : ∃w0, w1 ∈ Σ; q q′ q′′
w0 w1

}

...

⊢ℓ =
{(

qw0 · · ·wℓ−1, q
(ℓ)
)

: ∃w0, . . . , wℓ−1 ∈ Σ; q q(ℓ)
w0 wℓ−1· · ·

}

The following two propositions insist this process terminates/stabilizes.

Proposition 18. Let M = (Q, Σ, s0, δ, F) ∈ fsm, then

|Q| <∞ =⇒ |⊢| <∞.

Proof. Placeholder.

Proposition 19. Let M = (Q, Σ, s0, δ, F) ∈ fsm, then

∃ℓ ∈ N : ℓ <∞ ∧ ⊢ℓ = ⊢ℓ+1 = ⊢∗

Proof. Placeholder.

vii By setting R = ⊢ in what comes after Chapter 1 Example 25.

the language of a machine 53

The important lesson to take from this demonstration is

qw0 · · ·w−1 ⊢∗ q′ ⇐⇒ q q′
w0 w−1· · · ,

in prose means:

1. there is some path (sequence of directed edges) taking q to q′, and

additionally

2. the word through this path is w.

That is, even though we only define moves on letters this is sufficient to move

on words.

It should now be clear our characterization of qw ⊢∗ qε meaning: “q

eventually goes to q′ on w” is not only correct, but entirely consistent with

the definition of the transitive reflexive closure of ⊢. To wrap up a loose

end, let us extend this functionality to qw ⊢∗ q′w′, which does not insist the

input w is exhausted. Simply take

qw eventually goes to q′w′

to mean

∃u E w : qu ⊢∗ q′ε

(there is some subword of w that takes q to q′).

Definition 57 (Language of M). The language of M = (Q, Σ, s0, δ,

F) ∈ fsm is denoted L(M) and given by

L(M) = {w ∈ Σ∗ : f ∈ F ∧ s0w ⊢∗ f} .

(Words that take s0 to any final state.)

Definition 58 (Machine Equivalence). M1 = (Σ, Q, s0, δ, F) ∈ fsm and

M2 = (Σ, Q′, s′0, δ
′) ∈ fsm are equivalent machines when

L(M1) = L(M2).

Even though Definition 58 presumes M1 and M2 are given over the same

Σ, more generally we need only insist there is some 1-1 mapping between Σ1

and Σ2. This is reasonable if, for example, we do not care to distinguish ‘01’

from ‘ab’.

‘01’ and ‘ab’ are equal under the mapping 0 7→ a and 1 7→ b.

regular languages 54

To simplify our presentation we assume the alphabets are identical.

We finally have the tools to show any incomplete machine can be ‘com-

pleted’ without effecting the language it generates.

Proposition 20.

∀M ∈ fsm; ∃ complete M ′ ∈ fsm : L(M) = L(M ′).

Proof. Placeholder.

§2.3 Regular Languages

Definition 59 (Regular Language). A language L is a regular language

when

∃M ∈ fsm : L = L(M)

and an irregular language otherwise.

Notation. Denote the set of all regular languages by

LREG = {L : ∃M ∈ fsm; L = L(M)} .

Exercise 31. Draw a state diagram of M satisfying L(M) = L1 for the

language L1 = {w ∈ {0, 1}∗ : |w|0 = 3} .

To demonstrate our model of computation (thus far) is still insufficient,

consider this innocent change to Exercise 31:

L2 = {w ∈ {0, 1}∗ : |w|0 = |w|1} .

There is no fsm generating L2.

Try to find one—however, keep in mind this advice from William Claude

Dukenfield (American comedian, writer and juggler):

“If at first you dont succeed, try, try, again. Then quit.

There’s no use being a damn fool about it.”

But how can we dismiss the possibility of simply being unable to produce a

solution? Needless to say: premising ‘no such machine exists’ on ‘because I

am unable to find one’ does not a good proof make.

regular languages 55

§FSM Shortcuts

Let us convince ourselves

L
(

a a a
)

= {aaa} .

Moreover, the removal of any state ‘breaks’ the machine.

More generally accepting only aN requires (at least) N + 1 states. To

reason out why (at least superficially) we use PHP and contradiction.

{an : n ∈ N} and
{
aN

}
with N ∈ N are very different sets. The former

has an infinite number of words, the later only aN .

Fixing N ∈ N there is an accepting configuration for aN using N + 1

states resembling:

q0 qj−1 qj qj+1 qi−1 qi qi+1 qN
a a a a a a a· · · · · · · · ·

(The states are not necessarily distinct, we are merely arguing the existence

of a path like this.)

TAC suppose |Q| ≤ N :

{q0, q1, . . . , qN} ⊆ Q =⇒ |{q0, q1, . . . , qN}| ≤ |Q| ≤ N

and consequently PHP assures ∃i, j ∈ N : i > j ∧ qi = qj.

As written {q0, q1, . . . , qN} requires N+1 distinct states. As there are only

N available states, two states must be equivalent.

Exploiting this equivalence take qi = qj and redraw the accepting path

as

q0 qj−1 qj = qi

qj+1 qi−1

qi+1 qN
a a

a

a

a

a

aa
· · ·

· · ·

· · ·

regular languages 56

This introduces a “(i− j) length shortcut” allowing aN−(i−j) with (i− j) > 0

to skip a non-zero

We only care about the existence of a shortcut. The actual non-zero length

of the shortcut is irrelevant to our proof.

number of states and become accepted.

Let us give a formal presentation of the above.

Proposition 21. For any fixed N ∈ N and M ∈ fsm

L(M) =
{
aN

}
=⇒ |Q| > N.

(At least N + 1 states are required to accept aN and reject aM : M 6= N .)

Proof. Fix N ∈ N and TAC suppose

∃M = (Q, Σ, s0, δ, F) ∈ fsm : |Q| ≤ N ∧ L(M) =
{
aN

}
.

Clearly aN ∈ L(M) so

s0a
N ⊢∗ qN

where qN ∈ F .

However, this accepting configuration sequence, namely

q0a
N ⊢ q1aN−1 ⊢ · · · ⊢ qiaN−i ⊢ · · · ⊢ qNε

viii or, more succinctly

q0a
N ⊢ q1aN−1 ⊢∗ qiaN−i ⊢∗ qNε

moves amongst {q0, . . . , qN} ⊆ Q. As |{q0, . . . , qN}| ≤ |Q| ≤ N PHP ensures

∃i, j ∈ N : i > j ∧ qi = qj.

This equivalence enables us to build the following accepting configuration

for aN−(i−j):

q0a
N−(i−j) ⊢∗ qjaN−i ⊢0 qiaN−i ⊢∗ qNε

implying aN−(i−j) ∈ L(M) : i− j > 0. ix

viii Note: a
N−N

= ε. ix Do not distress if this proof seems difficult. It will become clear
as you practice.

regular languages 57

§Irregular Languages

The inherent weakness of a fsm is its inability to count. For instance

L = {anbn : n ∈ N} has a counting requirement—we must count the a’s

to determine if there are an equivalent number of b’s.

By Definition 59 an irregular language L satisfies

∀M ∈ fsm; L(M) 6= L. (2.1)

Proving (2.1) directly requires we enumerate—infinitely many—machines

and demonstrate each does not generate L (impossible). However, it is

possible to prove the equivalent expression

¬∃M ∈ fsm : L(M) = L.

by assuming such a M exists and deriving contradiction.

Proposition 22. L = {anbn : n ∈ N} is not a regular language.

Proof. TAC suppose

∃M = (Σ, Q, q0, δ, F) ∈ fsm : L(M) = L

and let N = |Q| and q2N ∈ F .

Consider the accepting configuration sequence for aNbN ∈ L(M)

q0a
NbN ⊢ qiaN−ibN ⊢∗ q2Nε.

As

{q0, . . . , qN} ⊆ Q =⇒ |{q0, . . . , qN}| ≤ |Q| = N

PHP ensures ∃i, j ∈ N : (j < i < N) ∧ qi = qj. Consequently,

q0a
N−(i−j)bN ⊢∗ qjaN−ibN ⊢0 qiaN−ibN ⊢∗ q2Nε

is an accepting configuration.

Thus aN−(i−j)bN ∈ L(M) : i− j > 0.

Exercise 32. Is L = {anb : n ∈ N} regular?

§FSM Scenic Routes

Instead of exploiting circuits (by removing them) to generate words with

missing pieces, we can traverse the circuit (ad nauseum) to generate words

regular languages 58

with extra pieces instead.

Example 58. An alternate proof of

L = {anbn : n ∈ N} /∈ LREG

(Proposition 22).

TAC assume ∃M = (Q, Σ, q0, δ, F) ∈ fsm : L = L(M). Let N = |Q|
and consider aNbN ∈ L.

It follows

q0a
NbN ⊢∗ q2N ∈ F

and PHP ensures ∃i, j ∈ N : (j < i < N) ∧ qi = qj.

Notice this generates a (i− j)-length ‘scenic route’

q0 qj−1 qj qi = qj qi

qj+1 qi−1

qj+1 qi−1

qi+1 q2N· · ·

· · ·

· · ·

· · · .

Which, practically speaking, allows us to shed an arbitrary number of ai−js

from the input word.

Consider

aNai−jbN ,

a word constructed to travel the circuit (exactly) one more time than neces-

sary. This word has the accepting configuration sequence

q0a
N+(i−j)bN ⊢∗ qiaN−jbN ⊢0 qjaN−jbN ⊢∗ q2N ∈ F

and thus aN+(i−j)bN ∈ L : (i− j) > 0.

regular languages 59

§Pumping Lemma

Pumping lemma is the formalization of fsm shortcuts/scenic routes. It en-

ables us to eschew the explicit application of PHP and use it (more rapidly)

implicitly.

Theorem 6 (Pumping Lemma). For any L ∈ LREG

∃N ∈ N; ∀x ∈ L; |x| ≥ N =⇒ ∃u, v, w ∈ Σ∗; x = uvw :

1. |uv| ≤ N ,

2. |v| ≥ 1, and

3. ∀i ∈ N; uviw ∈ L.

Definition 60 (Pumping length). TheN of Theorem 6 is called the pumping

length.

Pumping lemma ensures all words of a regular language longer than some

pumping length can be decomposed (in a specific way) into three pieces.

Moreover, repeating (or ‘pumping’) the middle piece just generates other

words in the language. Thus,

if a language has a word without such a decomposition then

the language is not regular.

Warning: Irregular languages can satisfy pumping lemma as well. Con-

sequently, pumping lemma cannot be used to show a language is regular.

Using pumping lemma to ‘prove’ a language is regular is a widely made

mistake. Remember the contrapositive is

[a =⇒ b] ≡ [¬b =⇒ ¬a]

so

[L ∈ LREG =⇒ L satisfies PL] ≡ [L fails PL =⇒ L 6∈ LREG] .

Using pumping lemma to show a language is regular incorrectly presumes

[a =⇒ b] ≡ [b =⇒ a] .

Proof of Pumping Lemma. Let L ∈ LREG
def.
=⇒ ∃M : L = L(M). Let

M = (Q, Σ, q0, δ, F) and N = |Q|.

regular languages 60

Any word x = x0 · · · xN−1 ∈ L(M) : xi ∈ Σ has an accepting configura-

tion

q0x0 · · · xN ⊢ q1x1 · · · xN−1 ⊢∗ qNε ∈ F

requiring

{q0, . . . , qN} ⊆ Q =⇒ |{q0, . . . , qN}| ≤ |Q|
=⇒ |{q0, . . . , qN}| ≤ N.

Thus, by PHP ∃i, j ∈ N : i > j ∧ qi = qj in this configuration sequence.

Consider u, v, w ∈ Σ∗ as given below:

q0 qj−1 qj = qi

qj+1 qi−1

qi+1 qN
x0 xj−1

xj
xi−1

xN−1xi
· · ·

· · ·

· · ·

︸ ︷︷ ︸

u
︸ ︷︷ ︸

v
︸ ︷︷ ︸

w

Namely u = x0 · · · xj−1, v = xj · · · xi−1, and w = xi · · · xN−1 where q0uvw ⊢∗
qjvw ⊢∗ qiw ⊢∗ qNε.

Consequently,

|uv| = |u|+ |v| = i+ (j − i) ass.
= j ≤ N =⇒ 1., and

|j < i| =⇒ 0 < i− j =⇒ |v| = i = j ≥ 1 =⇒ 2.

Finally, notice qjv ⊢∗ qi
qi=qj
=⇒ qjv ⊢∗ qj. A simple induction gives

∀k ∈ N; qjv
k ⊢∗ qj (2.2)

which validates

q0uv
kw ⊢∗ qjvkw ⊢∗ qjw ⊢0 qiw ⊢∗ qnε.

Thus 3..

Example 59. Proving

L = {anbn : n ∈ N} /∈ LREG

regular languages 61

with pumping lemma.

TAC let M = (Q, Σ, s0, δ, F) : L(M) = L and N be the pumping

distance. Consider aNbN ∈ L. By pumping lemma, ∃u, v, w ∈ Σ∗ : uvw =

aNbN and

1. |uv| ≤ N =⇒ |uv|b = 0 (i.e. uv = a · · · a),

2. |v| ≥ 1 =⇒ v = aℓ : ℓ ≥ 1

3. ∀k ∈ N; uvkw ∈ L(M).

We only need consider a single value of k to derive a contradiction—

setting k = 0 gives Proposition 22 whereas k = 2 is the method of

Example 58. Either way, we have contradiction.

Setting k = 0 we deduce

uv0w ∈ L(M) =⇒
∣
∣uv0w

∣
∣
a
=

∣
∣uv0w

∣
∣
b

=⇒ N − ℓ = N : ℓ > 0.

Alternatively, setting k = 2:

uv2w ∈ L(M) =⇒
∣
∣uv2w

∣
∣
a
=

∣
∣uv2w

∣
∣
b

=⇒ N + ℓ = N : ℓ > 0.

Sometimes applying pumping lemma requires a case analysis.

Example 60. Proving

L = {ww : w ∈ {0, 1}∗} /∈ LREG

with pumping lemma.

Sketch of proof. Let N be the pumping length and consider

10N10N = uvw.

Since |uv| ≤ N either

1. u = 10ℓ : ℓ ≥ 0 and v = 0 · · · 0, or

2. u = ε and v = 1 · · · 0

In either case contradiction can be derived by removing v (i.e. setting k = 0).

nondeterministic fsm 62

Exercise 12. Over Σ = {0, 1} prove

L = {w : |w|0 < |w|1 − 1} /∈ LREG.

Exercise 13. Over Σ = {a} prove

L =
{

an
2
: n ∈ N

}

/∈ LREG.

Exercise 14. Over Σ = {a} prove

L = {ap : p is prime} /∈ LREG.

§2.4 Nondeterministic FSM

Our goal is to extend the expressional power of our state diagrams by formal-

izing nondeterminism. To be less vague: we wish to occupy multiple states

of a dfsm simultaneously allowing ambiguous moves like

1

2

3

a

a

and

1 2

Σ

a

.

This simply requires us to ‘upgrade’ the transition (and goto) function:

δ : QΣ→P (Q) ⊢ : QΣ→P(Q)

qa 7→
{
q′0, . . . , q

′
n

}
{q0, . . . , qn} a 7→ δ (q0, a) ∪ · · · ∪ δ (qn, a) .

Now δ takes a single state to many states, and ⊢ defines a more robust

configuration sequence where a group of states is mapped to a group of

states.

Definition 61 (NDFSM). A nondeterministic finite state machine

(ndfsm) is a 5-tuple (Σ, Q, s0, δ, F) where

Σ input alphabet,

Q set of states

s0 ∈P (Q) initial state,

δ : Q× Σ→P (Q) ‘super’-state transition function, and

F ∈P (Q) set of final states.

nondeterministic fsm 63

Exercise 15. It would have been simpler to let

⊢ : P(Q)→P(Q)

{q0, . . . , qn} a 7→
{
q′0, . . . , q

′
m

}
.

Why did we not?

Notation (x). Let x denote xu : x ∈ Σ ∧ u ∈ Σ∗. (I.e. a word with first

letter x ∈ Σ.)

To convince ourselves this is necessary.

Example 61. Draw a state transition diagram for reading

L = {ua : u ∈ Σ∗ ∧ |a| = 3} ,

the language of words (over {a, b, c}) with third last letter a.

There is a recipe for this:

1. create states for the eight length three suffixes,

2. draw rules for transitioning between them,

3. label accepting states (those suffixes beginning with ‘a’),

4. chose a viable initial state.

See Figure ??.

Continuing like this causes our state diagrams to become prohibitively

large.

Example 62. L(M) = {u1 : u ∈ {0, 1}∗ ∧ |1| = 8}. (Requires 28 = 256

states and, for a complete graph,

2256 = 72057 594 037 927 936

transition rules.)

Using non-determinism, these machines are drawn much more compactly.

Example 63. A ndfsm for L = {u1 : u ∈ {0, 1}∗ ∧ |1| = 8}.

0, 1

1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

nondeterministic fsm 64

bba aba

aaa

abb

baa aab

babbbb

b

a

b
a

bb

a

a

a

a

b

b

b

a

b

a

Figure 2.2: The machine for Example ?? accepting L = {wa : w ∈ [a, b]∗ ∧ |a| = 3}

nondeterministic fsm 65

Intuitively there is a surjection from states of andfsm into the powerset

of those states. This surjection (which we will soon make explicit), essentially

converts andfsm into a (truly) complete dfsm.

For instance

1

2

3

a

a
a

a

ndfsm

≡ {2} {1, 3} {3}a a
a

Equivalent dfsm

With this new tool let us redo Example 61.

Example 64. A ndfsm machine for L = {ua : u ∈ Σ∗ ∧ |a| = 3}

1 2 3 4

a, b

a a, b a, b

The corresponding dfsm for this ndfsm is Figure 2.1. (The astute reader

will recognize this as isomorphic to the machine of Example 61. It is this

correspondence we wish to make precise.)

§NDFSM → DFSM conversion

Expectantly (yet no less remarkably so) ndfsms are no more powerful than

the dfsms they are derived from. A method for converting one to the other

is sufficient to establish equivalence. We give two such methods and, for

comparison, execute each on:

0 1 2

a, b

b a

a, b

ndfsm M

nondeterministic fsm 66

12 124

1234

14

123 134

131

b

a

b
a

bb

a

a

a

a

b

b

b

a

b

a

Figure 2.3: The corresponding dfsm for the ndfsm machine of Example ??: For
clarity (and also to avoid huge states) we substitute 1 for {1}, 12 for {1, 2}, and so
on.

nondeterministic fsm 67

P(Q) a b

∅ ∅ ∅

{0} {0} {0, 1}
{1} {2} ∅

{2} {2} {2}
{0, 1} {0, 2} {0, 1}
{0, 2} {0, 2} {0, 1, 2}
{1, 2} {2} {2}
{0, 1, 2} {0, 2} {0, 1, 2}

Table 2.1: The dfsm transition
table for M ′ as generated by
Subset Construction.

Subset Construction

Intuitively: draw the appropriate transition rules among all possible subsets

of Q.

Input: ndfsm M = (Q,Σ, δ, s, F)

Output: dfsm M ′ = (Q′,Σ, δ′, s′, F ′) : L(M) = L(M ′)

F ′ ← {q : q ∈ Q′ ∧ q ∩ F 6= ∅};
for x ∈P(Q) do

for a ∈ Σ do

δ′ (x, a)← {q′ : δ (q, a) = q′ ∧ q ∈ x}
return (P(Q),Σ, δ′, {s} , F ′);

Algorithm 1: The Subset Construction

Remark 2 (alternative constructions).

F ′ ← {{q0, . . . , qn} : {q0, . . . , qn} ⊂ Q ∧ ∃qi ∈ F}
F ′ ← {all subsets of Q containing (at least) one final state}

δ(x = {x0, . . . , xn} , a)←
{

q : q x0
a

}

∪ · · · ∪
{

q : q xn
a

}

δ′(x, a)← {δ(q, a) : q ∈ x} = map (q 7→ δ(q, a), {x0, . . . , xn})

Applying subset construction to M generates transition Table 2.4.1. No-

nondeterministic fsm 68

tice we wasted computation by calculating transitions for unreachable states:

0 01 02 012

a b a b

b a
b

a

∅ 1 12 2

a, b a

b

a

b

a, b

Iterative Subset Construction

The Iterative Subset Construction is an improvement of the subset

construction; only transitions for reachable states are calculated.

Input: ndfsm M = (Q,Σ, δ, s, F)

Output: dfsm M ′ = (Q′,Σ, δ′, s′, F ′) : L(M) = L(M ′)

Q′ ← {{s}};
for x ∈ Q′ do

for a ∈ Σ do

δ′(x, a)←
⋃

q ∈ x

δ(q, a);

Q′ ← Q′ ∪ {δ′ (x, a)};
return (Q′,Σ, δ′, {s} , {x ∈ Q′ : x ∩ F 6= ∅});

Algorithm 2: The Iterative Subset Construction

Applying iterative subset construction to M generates transition

Table 2.4.1. Notice only reachable states were considered.

properties of ndfsm languages 69

P(Q) a b

{0} {0} {0, 1}
{0, 1} {0, 2} {0, 1}
{0, 2} {0, 2} {0, 1, 2}
{0, 1, 2} {0, 2} {0, 1, 2}

Table 2.2: The dfsm transition
table for M ′ as generated by Sub-
set Construction.

0 01 02 012

a b a b

b a
b

a

§NDFSM/DFSM equivalence

Theorem 7 (ndfsm/dfsm equivalence). For any ndfsm there is an

equivalent dfsm.

∀M ∈ ndfsm ; ∃M ′ ∈ dfsm : L(M) = L(M ′)

Proof. Proof by construction (aka, proof by algorithm).

§2.5 Properties of ndfsm Languages

We would like to establish

∃M ∈ fsm : L(M) = L ⇐⇒ L ∈ LREG.

That is, in addition to fsms generating regular languages (trivially true

by Definition ??) we want to ensure each regular language is generated

by some FSM. (The difference, although subtle, is important.)

Towards this goal notice a machine is just some ‘combination’ of

properties of ndfsm languages 70

submachines and similarly a language is just some ‘combination’ of

sublanguages. In particular, any regular language is constructible via:

1. ∅ ∈ LREG,

2. ∀a ∈ Σ; {a} ∈ LREG,

3. L1,L2 ∈ LREG =⇒ L1 ∪ L2 ∈ LREG,

4. L1,L2 ∈ LREG =⇒ L1L2 ∈ LREG, and

5. L ∈ LREG =⇒ L∗ ∈ LREG.

(An idea we formalize and prove in the coming sections.)

Additionally a fsm can be built according to these rules as well

(proving any regular language has a corresponding fsm which generates

it).

§ε-NDFSM

A consequence of nondeterminism is free moves: transitions on the

empty word ε.

In the machine analogy an ε-transition can be viewed as keeping the read

head stationary while changing states.

These new transitions have a variety of uses. For instance, using ε-

transitions we can enable multiple starting states.

Example 65. A machine with multiple starting states.

0

1

2

ε

ε

It is impossible to occupy only 0 since this state automatically sends

us to 1 and 2 as well.

properties of ndfsm languages 71

Exercise 16. What does the machine from Example 65 accept?

Machines with these transitions are called ε-ndfsms.

Definition 62 (ε-ndfsm). An epsilon nondeterministic finite

state machine is given by a 5-tuple (Q, Σ, s0, δ, F) where

Σ input alphabet,

Q set of states,

s0 ∈P (Q) initial states,

δ ⊆ Q× (Σ ∪ {ε})×Q transition function,

F ∈P (Q) set of final states.

(The only change is the addition the ε-move to δ.)

The goto function is adjusted as follows:

pε ⊢ q ⇐⇒ p qε ⇐⇒ (p, ε, q) ∈ δ.

Since

∀w ∈ Σ∗; ∀n ∈ N; εnw = w

this generalizes as expected.

ε-NDFSM to ndfsm conversion

ε-ndfsms are no more powerful than ndfsms (which are in turn no

more powerful than dfsms).By providing an algorithm that converts

the former into the later we establish equivalence as we did with nd/dfsms.

The algorithm is based on the following observations:

1 2 3
ε ε ≡ 1 2 3

ε ε

ε

properties of ndfsm languages 72

(ε-completion) and

1 2 3
ε a ≡ 1 2 3

a

a

(ε-removal).

Doing an ε-completion is similar to finding the transitive closure but

all non ε-transitions are ignored. Once this ε-closure is established

the ε-transitions can be replaced by ‘normal’ Σ-based transitions.

Example 66. Consider the ε-ndfsm:

1

2 3

4 5

b

ε

ε
ε

b

b

a

a

Its ε-closure is (dashed transitions are new, irrelevant transitions are

greyed):

1

2 3

4 5

ε

ε ε

b

b

b

a

a

ε

ε
ε

and the ε-removal

properties of ndfsm languages 73

This is easier once you realize you only have to consider ‘direct’ ε-

transitions.

corresponds to

1

2 3

4 5

b
b

b

a

a

a

b

a

b

b

a

b

a

a

.

Example 66 has no final states. In fact, the addition of final states

complicates the process somewhat. However, observe

1 2 3
ε ε ≡ 1 2 3

ε ε .

In general any state freely connected to any final state should be made

final as well. (In Algorithm ?? this is done during ε-removal but can

be correctly done as a preprocess, i.e. first.)

Example 67. If 3 was final state in Example 66 all but state 4 would

be made final as well. (See Figure ??.)

In general, the transformation from an ε-ndfsm tondfsm is done

properties of ndfsm languages 74

1

2 3

4 5

b

b

a

a

a

b

a

b

b

a

b

a

a

Figure 2.4: Example 66 with 3 ∈ F .

properties of ndfsm languages 75

by invoking the following algorithms one after each other.

Input: δ from ε-ndfsm M = (Q,Σ, δ, s, F)
Output: ε-completion of δ
δ′ ← δ;
for (p, x, p′) ∈ δ do

for (q, y, q′) ∈ δ do
if p′ = q ∧ x = ε = y then

δ′ ← δ′ ∪ {(p, ε, q′)};
if δ′ = δ then

return δ′;
else

return thisproc (δ′);

Algorithm 3: ε-completion

Input: ε-completed δ
Output: ε-free δ
δ′ ← δ;
for (p, x, p′) ∈ δ do

for (q, a, q′) ∈ δ do
if p′ = q ∧ x = ε ∧ y 6= ε then

δ′ ← δ′ ∪ {(p, a, q′)};
return filter ((p, x, p′)→ x 6= ε, δ′);

Algorithm 4: ε-removal

thisproc (or some variant) is available in many programming languages.

It should be used when defining recursive functions so the function name

can be changed without negative side-effect.

filter (or some variant) is available in many programming languages. It

is used to remove members of a list based on some predicate. For us, we

are removing 3-tuples which have ε-transitions.

properties of ndfsm languages 76

Theorem 8. For any ε-ndfsm there is an equivalent ndfsm.

∀ ε-ndfsm M ∃ ndfsm M ′ : L(M) = L(M ′)

Sketch. Let M = (Q, Σ, s0, δ, F). Given δ, Algorithm 3 and 4 pro-

duces

δ′ =

(

δ ∪
{

p r
a

: q q r
ε a ∈ δ

})

\
{

p r
ε

: p, q ∈ Q

}

= (δ ∪ {(p, a, r) : (p, ε, q), (q, a, r) ∈ δ}) \ ((p, ε, q) : p, q ∈ Q) .

This is the δ′ ofndfsm M ′ = (Σ, Q′, s′, δ′, F ′) and L(M) = L(M ′).

Exercise 17. Using the sketch as a guide, prove Theorem 8.

§Closure Properties

Notation. Let the machine accepting w = w0 · · ·wn

0 1 n
w0 w1 wn· · · .

be denoted by

0 n
w .

Notation (submachine). The transition state diagram for M = (Σ, Q, s0, δ, F)

is abbreviated to

s0 FM .

Union of Regular Languages

‘Connect’ two (or finitely many) machines using ε-transitions.

properties of ndfsm languages 77

Example 68. A machine accepting {aaa} ∪ {bb}

s0

ε

ε

a a a

b b

.

Theorem 9 (union). The union of two regular languages is regular:

L1 = L(M1) ∧ L2 = L(M2) =⇒ ∃M3 : L1 ∪ L2 = L(M3)

Proof. Given L1 = L(M1) and L2 = L(M2) and fsms

M1 = (Σ1, Q1, s1, δ1, F1) , and

M2 = (Σ2, Q2, s2, δ2, F2)

construct an ε-fsm M = (Q, Σ, s0, δ, F) with

Q = Q1 ∪Q2 ∪ {s0}
Σ = Σ1 ∪ Σ2

F = F1 ∪ F2

δ = δ1 ∪ δ2 ∪
{

s0 s1
ε , s0 s2

ε
}

Which builds a machine M with this shape:

s0

s1

s2

F1

F2

M1

M2

ε

ε

.

Lemma 1. L(M) = L1 ∪ L2.

properties of ndfsm languages 78

A lemma is a sub-result towards the proof of the main result.

Let w ∈ L(M) be arbitrary and take f ∈ F1 ∪ F2. Either

s0εw ⊢M s1w ⊢∗M1
f =⇒ w ∈ L(M1),

or

s0εw ⊢M s2w ⊢∗M2
f =⇒ w ∈ L(M2).

Thus L(M) ⊆ L(M1) ∪ L(M2).

Conversely,

w ∈ L(M1) ∪ L(M2) =⇒ w ∈ L(M1) ∨ w ∈ L(M2)

=⇒ s1w ⊢∗M1
f1 ∈ F1 ∨ s2w ⊢∗M2

f2 ∈ F2

=⇒ {s0ε}w ⊢ {s1, s2}w ⊢∗ f ⊆ F1 ∪ F2

=⇒ w ∈ L(M)

Thus L(M1) ∪ L(M2) ⊆ L(M) and moreover

L(M) = L(M1) ∪ L(M2).

So there is some ε-fsm (orndfsm or dfsm) M generating L(M1)∪
L(M2). Thus by Definition ?? L(M1) ∪ L(M2) is regular.

Theorem 10. Any finite language is regular:

L ⊂ Σ∗ ∧ |L| <∞ =⇒ L ∈ LREG.

Informally, any finite language

L = {w0, . . . , wN}

properties of ndfsm languages 79

is accepted by

s0
...

...

ε

ε

w0

wN

.

Provided N <∞ this machine has a finite number of states (and thus

is a FSM).

Proof. Let Mw be afsm given by

Σ = {w0, . . . , wn}
Q = {q0, . . . , qn}
s0 = q0

δ(qi, wi) = wi+1

F = {qn}

which is constructed to accept w = w0 · · ·wn.

By Theorem 10 L(Mwi
) ∪ L(Mwj

) is regular, and thus a simple

induction proves

L(Mw0) ∪ · · · ∪ L(MwN
)

for any N <∞.

Exercise 18 (Midterm question).

Complementation of Regular Languages

‘Swap’ final and non-final states of a complete machine.

Example 69. The complement of Example 68: a machine accepting

{a3} ∪ {b2} =
{
ai : i 6= 3

}
∪
{
bi : i 6= 2

}
⊆ {a, b}∗

properties of ndfsm languages 80

s0

ε

ε

a a a

b b b a, b

a, b

b b

a a a, b

.

Notice the appearance of the previously unwritten sink state.

Exercise 19. Give a state transition diagram for M such that

L(M) = {a3} ∪ {b2} ⊆ {a, b, c}∗ .

Theorem 11 (complement). The complement of a regular language

over a finite alphabet is regular:

∃M : L = L(M) =⇒ ∃M : L = L(M).

Proof. Let L = L(M) be generated by M = (Q, Σ, s0, δ, F), a com-

plete FSM. Define M = (Σ, Q, s0, δ, Q− F).

Lemma 2. L(M) = L(M)

Exercise.

Concatenation of Regular Langauges

We connect the final states of one machine with the starting state of

the other.

properties of ndfsm languages 81

Example 70. Let L1 = {aa, a} and L2 = {bbb} then

a aa

b b b

εε .

is a transition state diagram for L1L2.

Theorem 12 (concatenation). The concatenation of two regular is

regular:

L1 = L(M1) ∧ L2 = L(M2) =⇒ ∃M : L1L2 = L(M)

Proof. Given M1 = (Σ1, Q1, s1, δ1, F1) and M2 = (Σ2, Q2, s2, δ2, F2)

define M = (Q, Σ, s0, δ, F) with

Q = Q1 ∪Q2

Σ = Σ1 ∪ Σ2

δ = δ1 ∪ δ2 ∪
{

f s2
ε : f ∈ F1

}

s = s1

F = F2

Lemma 3. L(M1) = L(M2).

Kline star of Regular Languages

To allow as many consecutive words to be accepted at oncex we con-

struct paths from all final states to the initial state.

x Don’t forget ε ∈ L∗.

properties of ndfsm languages 82

Example 71. A machine accepting ({ab} ∪ {c})∗

ε

ε

ε

c

a b

ε

ε

.

Exercise 20. Why is the initial state accepting?

Theorem 13 (Kline). The Kline star of a regular language is a

regular:

∃M : L = L(M) =⇒ ∃M ′ : L∗ = L(M ′)

Proof. Given M = (Q, Σ, s0, δ, F) define M ′ = (Σ′, Q′, s′, δ′, F ′)

with

Σ′ = Σ

Q′ = Q ∪ {s′}

δ′ = δ ∪
{

s′ s
ε

}

∪
{

f s′
ε : f ∈ F

}

F ′ = {s′}

Lemma 4. L(M) = L(M ′).

Exercise.

end of chapter exercises 83

§2.6 End of Chapter Exercises

Exercise 21. Work out everything in §2.2 taking ⊢ as a function. Hint:

⊢ (⊢ (⊢ (· · · ⊢ (qw)))) can be written

S0 = qw

S1 = ⊢ (S0)

...

Sℓ = ⊢ (Sℓ−1).

Thus taking ◦ to be function composition means ⊢∗ can be viewed as

an iterative process modelling, for example:

⊢3 (qw0w1w2) = ⊢ (⊢ (⊢ (qw0w1w2)))

= ⊢ (⊢ (q1w1w2))

= ⊢ (q2w2)

= q′.

Exercise 22. Compete the proof of pumping lemma by proving Equa-

tion (2.3). Namely,

∀k ∈ N; qjv
k ⊢∗ qj (2.3)

when v is given as in Theorem 6

84

Chapter 3

——X——

Other Regular Constructs

“Love has its reasons, whereof reason knows nothing.”

– Blaise Pascal, Mathematician

Regular expressions, Kleene’s theorem, fsm /regular expression

conversion, state elimination techniques, linear grammar machines, reg-

ular grammars.

§3.1 Regular Expressions

A regular expression is a compact way of expressing a regular

language. Regular expressions are aptly named as any regular language

corresponds to a regular expression and vice-versa. The utility of these

expressions are their ‘2D’ or ‘plaintext’, representations which can be

inputted via keyboard.

Example 72. The regular expression a(a + b)∗b generates all words

starting with a and ending with b:

L (a(a + b)∗b) = {a} {a, b}∗ {b}

In Chapter ?? we proved any regular language is constructible from

∪, ·, and ∗. In the same way any regular expression is constructible

from +i, ·, and ∗.

Definition 63 (RΣ). The set of regular expressions over Σ is

denoted RΣ and induced (i.e. generated recursively) by:

i
+ because ∪ isn’t on the keyboard.

regular expressions 85

1. ∅, ε ∈ RΣ, and Σ ⊂ RΣ (i.e. ∀a ∈ Σ; a ∈ RΣ),

2. if E1, E2 ∈ RΣ then

(a) (E1 + E2) ∈ RΣ,

(b) (E1E2) ∈ RΣ,

(c) E∗
1 ∈ RΣ.

Definition 64 (Regular Expression).

Ei ∈ RΣ ⇐⇒ Ei is a regular expression.

Definition 65 (Language of a regular expression). ∀E ∈ RΣ the lan-

guage of E, denoted L(E) is given by

1. L(∅) = ∅,

2. L(ε) = {ε},

3. ∀a ∈ Σ; L(a) = {a},

4. if E1, E2 ∈ RΣ then

(a) L(E1 + E2) = L(E1) ∪ L(E2),

(b) L(E1E2) = L(E1)L(E2),

(c) L(E∗
1) = L(E1)

∗

Example 73. Some regular expressions and the regular languages they

generate.

E L(E) without ∗ δ

10∗ {1} {0}∗ {10n : n ∈ N} Figure ??

0 + 1 {0} ∪ {1} {0, 1} Figure ??

(10)∗ [{1} {0}]∗ {(10)n : n ∈ N} Figure ??

0 (0 + 1)∗ {0} {0, 1}∗ — Figure ??.

{0∗1}∗ [{0}∗ {1}]∗ — Figure ??.

regular expressions 86

Notice the missing entries here. Sometimes it is not possible to give

a truly explicit definition of a regular language. Regular expressions

were created to rectify this gap.

Exercise 23. What is the regular expression giving the universal lan-

guage over Σ = {w0, . . . , wn}?

Theorem 14. The set of regular expressions is countably infinite.

That is, there is a injective and onto mapping from N into RΣ.

Proof. Exercise.

§Kleene’s Theorem

A major result of formal language theory is Kleene’s theorem which

asserts arbitrary regular expressions over Σ are generated by finite state

machines. The significant consequence of this theorem is that regular

expressions are in fact ‘regular’ (in the sense they cannot generate

irregular languages).

Theorem 15 (Kleene’s Theorem).

∀E ∈ RΣ; ∃M ∈ fsm : L(E) = L(M).

Proof. An immediate consequence of (the yet to be introduced) Propo-

sition 23 and 24.

Converting Expressions into Machines

We need to demonstrate regular expressions have no more power than

fsms by proving

{L(E) : E ∈ RΣ} ⊆ LREG.

Our strategy is a familiar oneii: show all regular expressions correspond

to a fsm and conversely that every finite state machine generates a

regular expression.

ii See proof of Theorem ??

regular expressions 87

Towards this goal recall Definition 63 which shows how to build any

regular expression. Let us demonstrate (and then formally establish)

how a fsm can be built in parallel.

Example 74. Building an ε-ndfsm M such that

L(M) = L ((0 + 10)∗1 + 00) .

regular expressions 88

The machine is constructed using the strategies developed to prove the

closure properties of regular languages.

ε

ε

0

1 0

(0 + 10)

ε

ε

0

1 0

ε

ε

ε

(0 + 10)∗

ε

ε

0

1 0

ε

ε

ε

ε

1

ε

ε (0 + 10)∗1

ε

ε

0

1 0

ε

ε

ε

ε

1

ε

ε

ε

ε

0 0

(0 + 10)∗1 + 00

regular expressions 89

We formalize the construction of Example 74 in Proposition 23

Proposition 23 (L(E) ⊂ L(M)).

∀E ∈ RΣ; ∃M ∈ fsm : L(E) ⊆ L(M)

Induce over the number of ‘operations’ (+, ·, ∗) in E (i.e. the number

of recursive calls). For instance

Op (a+ ab∗) = Op (a+ a · b∗) = 3.

Proof. Let Op(E) = |{ o ∈ E : o ∈ {+, ·, ∗} }|.
Take as an induction hypothesis

E ∈ RΣ : 0 ≤ Op(E) < k =⇒ ∃M ∈ fsm : L(E) = L(M).

for arbitrary n ∈ N.

When n = 0 (the base case)

Op(E) = 0 =⇒ E ∈ {∅, ε, a ∈ Σ} .

In any of these selections for E a machine can be constructed as follows:

a

M : L(M) = ∅ M : L(M) = ε M : L(M) = {a}

When n > 0 we are guaranteed Op(E) > 0 =⇒ Op(E) ≥ 1 and

consequently E contains a +, ∗, or ·.

Suppose Op(E) = n+ 1:

Case ‘ + ’. Here + ∈ E =⇒ E = E1 + E2.

E = E1 + E2 =⇒ Op(E) = Op(E1 + E2)

=⇒ n+ 1 = Op(E1) + Op(+) + Op(E2)

=⇒ n = Op(E1) + Op(E2)

regular expressions 90

By IH

∃M1,M2 : L(M1) = L(E1) ∧ L(M2) = L(E2),

and because regular languages are closed over union (Theorem ??)

∃M ′ ∈ fsm : L(M ′) = L(M1) ∪ L(M2) = L(E1) ∪ L(E2).

It follows

∃M ∈ fsm : L(M ′) = L(E1) ∪ L(E2)
def
= L(E1) + L(E2)

Case ‘ · ’. (Same argument as above.)

Case ‘ ∗ ’. Here ∗ ∈ E =⇒ E = E∗
1 .

E = E∗
1 =⇒ Op(E) = Op(E∗

1)

=⇒ n+ 1 = Op(E1) + Op(∗)
=⇒ n = Op(E1)

Thus, by the IH,

∃M ∈ fsm : L(M) = L(E1)

and consequently, because regular languages are closed over ∗ (Theorem

??),

∃M ′ ∈ fsm : L(M ′) = L(M)∗ = L(E1)
∗ def
= L(E∗

1).

Converting Machines into Expressions

Converting regular expressions into finite state machines requires us to

‘extend’ our transition function to allow for moves on regular expres-

sions.

Example 75. A machine with transitions from RΣ and equivalent

regular expressions 91

ε-fsm.

a+ b ≡ ε
ε

ε

a

b

ε

ε

The second machine is called an extend finite state machine.

Definition 66 (efsm). An extended finite state machine is a

5-tuple (Q,Σ, s0, δ, f):

Q set of states

Σ input alphabet,

s0 ∈P (Q) initial state,

δ : Q× Σ→ RΣ ‘extended’-state transition function, and

f ∈ Q \ {s0} single final states.

There are only two differences between an efsm and a fsm:

1. there is only a single finite state distinct from s0, and

2. δ(q1, q2) ‘returns’ a regular expression instead of a letter.

Example 76. Let δ be given by

s

p

q

f

abc

a + b

ε

c∗

ε

then the values of δ are

δ (s, p) = abc δ (p, s) = ∅

δ (s, q) = a+ b δ (q, s) = ∅

δ (p, f) = c∗ δ (f, p) = ∅

δ (q, p) = ε δ (p, q) = ∅

regular expressions 92

δ (q, f) = ε δ (f, q) = ∅

(all remaining values—like δ(s, f)—are all ∅ as well.)

Our goto function must be changed to handle moves on RΣ. In

particular, we need

px ⊢ q ⇐⇒ p qE ∧ x ∈ L(E)

or, more generally,

px ⊢ qy ⇐⇒ p qE ∧ ∃w E x : x = wy ∧ w ∈ L(E)

(p goes to q on x when some prefix of x is in L(E)). As this is routine

to establish once modifying δ we leave it to the reader to develop.

Although these new machines allow for a more compact drawing of

state transition diagrams, what is drawn is not as ‘user friendly’ as a

regular fsm.

Example 77. The language of the following machine is not immedi-

ately obviousiii.

M :

s

f

(a+ b)∗

b∗
b

c

a

(a∗ca∗c)∗
a

Some word of M are:

bbabab ∈ L(M) aabbc ∈ L(M)

accc ∈ L(M) aaaaac ∈ L(M)

but the general form is far more elusive then it would be for a dfsm.

iii At least it is not obvious to the author.

regular expressions 93

Generally, it is easier to determine if a word is accepted by a dfsm

than it is for a efsm—dfsms move on letters which are inherently

more simple than regular expressions. It is thus beneficial to convert

these efsms into dfsms if only for the practical purpose of language

detection. As we have already formalized a RΣ to fsm conversion

it only remains to show any efsm can be converted into a regular

expression.

State Elimination Technique

By removing states of a machine one by one, and combining the regular

expressions of the edges, we reduce any efsm to a machine with only

a single transition:

s f
E

where E is a ‘single’ regular expression. (This is the reason efsm are

limited to a single final state distinct from the starting state.)

This process, called state elimination is motivated by the fol-

lowing observations. (Ei ∈ RΣ and dashed states/edges are being

removed.)

1 2
E1

E2
≡ 1 2

E1E
∗
2

1 2
E1

E1
≡ 1 2

E∗
1E2

1 2 3
E1 E2 ≡ 1 3

E1E2

1 2

E1

E2

≡ 2E2E1

regular expressions 94

The process is fundamentally one of removing states and resolving

edge routes.

Example 78. Consider the ndfsm given by

M :
1 2

a

a

b b

After (easily) converting M into a efsm

s f1 2
a

a

b b

ε ε

the state elimination can commence. (As a matter of convention we

take Q ⊂ N and eliminate these states by the ‘natural’ order.)

First, let us remove the loop on state 1,

s f1 2

b∗a

a
ε ε

b

.

Now, states s and 2 can bypass state 1,

s f1 2

b∗a

ε

b

ab∗a .

regular expressions 95

The two loops on state 2 are then combined,

s f2
b∗a ε

b+ ab∗a

.

And, finally, removing state 2 is just a matter of accounting for the

loss by introducing a Kleene star:

s f2
b∗a (b+ ab∗a)∗

.

Thus L(b∗a (b+ ab∗a)∗) = L(M).

The final regular expression depends on how the states are labelled and

subsequently removed. Although these regular expressions are superficially

different they are mathematically equivalent.

Example 79. Consider the (more complicated) ndfsm given by

1 2 3

1

1

0

0

0 1

regular expressions 96

The corresponding efsm is

1 2 3s

f

1

1

0

0
ε

ε ε

0 1

.

Proceeding with state elimination let us eliminate state 1,

2 3s

f

0

0

0∗1

ε ε

110∗1

state 2,

3s

f

(0∗1) (10∗1)∗ 0

0∗1
ε

1 + 00

regular expressions 97

and state 3.

s

f

(0∗1) (10∗1)∗ 0 (1 + 00)∗

0∗1

Consolidating all edges into

s f
0∗1 + (0∗1) (10∗1)∗ 0 (1 + 00)∗

reveals the regular expression 0∗1 + (0∗1) (10∗1)∗ 0 (1 + 00)∗.

We conclude this section by formalizing the state elimination tech-

nique which simultaneously concludes the proof of Theorem 15 (Kleene’s

theorem).

Proposition 24 (L(M) ⊆ L(E)).

∀M ∈ fsm; ∃E ∈ RΣ : L(E) ⊆ L(M).

Sketch of proof. Let efsm M = (Q,Σ, s, δ, f) be given and consider

this drawing of state q ∈ Q \ {s, f}:

q

q0

qN

q0

qN

...
...

E0q

ENq

Eq0

EqN

E00

ENN

Eqq

.

where the Eii, Eqq ∈ RΣ and N = |Q|.

regular expressions 98

The notation is chosen purposefully, Eij is meant to denote the regular

expression taking state qi to state qj . Also, there are many undrawn edges.

Removing q from this gives

q0

qN

q0

qN

qi

qj

E00 + E0qE
∗
qqEq0

ENN + ENqE
∗
qqEqN

Eij + EiqE
∗
qqEqj

from which the state transition function for a new machine without q

is constructed.

Remember there is a direct route

δ(qi, qj) = Eij

between qi and qj ; this is the reason for the ‘+’.

In particular M ′ = {Q \ {q} ,Σ, s, δ′, f} has

δ′ (qi, qj) = δ (qi, qj) + δ (qi, q) (δ (q, q))
∗ δ (q, qN) .

(The routine presentation of showing L(M ′) = L(M) is left as an ex-

ercise.)

Applying the above until only state s and f are left produces

δ(s, f) = E

where E is a regular expression such that L(E) = L(M).

regular grammars 99

§3.2 Regular Grammars

The model of computation developed so far would be easy to simulate.

A lamp, for instance, is a fsm and generally any system capable of pro-

cessing input (e.g. turning a lamp off and on) is a fsm . Intuitively, we

view fsms as language detectors: machines which determine language

membership in order to test equality among regular languages.

Let us now build a machine which writes or produces a language

instead of reading it.

§Linear Grammar Machines

A Linear Grammar Machine prints letters—linearly—into slots:

H e l l o W o r l d ¶
.

We use ¶ (end of line symbol) to indicated the number of slots available

are infinite.

Notation (End of line).

=¶ · · ·
.

What the lgm writes is governed by re-write or production

rules. For instance, the production rule (or simply ‘production’)

P : S → aS | b

expresses S can be rewritten as aS or b. Consequently, a machine with

this production can write ‘aab’ as follows.

To start the machine we provide it with a single input: a rewrite

symbol. (Unlike fsms which we gave potentially infinite many inputs.)

Bold box indicates the location(s) of the read/write head.

regular grammars 100

S ¶

The lgm is now free to apply (any of) its production rules

S ¶ S → aS

a S ¶ S → aS

(we combine the writing of ‘aS’ into one step,

even though it really requires two).

a S ¶ S → aS

a a S ¶ S → aS

a a S ¶ S → b

a a b ¶ S → b

Since b does not correspond to a rewrite rule the machine terminates.

This entire process is more compactly written as

Note, =⇒ (implies) is a longer arrow.

S ⇒ aS ⇒ aaS ⇒ aab

(much in the same way ⊢ indicates how we ‘move’ through a fsm).

Formal Definition of a lgm

So we may investigate the languages produced by lgms let us formalize

the ideas of the previous section.

Definition 67 (LGM). A Linear Grammar Machine (lgm) is a

4-tuple (N,Σ, P, S)

N nonterminals (rewrite symbols)

Σ : Σ ∩N = ∅ terminals (output alphabet)

regular grammars 101

P ⊆ N × Σ∗N set production rules

S ∈ N single input

Notice the description of P in Definition 67 enforces that nontermi-

nals are always written last.

Example 80. A lgm ¬ producing {anb : n ∈ N}:

¬ = ({S} , {a, b} , {(S, aS), (S, b)} , S) ,

is more typically written as

¬ = ({S} , {a, b} , P, S)

P : S → aS | b.

Notation (→). When T, T ′
i ∈ N and wi ∈ Σ∗

T → w0T
′
0 | · · · | wnT

′
n

denotes (T, w0T
′
0) , . . . , (T, wnT

′
n) . Thus,

T → wT ′ ∈ P ⇐⇒ (T, wT ′) ∈ P.

To model productions like S ⇒ aS ⇒ aaS ⇒ aab we need to

construct a functioniv which, in this instance, takes ‘aaS’ and rewrites

it as ‘aaB’. Namely: ⇒ (aaS) = aaB.

Definition 68 (⇒). A function called the producer which—when

T → vT ′ ∈ P and u, v ∈ Σ∗—is given by:

⇒ : Σ∗N → Σ∗N

uT 7→ uvT ′.

iv Technically speaking this is a mapping, not a function.

regular grammars 102

Eventually produces (⇒∗)

Let us briefly confirm our definitions are sensible by checking uT ⇒∗

vT ′ means (as we want)

uT eventually produces vT ′ .

Taking ⇒ as a relation, namely

vT ⇒ vT ′ ⇐⇒ (uT, vT ′) ∈ ‘⇒R ’

implies the meaning of uT ⇒∗ u(n)T (n) v is that there is some transitive

chain

uT ⇒ u′T ′ ⇒ · · · ⇒ u(n)T (n).

The meaning of ⇒0 is analogous to ⊢0. We interpreted the later as

not moving within a fsm. The interpretation of ⇒0 is not producing.

Thus, every machine has the ability to write ε in this way.

We need to be careful in proofs and use ⇒+ when ⇒∗ is not appropriate.

It follows the transitive reflexive closure of the producer is consistent

with what we are trying to express.

§The language of a lgm

Definition 69. The language of ¬ = (N,Σ, P, S) is given by

L(¬) = {w : S ⇒∗ w} .

(Any word that S produces.)

Definition 70 (Regular Grammar).

LLGM = {L(¬) : ¬ ∈ lgm}

The natural question to raise here is:

v
u
(1)

= u
′, u(2)

= u
′′, . . . , u(n)

= u
′···′

regular grammars 103

Can a lgm produce something a fsm cannot read?

Unfortunately, no—this is why members of LLGM are called the regular

grammars.

Theorem 16. lgms can only produce regular languages.

LLGM = LREG.

Proof. Proof by construction.

It is not difficult to construct a fsm M given a lgm ¬ so that

L(M) = L(¬).
Example 81. Consider ¬ = ((S, T, U) , {a, b} , P, S) with

S → aT

T → bU

U → ε

A fsm accepting L(¬) is given by

M = ({S, T, U, f} , {a, b} , S, δ, {f})

with

S T U f
a b ε .

Notice M has T T ′x
whenever T → xT ′ ∈ P and the final

state, f , is new.

Lemma 5 (LLGM ⊆ LREG).

∀ lgm ¬; ∃fsm M : L(¬) = L(M)

Proof. Let lgm ¬ = (N,Σ, P, S) be given and define a fsm

M = (N,Σ, δ, S, {f})

regular grammars 104

where δ is given by

δ =

{

q q′
x : q → xq′ ∈ P

}

∪
{

q f
x : q → x ∈ P

}

= {qx ⊢ q′ : q → xq′ ∈ P} ∪ {qx ⊢ f : q → x ∈ P}

Proceeding with the PMI assume when n ∈ N+ that any word

produced in n-steps by ¬ is accepted by M :

S ⇒n w =⇒ w ∈ L(M) (IH)

Clearly, when n = 1 (the base)

S ⇒1 w =⇒ S → w ∈ P
ass
=⇒ qw ⊢ f

def
=⇒ w ∈ L(M).

Supposing S ⇒n+1 w we deduce

S ⇒n+1 w′ ⇐⇒ S ⇒n wT ⇒1 w′.

Lemma 6 (LREG ⊆ LLGM).

Chapter 4

——X——

Context Free Grammars

“I do face facts, they’re lots easier to face than people.”

– Meg Wallace, A Wrinkle in Time

Context free grammars.

§4.1 Introduction

The productions of a lgm Γ = (N,Σ, P, S) are limited to

T → w0 : w0 ∈ Σ

T → wT ′ : w ∈ Σ∗ ∧ T ∈ N

and subsequently lgms can only produce regular languages (or equiv-

alently, regular grammars).

Observe these productions can never introduce multiple nontermi-

nals, that is, our producer can only write a symbol from N once every

production. To finally ‘escape’ the regular languages we imbue our

producers with the ability to write multiple nonterminals.

Example 82. Let G = ({S, T} , {a, b} , P, S) have P : S → aSb | ε
and consider the production

S ⇒ aSb⇒ aaSbb⇒ · · · ⇒ anSbn ⇒∗ anbn ⇒ anbn.

We can informally deduce L(G) = {anbn : n ∈ N}.

In order to prove G produces {anbn : n ∈ N} it helps to develop

some intuition about these machines first. Let us try to intuit what

105

introduction 106

some simple grammar machines produce by tracking all the produc-

tions.

We will do left most derivations only although there is nothing preventing

us from doing right derivations or even mixing them.

Example 83. Let G = (N,Σ, P, S) with P : S → aSb | ε.

S ⇒ aSb ⇒ aaSbb ⇒ · · · ⇒ anSbn ⇒ · · ·

⇒ ⇒ ⇒

aεb aaεbb anεbn

⇒ ⇒ ⇒

ab aabb anbn

We informally deduce G produces
{
aban : n ∈ N

}
.

Example 84. Let G = (N,Σ, P, S) with

P : T → SS

S → aSb | ε

T producse SS where S produces anbn by Example 83. It follows

G should generate {vw : v, w ∈ {anbn : n ∈ N}}. Let us verify this

guess:

T ⇒ SS ⇒ aSbS ⇒ aaSbbS ⇒ · · · ⇒ amSbmS ⇒ · · ·

⇒ ⇒ ⇒ ⇒

εS aεbS aaεbbS amεbmS

⇒
∗

⇒
∗

⇒
∗

⇒
∗

anbn abanbn aabbS ambmanbn

We informally deduce G produces

{ambmanbn : n,m ∈ N} = {vw : v, w ∈ {anbn : n ∈ N}} .

context free grammars 107

Having developed intuition about these grammar machines, let us

commence with our formal derivation of what it means for a grammar

to produce a language.

§4.2 Context Free Grammars

As a context free grammar machine has the same ‘parts’ as a linear

grammar machine, we need only modify the production rules slightly.

Namely, instead of taking P ⊆ N × Σ∗N allowing productions like

T → wT ′ (nonterminals at the end only) we take P ⊂ N × (Σ +N)∗

enabling, for instance, T → aTbT .

Definition 71 (CFG). A context free grammar G is the 4-tuple

(quadruple) {N,Σ, P, S} with

N nonterminals (rewrite symbols)

Σ : Σ ∩N = ∅ terminals (output alphabet)

P ⊆ N × (Σ +N)∗ set production rules

S ∈ N single input.

Definition 72 (write space). The set

(Σ +N)∗

is called the write space (because it is what the cfg can ‘write’).

As convention we use α, β, . . . , to represent members of (Σ +N)∗.

Our producer function requires ‘upgrading’ to account for the new

production rules.

Definition 73 (⇒). The producer is a mapping given by

We use the set of production rules P as a function that accepts a nonter-

minal and returns α ∈ (Σ +N)
∗
.

⇒: (Σ +N)∗ → (Σ +N)∗

context free grammars 108

wTβ 7→ wP (T)β = wαβ.

(Note wTβ where w ∈ Σ∗ means T is the leftmost nonterminal. In

other words, we are rewriting the first nonterminal.)

As a function the producer satisfies

⇒F (wTβ) = wαβ ⇐⇒ wTβ ⇒ wα

which yields the relation

⇒R = {(β,⇒F (β)) : β ∈ (Σ +N)∗}
= {(β, β ′) : β ⇒ β ′ ∧ β, β ′ ∈ (Σ +N)∗} .

This relation satisfies

(β, β ′) , (β ′, β ′′) ∈ ⇒R ⇐⇒ (β, β ′′) ∈ ⇒2
R

which is consistent with our intended meaning of

β ⇒ β ′ ⇒ β ′′ ⇐⇒ β ⇒2 β ′′

or more generally that

β ⇒∗ β ′

means β eventually produces β ′.

Definition 74 (language of a cfg). The language of a cfg G =

(N,Σ, P, S), denoted L(G), is given by

L(G) = {w ∈ Σ∗ : S ⇒∗ w} .

(The language of a cfg is any word that S can produce.)

Definition 75 (Context Free Languages).

LCF = {L : ∃G ∈ cfg;L = L(G)} .

Proposition 25. A cfg can produce an irregular language

LCF 6⊆ LREG.

cfg language proofs 109

We just need to demonstrate

∃L ∈ LCF : L 6∈ LREG

by proving {anbn : n ∈ N} ∈ LCF.

§4.3 CFG Language Proofs

We have shown many times {anbn : n ∈ N} 6∈ LREG, let us now prove

this elusive language can be produced by a cfg.

Proposition 26. Let G = ({S} , {a, b} , P, S) ∈ cfg with P : S →
ε | aSb; then

L(G) = {anbn : n ∈ N} .

Proof.

Lemma 7. L(G) ⊆ L.

Take as an induction hypothesis

∀k ≤ n; S ⇒k w ∈ Σ∗ =⇒ w ∈ L (IH)

which asserts anything produced by G in n or less steps is in the lan-

guage.

Base. When n = 1 we have S ⇒1 aSb /∈ Σ∗ (vacuous) and S ⇒1 ε

where ε ∈ Σ∗.

Induction.

S ⇒n+1 w′ =⇒ S ⇒ aSb⇒n w′ IH
=⇒ w′ = a

(
akbk

)
b ∈ L

and thus w ∈ L(G) =⇒ w ∈ L.

Lemma 8. L(G) ⊇ L.

Take as an induction hypothesis

∀k ≤ n; S ⇒∗ akbk (IH)

which asserts G can only produce words of the form akbk.

cfg language proofs 110

Base. S → ε ∈ P =⇒ S ⇒∗ ε = a0b0.

Induction. By IH S ⇒∗ anbn

S → aSb ∈ P ∧ S ⇒∗ anbn =⇒ S ⇒∗ a(anbn)b = an+1bn+1.

Thus if w ∈ L =⇒ w = anbn ∧ n ∈ N =⇒ S ⇒∗ w
def.
=⇒ w ∈ L(G)

The result follows from the two lemmas.

An immediate consequence of Proposition 26 is Proposition 25.

However, we can show something stronger.

Theorem 17. LREG ⊂ LCF.

(We have already shown that every regular language can be produced

by a lgm. As a lgm is just a ‘weaker’ cfg — but a context free

grammar none-the-less — the result is immediate.)

Proof. By Theorem ?? LREG ⊆ LCF. Proposition 26 precludes the pos-

sibility of equality.

We conclude this section with the less trivial language proof for

Example 84.

Proposition 27. cfg G = ({S} , {a, b} , P, S) with

P : S → ε | aSb | bSa | SS

has L(G) = {w ∈ {a, b}∗ : |w|a = |w|b} .

Proof.

Lemma 9. L(G) ⊆ L.

Take as induction hypothesis

∀k ≤ n;
[
S ⇒k w ∧ w ∈ {a, b}∗

]
=⇒ w ∈ L. (IH)

(The ‘∧ w ∈ {a, b}∗’ just means we ignore productions with nontermi-

nals in them.)

cfg language proofs 111

Base. When n = 1, S → ε ∈ P =⇒ S ⇒1 ε and ε ∈ L. All other

productions, like S ⇒ aSb, are vacuous.

Induction. We need to show S ⇒n+1 w′ =⇒ w′ ∈ L, for this break

into cases corresponding to the productions of P :

Case S → ε. S → ε =⇒ S ⇒ ε where ε ∈ L.

Case S → aSb. S ⇒ aSb⇒n awb
IH
: w ∈ L. Thus

|awb|a = |a|a + |w|a + |b|a = 1 + |w|a + 0,

|awb|b = |a|b + |w|b + |b|b = 0 + |w|b + 1, and

w ∈ L =⇒ |w|a = |w|b =⇒ |awb|a = |awb|b =⇒ awb ∈ L.

Case S → bSa. S ⇒ bSa ⇒n bwa
IH
: w ∈ L and bwa ∈ L by similar

argumenti.

Case S ⇒ SS. S ⇒ SS ⇒n w1w2
IH
: w1w2 ∈ L. It is trivial to show

w1, w2 ∈ L =⇒ w1w2 ∈ L.

Lemma 10. L(G) ⊇ L.

Take as induction hypothesis

∀k ≤ n; |w| = 2k =⇒ S ⇒∗ w. (IH)

Base. n = 0 =⇒ |w| = 0 =⇒ w = ε and S → ε ∈ P =⇒ S ⇒∗ ε.

Induction. |w| = 2 (n+ 1) = 2n+ 2 =⇒

w ∈ {aw′b, bw′a, aw′a, bw′b} .

Case w = aw′b. |aw′b| = 2n + 2 =⇒ |w′| = 2n
IH
=⇒ S ⇒∗ aw′b. and

S ⇒ aSb⇒∗ aw′.

Case w = bw′a. Same argument as above.

Case w = aw′a. It suffices to prove there are consecutive bs in w so that

it can be produced via

S ⇒ SS ⇒2 aSbbSa⇒∗ awa.
i Ensure when you use this that it is indeed appropriate.

cfg simplificitation 112

Lemma 11. There are consecutive bs in w = aw′a,

aw2 · · ·w2n−1a ∈ L =⇒ ∃i : wi = wi+1 = b.

TAC suppose there are consecutive bs in w. As |w| = 2n this means

we are able to place n many bs among the 2n−2
2

many letters (w2, . . . ,

w2n−1) so that the bs alternate (which is the only way they can be

nonconsecutive).

There are 2n−2
2

= n − 1 many nonconsecutive places (the even or

odd positions) in which we place n many bs.

The main result follows.

§4.4 CFG Simplificitation

There are bad production rules. For instance

S → aS | a
T → b

can never ‘reach’ the nonterminal T and

S → S | SS

can never ‘terminate’ by writing a terminal. For this reason (and oth-

ers) it is desirable to simplify a set of production rules so that some

of these redundancies can be eliminated.

§Terminating Symbols

Implicit to the statement

S ⇒∗ w

is that at some point the machine will print a word absent of rewrite

symbols and stop. This is called termination and in general any

αTβ ∈ (Σ +N)∗ which produces a word from Σ∗ is called a termi-

cfg simplificitation 113

nating symbol.

Definition 76 (terminating symbol). x ∈ Σ ∪ N is a terminating

symbol when

1. x ∈ Σ, or

2. (x→ α0 · · ·αn) ∈ P ∧ αi is terminating.

Notice we say αTβ ⇒∗ w ∈ Σ∗ and not S ⇒∗ αTβ ⇒∗ w ∈ Σ∗

because we do not care if the symbol is ‘reachable’ (see Definition 77).

Notation. The set of terminating symbols of a cfg G is denoted

TS (G) and given by

TS (G) = {α : α is a terminating symbol}

The set of nonterminating symbols is TS (G).

Production rules like

αTβ → γ

define rules in context sensitive languages. So, for instance, you could

have a rule which takes T to aT b only when T is adjacent to a

aT → aTB.

As with english, words can mean entirely different things when taken out

of context.

Example 85. Let G = ({S, T, U} , {a} , P, S) ∈ cfg have

P : S → T | SS
T → a | UU

U → U

The terminating symbols can be deduced by iterative process:

Σ = {a} ⊆ {a, T} ⊆ {a, T, S} = TS (G)

and consequently TS (G) = {U}.

cfg simplificitation 114

§Reachable Symbols

A reachable symbol is any symbol from Σ ∪ N the machine can write

(even if the symbol is surrounded by other symbols).

Definition 77 (reachable symbol). x ∈ Σ ∪N is reachable when

S ⇒∗ αxβ.

Consequently, S ∈ N is always reachable. (Note, unlike terminating

symbols, a ∈ Σ is not necessarily reachable.)

Notation. The set of reachable symbols of a cfg G is denoted

RS (G) and given by

RS (G) = {α : α is a reachable symbol} .

The set of unreachable symbols is RS (G).

Example 86. Let G = ({S, T, U} , {a} , P, S) ∈ cfg have

P : S → a | S | T
T → b

U → UU | b

The reachable symbols can be determined by iterative process:

{S} ⊆ {a, S, T} ⊆ {a, S, T, b} = RS (G)

and consequently RS (G) = {U} .

§Empty productions

Finding reachable symbols can be obstructed by the presence of ε. For

instance, consider a cfg with productions

P : S → ASB | BSA | SS | aS | ε
A→ AB | B

cfg simplificitation 115

B → BA

Seemingly the only terminating symbols are {a} (remember ε /∈ Σ∪N).

However,

S ⇒ aS ⇒ ε

so clearly S is terminating as well.

Definition 78 (Empty production). An empty production is any

production with form T → ε.

Empty productions can be dealt with by introducing new produc-

tion rules which are the result of applying the empty production. For

instance,

S → ST | ε

can be re-written as

S → ST | εT | ε.

Doing this to the production set at the beginning of this section reveals

the hidden terminating symbols

P : S → ε

S → ASB | AεB
S → BSA | BεA

S → SS | εS | Sε
S → aS | aε

so TS (G) = {a, S}.
More generally we want to eliminate any nonterminal which can

produce ε.

Definition 79 (ε-nonterminal). T ∈ N is a ε-nonterminal when

Using ⇒∗ here would mean everything is a ε-nonterminal.

T ⇒+ ε.

cfg simplificitation 116

Notation. The set of ε-nonterminals of a cfg G is denoted RS (G)

and given by

Nε (G) = {α : α is a ε-nonterminal} .

Definition 80 (ε-free cfg). G ∈ cfg is ε-free when

Nε (G) = ∅.

Example 87. Let G = ({S,A,B, C} , {a, b} , P, S)

P : S → aSas | SS | bA
A→ BC

B → ε

C → BB | bb | aC | aCbA

The ε-nonterminals can be determined by iterative process:

{B} ⊆ {B,C} ⊆ {A,B,C} = Nε (G) .

Removing ε-productions will revoke the ability of the machine to

‘write nothing’—this is not a big deal. To address this in the theory

we weaken our notion of language equality.

Definition 81 (ε-equivalence). We say two language L1 and L2 are

ε-equivalent when

L1 \ {ε} = L2 \ {ε} .

Notation.

L1
ε
= L2 ⇐⇒ L1 \ {ε} = L2 \ {ε} .

§Reduction

A reduced context free grammar has no unreachable or nonterminating

symbols.

cfg simplificitation 117

Definition 82 (Reduced). A cfg G is reduced if

RS (G) ∪ TS (G) = ∅.

The process of removing the unreachable and nonterminating sym-

bols from a cfg G is called reduction. A cfg which is reduced is

called a reduced context free grammar (rcfg).

Theorem 18.

∀G ∈ G; ∃G′ ∈ cfg : L(G) = L(G′) ∧ G′ reduced.

Proof. Let G = (N,Σ, P, S) be given and consider G′ = (N ′,Σ′, P ′, S).

Determine RS (G) and TS (G) by marking algorithm and let

N ′ = RS (G) ∩ TS (G) ∩N

Σ′ = RS (G) ∩ Σ

P ′ =
{
T → α : α ∈ (N ′ + Σ′)

∗ ∧ T → α ∈ P
}

S = S

w0 ∈ Σ 6=⇒ w0 ∈ RS (G)

Showing L(G)
ε
= L(G′) is left as an exercise.

Example 88. Reduce G = ({S,A,B, C} , {0, 1} , P, S) where

P : S → ASB | BSA | SS | 0S | ε
A→ AB | B
B → BA | A
C → 1

TS (G) = {0, 1, C, S} =⇒ TS (G) = {A,B} .

Eliminate TS (G) = {A,B} — that is, remove any productions involv-

ing A or B.

P : S → SS | 0S | ε

cfg simplificitation 118

C → 1

RS (G) = {S} =⇒ RS (G) = {C}.
Eliminate RS (G) = {C}

P : S → SS | 0S | ε

The CFG is now reduced.

§ε-removal

The removal of S → ε in Example 88 is slightly more involved because

Nε (G) = {S} and surely we cannot remove S. Instead we apply S → ε

to every production which yields:

P : S → εS | Sε | 0ε | SS | 0S

or equivalently P : S → S | 0 | SS | 0S.

Note this removal means we can only ensure an ε-equivalent lan-

guage is generated.

Example 89. Do an ε-removal on G = ({S, T, U, V } , {a, b} , P, S)
where

P : S → aSaS | SS | bT
T → UV

U → ε

V → UU | bb | aV | aV bT.

First we reduce as this has the potential to simplify the production set

(even though in this case it won’t).

The terminating symbols are constructed by

Σ = {a, b} ⊆ {a, b, U} {a, b, U, V } ⊆ {a, b, U, V, T, S} = TS (G) .

As this means TS (G) = ∅ there are no nonterminating symbols to

eliminate.

cfg simplificitation 119

The reachable symbols are constructed by

{S} ⊆ {a, b, S, T} {a, b, S, T, U, V }

and again RS (G) = ∅ so there are no unreachable symbols to elimi-

nate.

However, the set of ε-nonterminals is nonempty because because

U ⇒+ ε, V ⇒ UU ⇒2 ε, and T ⇒ UV ⇒ V ⇒3 ε. Thus

{U} ⊆ {U, V } ⊆ {U, V, T} = Nε (G)

Apply U ⇒ ε, V ⇒∗ ε, and T ⇒∗ ε:

P : S → aSaS | SS | bT
T → εV | Uε | ε
U → ε

V → εU | Uε | εε | bb | aV | aε | aεbT | aV bε | aεbε.

Reduce

P : S → aSaS | SS | bT
T → V | U | ε
U → ε

V → U | ε | bb | aV | a | abT | aV b | ab.

Elimiate the ε-productions T → ε, U → ε, and V → ε.

P : S → aSaS | SS | bT
T → V | U
U → ∅

V → U | bb | aV | a | abT | aV b | ab.

(Note U → ∅ =⇒ U ∈ TS (G) and consequently will be removed

during a subsequent reduction.)

chompsky normal form 120

Remark 3. A production rule set with

S → α0 · · ·αn

α0 → ε

...

αn → ε

would require |P ({α0, · · · , αn})| = 2n+1 new production rules during

ε-removal.

§4.5 Chompsky Normal Form

The ‘ultimate’ form of simplification is called the Chompsky normal

form.

Definition 83. G ∈ cfg is in Chompsky Normal Form (CNF)

provided its productions are limited to

‘Limited to’ is misleading as there will not be a cfg which cannot be

expressed in this form.

T → a : a ∈ Σ,

T → UV : U, V ∈ N.

(Note: T → aV where aV ∈ ΣN is not allowed.)

There are only two ways T → α with |α| 6= 2:

Definition 84 (Unit). If T → U : T, U ∈ N then U is called a unit.

Example 90. The CFG G with

P : S → aT | U
T → b

U → SS | TT

chompsky normal form 121

has the unit production T → U . It can be removed by simply replacing

U in T → U with everything U can write:

P : S → aT | SS | TT
T → b

(U was eliminated because it became unreachable).

Definition 85 (long production). T → α ∈ P is a long production

when

T → α ∧ |α| ≥ 2.

Example 91. The CFG G with

P : S → TUV

has the long production S → TUV . This long production can be

converted to

S → TU ′

U ′ → UV.

One can appreciate how this procedure can be iterated and made into

an algorithm.

§Unit Production Removal

As we demonstrated in Example 90 it is straightforward to remove unit

productions.

Theorem 19. ∀ rcfg G; ∃ cfg G′ :

1. G′ is in cnf, and

2. L(G)
ε
= L(G′).

Proof. -

chompsky normal form 122

Input: ε-free and rcfg G = (N,Σ, P, S).

Output: cfg G′ = (N,Σ, P ′, S) : P ′ has no unit productions.

P ′ = ∅;

for T → α ∈ P do

if α ∈ N then

P ′ ← P ′ ∪ {T → β : α→ β ∈ P};
else

P ′ ← P ′ ∪ {T → α};
return (N,Σ, P ′, S);

Algorithm 5: Unit Production Removal

§Long Production Removal

To remove the long production A→ α0 · · ·αn let N ← N∪{α′
1, . . . , α

′
n}

and replace this long production with

A→ α0α
′
1

α′ → α1α
′
2

...

α′
n−1 → αn−1αn

Example 92. The production S → TUV bWa can be written as

S → TU

U ′ → UV ′

V ′ → V b′

b′ → bW ′

W ′ →Wa

Since this is very close to the CNF let us complete the transformation

by applying a hack which handles the disallowed b′ → bW ′ and W ′ →

chompsky normal form 123

Wa.

S → TU

U ′ → UV ′

V ′ → V b′

b′ → bW ′

W ′ →Wa

b→ b

a→ a

Theorem 20. For every rcfg with long productions, there is an ε-

equivalent machine without long productions:∀G ∈ rcfg; ∃G′ ∈ cfg :

L(G)
ε
= L(G′) ∧ max (|α| : A→ α ∈ P) ≤ 2.

Proof. -

Input: ε-free and rcfg G = (N,Σ, P, S).

Output: cfg G′ = (N,Σ, P ′, S) : P ′ has no long productions.

if P = ∅ then

return (N,Σ,∅, S);

remove some T → α = α0 · · ·αN from P ;

if N < 2 then

(N ′, Σ, P ′, S)← thisproc (N, Σ, P, S);

return (N ′, Σ, P ′ ∪ {T → α} , S);
else

(N ′, Σ, P ′, S)←
thisproc (N ∪ {α′

1} , Σ, P ∪ {α′
1 → α1 · · ·αN} , S);

return (N ′, Σ, P ′ ∪ {T → α0α
′
1} , S);

Algorithm 6: Long Production Removal

§Converting to CNF

There is a recipe for converting to CNF.

chompsky normal form 124

1. Reduce, namely:

• Remove TS (G)

• Remove RS (G)

2. Remove ε-productions.

3. Reduce again (there may be nothing to reduce).

4. Remove unit-productions.

5. Remove long-productions.

6. Apply hack.

Example 93. Convert

S → aAB | aABD

A→ aD | B | ε
D → AB

B → bA | ε
C → cC

E → cc

F → BBA | ε

into an equivalent CFG in Chomsky normal form.

1. Reduction -

1i. Reduction : remove Nonterminating = {C}

S → aAB | aABD

A→ aD | B | ε
D → AB

B → bA | ε
��C → cC

E → cc

chompsky normal form 125

F → BBA | ε

1ii. Reduction : remove Nonreachables = {E, F}

S → aAB | aABD

A→ aD | B | ε
D → AB

B → bA | ε
��E → cc

��F → BBA | ε

2. Remove ε-productions -

2i. Remove B → ε and reduce

S → aAB | aA | aABD | aAD
A→ aD | B | ε | ✁ε
D → AB | A
B → bA

2ii. Remove A→ ε

S → aAB | aB | aA | a | aABD | aBD | aAD | aD
A→ aD | B
D → AB | B | A | ε
B → bA | b

2iii. Remove D → ε and reduce

S → aAB | aB | aA | a | aABD |✘✘✘aAB | aBD |✟✟aB | aAD |✟✟aA | aD |✚a
A→ aD | a | B
D → AB | B | A
B → bA | b

chompsky normal form 126

3. Remove Units -

Remove A→ B, D → B

S → aAB | aB | aA | a | aABD | aBD | aAD | aD
A→ aD | a | bA | b
D → AB | bA | b | A
B → bA | b

Remove D → A and reduce

S → aAB | aB | aA | a | aABD | aBD | aAD | aD
A→ aD | a | bA | b
D → AB | bA | b | aD | a |✚✚bA | ✁✁b
B → bA | b

3. Remove Long Productions

S → aT | aB | aA | a | aU | aV | aW | aD
T → AB

U → TD

V → BD

W → AD

A→ aD | a | bA | b
D → AB | bA | b | aD | a
B → bA | b

4. Apply Hack

S → aT | aB | aA | a | aU | aV | aW | aD
T → AB

U → TD

V → BD

chompsky normal form 127

W → AD

A→ aD | a | bA | b
D → AB | bA | b | aD | a
B → bA | b
a→ a

b→ b

Chapter 5

——X——

Pushdown Automata

“There is an art to flying, or rather a knack. Its knack lies in

learning to throw yourself at the ground and miss. Clearly, it

is this second part, the missing, that provides the difficulties.”

– The Hitchhiker’s Guide to the Galaxy

Stacks, parse tress, and context free pumping lemma.

§5.1 Preliminaries

A Push Down Automata is a fsm with access to “first in last out”

memory.

§The Stack

A stack essentially models a pile (or stack) of books on a table:

d

The books cannot be accessed ‘randomly’. That is, to ensure this pile

of books does not topple over, we insist

1. only the top book can be removed/accessed, and

128

preliminaries 129

2. new books are placed on top.

Although we have to remove all the books in order to access the bot-

tom one, ultimately we can still access anything we want (albeit less

efficiently).

Adding a book (to the top of the stack) is called pushing whereas

removing a book (from the top of the stack) is called popping.

We illustrate a stack by

γn

...

γ0

⊓

even though it is (perhaps) more appropriate to draw

?

...

?

⊓

instead because elements of the stack are unknown until retrieved.

The purpose of the ‘table’ symbol ‘⊓’ is to enable empty stack

testing—popping the table means the stack is empty. As there is no

other way to detect the empty stack, we should take care to put the

table back if we pop it.i

One (perhaps silly) way of viewing ⊓ is to imagine an empty stack contain-

ing ‘lava’ and the table being ‘lava proof’. Elements not put on the table

will be destroyed by lava.

i Otherwise we are reaching into lava.

preliminaries 130

Example 94 (Emptying the stack). A stack containing ⊓ is not empty.

⊓

pop ⊓ / push ε−−−−−−−−−−−−→

Not Empty Empty

Example 95. Popping a symbol from the stack.

γ0

?

...

⊓

pop γ0 / push ε−−−−−−−−−−−−→
?

...

⊓

Example 96. Pushing a single stack symbol.

⊓

pop ⊓ / push γ0⊓−−−−−−−−−−−−−→
γ0

⊓

Example 97. Pushing multiple stack symbols.

⊓

pop ⊓ / push γ0γ1γ2⊓−−−−−−−−−−−−−−−−−→

γ0

γ1

γ2

⊓

Note ⊓ is pushed first.

push down automata 131

In some sense, we really are ‘pushing’ γ0γ1γ2⊓ into the stack by letting the

symbols fall in from the back.

Example 98. Simultaneous pop and push.

γ0

⊓

pop γ0/push γ1 · · · γn−−−−−−−−−−−−−−−−−→

γ1

...

γn

⊓

Saying ‘pop ⊓’ does not mean “remove the table from the top of the

stack”. Rather, it means, “if the table is removed from the top of the

stack then push”. Consequently, it is of no meaning to ‘pop ε’ as the

stack at least has ⊓.

§5.2 Push Down Automata

§Using A Stack

Our configurations sequences now need to encode the stack as well as

the current state and input word. This new type of configuration is

called an instantaneous description.

Definition 86 (ID). An instantaneous description (ID) is an

encoding of the current configuration of a pda written

qwγ ∈ QΣ∗Γ∗

where

1. q ∈ Q (the current state),

2. w ∈ Σ∗ (the remainder of the word being processed), and

3. γ ∈ Γ∗ (the composition of the stack).

push down automata 132

By strengthening the transition function δ to accommodate

q q′
a, γ0/γ

read,pop/push
.

we will—unlike nondeterminism—extend our detection capabilities be-

yond the regular languages.

Nondeterminism for fsms is just a notational convenience allowing us to

draw exponentially less states.

Example 99. A pda for detecting {anbn : n ∈ N} 6∈ LREG that works

as follows:

1. put an A in the stack for every a, then

2. remove an A from the stack for every b, then

3. accept the word if (and only if) the stack is empty.

p q
b, A/ε

a,⊓/A⊓
a, A/AA

b,A/ε

ε,⊓/ε
Let us show (in Table 5.1) that aabb is ‘accepted by empty stack’.

(As a matter of convention we assume the stack does not start empty,

but rather contains ⊓.)

§Formalizing pdas

We need to extend the definition of a fsm to make the ID sequence

paabb⊓ ⊢ pabbA⊓ ⊢ pbbAA⊓ ⊢ qbA⊓ ⊢ q⊓ ⊢ q

push down automata 133

Input Pop Transition Push ID Sequence

aabb
⊓

a,⊓/A⊓−−−−−−→ A

⊓
paabb⊓ ⊢ pabbA⊓

�abb A

⊓

a,A/AA−−−−−−→
A

A

⊓

pabbA⊓ ⊢ pbbAA⊓

��bb
A

A

⊓

b,A/ε−−−−→ A

⊓
pbbAA⊓ ⊢ qbA⊓

���b A

⊓

b,A/ε−−−−→
⊓

qbA⊓ ⊢ q⊓

����
⊓

ε,⊓/ε−−−−→ q⊓ ⊢ q

Table 5.1: Example 99. Accepting sequence for aabb.

push down automata 134

meaningful (at least mathematically).

The new additions are simple to identify, we require:

1. a set of stack symbols, and

2. a transition function which, in addition to governing the state

transitions, also handles stack management.

Definition 87 (pda). A push down automata M is a sex-tuple

(Q,Σ,Γ, δ, s0)

Σ input alphabet,

Γ : ⊓ ∈ Γ stack symbols containing ⊓,

Q finite set of states,

s0 ∈ Q initial state,

δ ⊆ Q× (Σ ∪ {ε})× Γ×Q× Γ∗ state transition function, and

F ⊆ Q set of final states.

To see why this new definition of δ is reasonable, recall we would

like δ to satisfy

q q′
a, γ0/γ ⇐⇒ δ(q, a, γ0) = (q′, γ).

As δ is the mapping

δ : Q× (Σ ∪ {ε})× Γ→ Q× Γ∗

(q, a, γ0) 7→ (q′, γ) ,

we see this is indeed the case.

Now, using this new δ, let us make the appropriate ‘upgrades’ to

our goto function.

Definition 88 (goto). The goto function maps IDs to IDs.

⊢ : Q× Σ∗ × Γ∗ → Q× Σ∗ × Γ∗

push down automata 135

qw0wγ0γ 7→ q′wγ′γ : δ(qw0γ0) = q′γ′.

The routine demonstration of showing ‘eventually goes to’ means

qwγ ⊢∗ q′w′γ′ ⇐⇒ ∃N ∈ N : (qwγ, q′w′γ′) ∈ ⊢N

is left to the reader as an exercise.

§Acceptance by pda

Asides from acceptance by empty stack, we also have the (usual) notion

of acceptance by final state, as well as acceptance by both final and

empty stack.

For the following denotations, let M = (Σ,Γ, Q, q0, δ, F) ∈ pda,

q ∈ Q, qf ∈ F , and γ ∈ Γ∗.

Notation. Acceptance by empty stack.

L⊔(M) = {w : q0w⊓ ⊢∗ q}

(q is an ID encoding an arbitrary state and empty stack.)

Notation. Acceptance by final state.

LF(M) = {w : q0w⊓ ⊢∗ qfγ}

(qfγ is an ID encoding a final state and arbritrary stack.)

Notation. Acceptance by both final and empty stack.

L⊔+F(M) = {w : q0w⊓ ⊢∗ qf}

(qf is an ID encoding a final state and empty stack.)

Example 100. Let M = ({a, b} , {A,B} , {p, q} , p, δ, {q}) ∈ pda

deterministic pdas 136

where δ is given by

p q
b, A/ε

a,⊓/A⊓
a, A/AA

b,A/ε

ε,⊓/ε

L⊔(M) = {anbn : n ∈ N}
LF(M) =

{
aibj : i, j ∈ N ∧ i > j

}

L⊔+F(M) = L⊔(M) ∩ LF(M) = {anbn : n ∈ N}

§5.3 Deterministic pdas

Nondeterministic pdas are more powerful than deterministic ones and

thereby nondeterminsim for pdas is a nontrivial issue.

Let us first consider some examples.

Example 101. A deterministic pda is given by

q

q′

q′′

a, A/γ′

a, B/γ′′

because, although q has two outgoing transitions for a, ‘popping’ elim-

inates the ambiguity over which state to move to.

deterministic pdas 137

Example 102. A nondeterministic pda is given by

q

q′

q′′

a, A/γ′

a, A/γ′′

because, contrary to Example 101, ‘popping’ does not eliminate the

ambiguity—p goes to q′ and q′′ on a/A.

Additionally, the dual move conditions enable determinisitc ε-transitions.

Example 103. A pda with deterministic ε-move.

q

q′

q′′

ε, A/γ′

a, B/γ′′

.

Here, the ε move triggers only when A is popped. As no other outgoing

transition relies on A, no ambiguity is introduced. (This would be

nondeterministic if A = B. See Exercise ??.)

An additional consideration for nondeterministic pdas is stack manage-

ment. Since determinism is independent of what is being pushed, each

time a nondeterministic move is encountered copies of the stack must be

spawned. This is not an insignificant theoretical consideration and a certain

obstacle for any practical implementation.

Definition 89. M ∈ pda is a deterministic push down au-

tomata when

1. (q, w0, γ0, q
′, −) , (q, w0, γ0, q

′′, −) ∈ δ =⇒ q′ = q′′, and

2. (q, ε, γ0, − , −) ∈ δ =⇒ (q, w0, γ0, − , −) 6∈ δ

(A ‘− ’ is used to indicate the value is irrelevant in addition to being

arbitrary.)ii

ii This is actually valid syntax in Haskel and SML. Same semantics as well!

deterministic pdas 138

Example 104. The pda of Example 102 violates Definition 89-1 be-

cause

(q, a, A, q′, γ′) ∈ δ ∧ (q, a, A, q′′, γ′′) ∈ δ ∧ q′ 6= q′′.

Example 105. The ε-move of Example 103 is deterministic because

there is no other transition rule involving A. That is,

¬∃w0 ∈ Σ : (q, w0, A,− ,−) ∈ δ.

Notation. Denote the class of deterministic context free lan-

guages by LD
CF:

LD
CF = {LF (M) : M ∈ dpda} .

Proposition 28. Deterministic pdas are weaker than nondeterminis-

tic ones.

LD
CF ⊂ LCF.

Proof.

§Closure Properties of dpda

Deterministic pdas have a more particular set of closure properties than

generic (nondeterministic) ones. For instance, (only) deterministic pda

languages are closed over intersection with regular languages.

Proposition 29. LD
CF is closed under intersection with regular lan-

guages

L1 ∈ LD
PDA ∧ L2 ∈ LREG =⇒ L1 ∩ L2 ∈ LD

PDA.

(The idea here is to create a hybrid machine “M1 ×M2”)

Proof. Suppose L1 ∈ LD
CF and L2 ∈ LREG. By definition

∃M1 = (Q1, Σ, Γ1, s1, δ1, F1) ∈ dpda : LF (M1) = L1, and

∃M2 = (Q2, Σ, s2, δ2, F2) ∈ fsm : L(M2) = L2.

context free pumping lemma 139

Consider M ∈ pda with

Q = Q1 ×Q2

Γ = Γ1

s = (s0, s1)

F = F1 × F2

and

δ =
{

(q, p) (q′, p′)
a, β/γ

:

q q′
a, β/γ ∈ δ1 ∧ p p′

a ∈ δ2

}

.

Lemma 12. M is deterministic.

Proof of this. �

Finally, let (f0, f1) ∈ F1 × F2 and γ ∈ Γ∗ be arbitrary. Deduce,

w ∈ L(M) ⇐⇒ (s0, s1)w⊓ ⊢∗ (f0, f1) εγ
⇐⇒ s0w⊓ ⊢∗ f0εγ

︸ ︷︷ ︸

in the pda

∧ s1w ⊢∗ f2
︸ ︷︷ ︸

in the fsm

⇐⇒ w ∈ L(M1) ∧ w ∈ L(M2)

⇐⇒ w ∈ L(M1) ∩ L(M2).

Proposition 30. LD
CF is closed under complementation.

L ∈ LD
CF =⇒ L ∈ LD

CF.

Proof.

§5.4 Context Free Pumping Lemma

In order to use counter-examples to prove (general) cfgs/pdas are not

closed under union and intersection, we need to develop a cf-pumping

context free pumping lemma 140

lemma. Unfortunately, a shortcut here is much more ellusive.

Recall (Example ??) where M ∈ pda had

P : S → TT

T → aTb | ε

producing L = {anbnambm : n,m ∈ N}. The production

S ⇒ TT ⇒ aTbT ⇒ abT ⇒ abaTb⇒ abaaTbb⇒ abaabb

can be drawn as the graph

S

T T

a T b a T b

ε a T b

ε

(because the graph’s ‘yield’ is

a b a ba bε ε

corresponding to abaabb ∈ L(M).)

These type of loop-less graphs (more properly: undirected acyclic

graphs) are called trees. When a tree is used in this fashion to rep-

resent the construction of an expression, it is called a syntax tree.

As no cycles are allowed in trees it is overkill to have directed edges.

(Any ‘upward’ pointing edge automatically introduces a cycle and thus

all edges must be ‘downward’ pointing.) We will none-the-less refer to

edges as incoming and outgoing despite drawing undirected edges.

context free pumping lemma 141

Definition 90 (Tree). An undirected acyclic graph is called a tree.

Example 106. A tree and its various parts.

1

2 7

4 9

11

3

5

12

6 8

10 13

14

Leaf

Children of 2

Parent of 3, 4, and 6

Root

H
e
ig

h
t

=
4

For our purposes, the crucial property of a tree is its yield.

Definition 91 (Yield). The yield of a tree is the sequence of its leaf

nodes ordered by depth-first-search.

In a depth first traversal the algorithm chooses the leftmost not-yet-visited

child and backtracks when this node is a leaf or when there are no more

nodes left to visit. The nodes of Example 106 are numbered in this manner.

§Maximum Yields

Our interest is the tree’s canopy, that is, how ‘wide’ a tree can get at

its leaves. This is more typically referred to as the maximum yield

and it is fairly straightforward to give an upper bound for its size.

Example 107. A binary tree (a tree where each node has two chil-

dren or is a leaf) of arbitrary height h has 2h many leaf nodes (i.e. a

context free pumping lemma 142

yield of size 2h).

20

21

22

2h

These syntax trees will typically not consist of nodes with an equal

number of children. To address this we use the largest number of

children among all the nodes (a value called the fanout) which is an

upper bound for the size of the yield.

Example 108. Unbalanced tree.

Definition 92 (Fanout).

Chapter 6

——X——

Turing Machines

“No, I’m not interested in developing a powerful brain. All I’m

after is just a mediocre brain, something like the President of

the American Telephone and Telegraph Company.”

– Alan Turing

Turing machines, primitive and µ recursive functions, recursive and

recursively enumerable languages, decidable and semidecideable prob-

lems, computability and uncomputability.

§6.1 Preliminaries

We have extended finite state machines with nondeterminism, ε-transitions,

and stacks. We also constructed entirely different machinery (cfgs)

which wrote languages instead of detecting them. Each attempt proved

futile as

L = {anbncn : n ∈ N}

was shown unreadable/unproducable in each case.

Our final extension: sequential memory, will be ‘maximal’. That

is, all attempts at extending from here will fail and thus we will have

achieved the strongest (theoretical) model for computation.

A Turing Machine (tm) is an automaton with read/write access

to an infinitely long array called the tape.

Definition 93 (tape). The tape is an infinite sequence of cells. The

contents of the tapes first position is always ‘⊲’ (start of line).

143

preliminaries 144

Notation. Let ¶ denote infinitely many empty cells

¶ = · · ·
.

Example 109. A tape with ‘HelloWorld’ written on it. Note the

infinitely long tailing sequence of ‘�’s (empty cells).

⊲ H e l l o W o r l d ¶
.

Alan Turing. (Placeholder).

As with pdas, we assume some interface with the tape exists and

extend δ to include

q q′
γr/γw,∆

read,write/move

where γr, γw ∈ Γ are tape symbols and ∆ ∈ {<,>} denotes one cell

move left (<) or one cell move right (>).

Example 110. A tm accepting L = {anbncn : n ∈ N}.
The strategy here is to repeatedly cross out an a then b then c.

If the process eventually produces a tape of all Xs (only possible for

words of the form anbncn) then we accept. Table 6.1 demonstrates this

method for aabbcc.

q0 q1 q2 q3h
a/X, > b/X, > c/X, >�/�, >

⊲/⊲, >

X/X, >

a/a,>

X/X, >

b/b, >

X/X, >

<< ⊲

.

The dashed edge is a compact way to invoke the frequently used

instruction ‘scan left for ⊲’. The exact correspondence is given below,

formalizing turing machines 145

where the dashed and solid edges may be freely interchanged,

q0 q3

⊲/⊲, >

<< ⊲

⊲/⊲, >

a/a,<

b/b, <

c/c, <

X/X, <

�/�, <

.

§6.2 Formalizing Turing Machines

Definition 94. A Turing Machine (tm) is a sextuple (Q,Σ,Γ, δ, s, h)

where

Q set of states,

Σ input alphabet,

Γ : {⊲,�} ⊆ Γ tape symbols,

δ : Q× Γ→ Q× Γ× {<,>} transition function,

s ∈ Q initial state,

h ∈ Q final/halting state.

Investigating Definition ?? we see it is quite similar to that of a

pda. The significant exception is the more robust δ which must also

return the direction to shift. For instance, in Example ?? we implicitly

applied

Remember the state diagram is merely a notation for δ.

δ(q0, a) = (q1, X,>)

when in state q0 we read ‘a’, wrote ‘X’ and shifted right. This is perhaps

formalizing turing machines 146

State Tape Read/Write Move

q0 ⊲ a a b b c c ¶ a/X >

q1 ⊲ X a b b c c ¶ a/a >

q1 ⊲ X a b b c c ¶ b/X >

q2 ⊲ X a X b c c ¶ b/b >

q3 ⊲ X a X b c c ¶ c/X << ⊲

q0 ⊲ X a X b X c ¶ ⊲/⊲ >

q0 ⊲ X a X b X c ¶ X/X >

q0 ⊲ X a X b X c ¶ a/X >

q1 ⊲ X X X b X c ¶ X/X >

...
...

...
...

q3 ⊲ X X X X X X ¶ �/� << ⊲

q0 ⊲ X X X X X X ¶ ⊲/⊲ >

...
...

...
...

q0 ⊲ X X X X X X ¶ �/� >

h Accepted.

Table 6.1: Example 110. Accepting sequence for aabbcc. Note: bold boxes denote
the location of the read head.

formalizing turing machines 147

more succinctly conveyed by

q q′
γr/γw,∆ ⇐⇒ δ(q, γr) = (q′, γw,∆) .

§Configurations

A configuration encodes the current state of the tape as well as the

current state.

Example 111. The word

q ⊲ abc

encodes a configuration of a tm in state q with ⊲abc on its tape and

read head at b.

Notation (Read Head). Using to denote the position of the read

head is notation writing tuples:

⊲γ0 · · · γi · · · γN = (⊲γ0 · · · γi, γi+1 · · ·γN) .

Example 112.

⊲aaab = (⊲aa, ab) .

Definition 95. A configuration of a tm is some element of

QΓ∗ × Γ∗

but more precisely, Q {⊲ {Γ \ {⊲}}∗ × {Γ \ {⊲}}∗ {Γ \ {⊲,�}}} .

For practical purposes we will say

q ⊲ γ ∈ Γ∗ ⇐⇒ ∃i ∈ N : q ⊲ γ0 · · ·γi · · · γN

and let Γ∗ =
{
γ : γ ∈ Γ∗} .

recursive and recursively enumerable languages 148

§Moving The Read Head

It is convenient to view < and > as the functions

>
(
⊲γ0 · · · γi · · ·γn

)
= ⊲γ0 · · · γiγi+1 · · · γn

<
(
⊲γ0 · · · γi · · ·γn

)
= ⊲γ0 · · · γi−1γi · · · γn

so δ
(
⊲γ

)
= ⊲γ′ expresses an unknown move on some arbitrary tape.

§GOTO

Our ⊢ function, which takes configurations to configurations, needs

upgrading.

Definition 96 (goto).

⊢: QΓ∗ → QΓ∗

q ⊲ γ0 · · · γi · · · γn 7→ q′∆(⊲γ0 · · ·X · · · γn)

when q q′
γi/X,∆

.

As a relation

⊢=
{(

q ⊲ γ0 · · · γi · · · γn, q′∆(⊲γ0 · · ·X · · · γn)
)
: q q′

γi/X,∆ }
.

For example,

q ⊲ ab ⊢2 q′′XX� ⇐⇒ q ⊲ ab ⊢ q′ ⊲Xb ⊢ q′′.

§6.3 Recursive and Recursively Enumerable Lan-

guages

When a Turing machine accepts or rejects some word in both cases

the machines terminates or halts. However, it is easy to build a

machine which never halts.

recursive and recursively enumerable languages 149

Notation. Let Mw denote an initial configuration for M =

(Q, Σ, Γ, δ, qs, H) ∈ tm, namely

Mw = qsw¶.

Notation. Let M ∈ tm be given. Denote a

1. halting configuration by

H = qf ⊲ γ′,

2. accepting halting configuration by H ⊤, and a

3. rejecting halting configuration by H ⊥.

Example 113. A ‘nonhalting’ M = ({q} ,∅, {�,⊲} , δ, q,∅) ∈ tm

which moves right an infinite number of times:

q �/�, > .

Although we can intuit L(M) = ∅, this is insufficient because our

goal is to replace intuition with algorithms. More precisely, we are en-

deavouring to build machines which decide language membership for

us and, until now, termination has not been an issue: Finite state ma-

chines always halt because the necessarily finite input can only trigger

finitely many moves; and, although context free grammars with non-

terminating symbols exist, we developed an algorithm for detecting

these loops in finitely many steps.

Soon we will prove an algorithm for detecting termination in Turing

machines is impossible (See Section ??) and therefore must accept that,

instead of the two cases we desire (i.e. accept and reject) we have three

cases when testing the language membership: The Turing machine

1. halts in an accepting state,

2. halts in a rejecting state, or

computing with turing machines 150

3. never halts.

Thus we (must) divide the languages Turing machines detect into

two classes.

Definition 97 (Language of M ∈ tm). The language generated by a

Turing machine M = (Q, Σ, Γ, δ, qs, H) is denoted L(M) and given

L(M) =
{
w ∈ Σ∗ : Mw ⊢∗ H

⊤} .

Definition 98. L = L(M) is a decidable language when

1. w ∈ L ⇐⇒ Mw ⊢∗ H ⊤, and

2. w 6∈ L ⇐⇒ Mw ⊢∗ H
⊥.

(M halts on all inputs.)

Definition 99. L = L(M) is a semidecidable language when

w ∈ L ⇐⇒ Mw ⊢∗ H
⊤.

(M halts exclusively on accepting input.)

Definition 100. The class of recursive languages is denoted Lrec

and given by

Lrec = {L(M) : L(M) is decidabale} .

Definition 101. The class of recursively enumerable languages

is denoted Lrec and given by

Len

rec
= {L(M) : L(M) is semi-decidable} .

Exercise 24. Give an example of a recursive language.

§6.4 Computing with Turing Machines

Throughout this text we have been seemingly preoccupied with build-

ing machines for language detection/production. Although this is a

computing with turing machines 151

fascinating mental exercise the utility of constructing machines which

move symbols about a tape is not immediately apparent. What we

would really like to do is compute something, that is, to have a Tur-

ing machine take input and write output.

Let us start with an example of a computation and build a tm for

addition over the binary digits

Z2 = {0, 1}

or more generally over the binary numbers

0 + 1 {0, 1}∗ = {0, 1, 10, 11, 100, . . .}2
= {0, 1, 2, 3, 4, . . .}10

Such a machine can be modelled on the simple ‘carrying’ technique

taught to grade school students.

Example 114. 572 + 38 = 610 calculated with carrying.

1

5
1

7 2

+ 3 8

6 1 0

where
1

7 = 8,
1

5 = 6, and so on.

The same can be done in base 2.

Example 115. 6 + 2 = 8 calculated (in base 2) with carrying.

1

1 1 0

+ 1 0

1 0 0 0

where 1 + 1 =
1

0 and
1

1 + 1 = 1.

To implement this it would be reasonable to show single tape ma-

chines are equivalent to

computing with turing machines 152

2d-tapes with a ‘better’ ∆ = {<,>, >, <} acting on

⊲ · · ·

· · ·

...
...

...
...

· · ·

(a simple matter of index arithmetic, see Appendix ??), or

multi-tape machines, with many read/write heads acting on

⊲ · · ·

⊲ · · ·
...

⊲ · · ·

(also a simple matter, see Appendix ??). However, neither are neces-

sary here. We merely extend Γ to include the tape symbols

{ 0
0 ,

1
1 ,

1
0 ,

0
1 ,

1
� ,

0
� ,

�
� } ,

which effectively simulates a multi-tape machine. (This is actually

more-or-less how multi-tape machines are shown to be equivalent to

single tape machines.)

Example 116. A tm for binary addition.

See Figure 6.1.

Let us verify this machine can compute 6 + 2 = 8:

c⊲ 0
0

1
1

1
�

�
� ⊢ c⊲ 0 1

1
1
�

�
� ⊢ c⊲ 00 1

�
�
� ⊢ c⊲ 000 �

� ⊢ c⊲ 0001.

recursive functions 153

q

c c

�
�
/1, >

1
1 /0, >

0
0 /1, >
�
�
/1, >

�
�
/�
�
, >

0
0 /0, >
1
0 /1, >
0
1 /1, >
1
� /1, >

1
1 /1, >
1
0 /0, >
0
1 /0, >
1
� /0, >

c = carry
c = no carry

Figure 6.1: A TM for binary addition.

Exercise 25. Design a Turing machine in this way which can subtract

numbers provided the difference is positive. That is, a tm for x − y :

x > y.

Exercise 26. Design a Turing machine assuming the unary represen-

tation which can subtract numbers provided the difference is positive.

That is, a tm for x− y : x > y.

§6.5 Recursive Functions

As computers were originally conceived to solve mathematical prob-

lemsi we would like to show tms can be used to solve numerical prob-

lems (thus justifying all our hard work). Thankfully, as much of math-

ematics can be constructed recursively we need only show how this

recursion can be applied to Turing Machines as well.

i At least there is no known historical record showing Turing was motivated by a desire
to enumerate all cat videos.

recursive functions 154

Definition 102. A recursive turing machine (rtm) halts on all

input:

M ∈ rtm ⇐⇒ ∀w ∈ Σ∗; Mw ⊢∗ H .

So we can invoke Turing machines in a more familiar fashion let us

adopt the following notation.

Notation. For M = (Q, Σ, Γ, δ, qs, H) ∈ rtm we say

M(w0, . . . , wk) = w′ def⇐⇒ qs ⊲

wk

...
w0

¶ ⊢∗ qf ⊲ w′¶

where qf ∈ H . (Here M simulates a multi-tape Turing machine with

k + 1 tapes for the k + 1 inputs.)

Example 117. When M is given as in Example 116 (binary addition)

we write M(110, 10) = 1000.

Definition 103. A function g : Nk+1 → N is recursive when

∃M ∈ rtm : g(n0, . . . , nk) = M(n0, . . . , nk)

∀ (n0, . . . , nk) ∈ Nk+1.

§Representing N

There are a myriad of ways to represent the natural numbers. See,

for instance, Table ??. However, independent of representation, the

natural numbers can be constructed recursively from ‘zero’ and a ‘+1’

(successor) function. For this purpose it is best to take the unary

representation because it is easy to build a tm taking

X · · ·X¶ 7→ X · · ·XX¶.

(The machine merely scans for the first blank and writes X there.)

Proposition 31 (successor).

∃succ ∈ rtm : ∀n ∈ NX; succ (n) = n+ 1.

recursive functions 155

Base 10 Binary Unary Peano

N10 N2 NX N∅

0 0 X ∅

1 1 XX ∅ ∪ {∅}
2 10 XXX ∅ ∪ {∅ ∪ {∅}}
...

...
...

...

n n X · · ·X n

{n+ 1}10 {n+ 1}2 X · · ·XX ∅ ∪ {n}

Table 6.2: Different encodings of the natural numbers.

Proof.

X/X,>

�/X,<
.

As well as a machine for producing ‘zero’ on a blank tape.

Proposition 32 (zero).

zero ∈ rtm : ∀n ∈ NX; zero (n) = X.

Proof.

�/X,<
.

Definition 104 (The Natural Numbers). The natural numbers are

induced by

1. 0 ∈ N, and

2. n ∈ N =⇒ succ (n) ∈ N.

recursive functions 156

For the sake of clarity we adopt the notation

1 = succ (0)

2 = succ (1) = succ (succ (0))

...

n = succ (n− 1) = succ (succ (· · · succ (0))) .

Proposition 33. The set of natural numbers is a recursive language.

N ∈ LREC.

Sketch. There is a Turing machine for constructing any n ∈ NX ≈ N.

Thus N is recursive by definition.

A ≈ B means there is some 1-1 mapping from A to B. Effectively this

means they can be taken to be mathematically equivalent.

§Primitive Recursive Functions

A Primitive Recursive Function is any function constructible (in

a particular way) from other (primitive) recursive functions.

For example, addition can be constructed using the recursive func-

tions succ and zero.

Example 118 (Addition).

add ∈ rtm : ∀n,m ∈ NX; add (n,m) = n+m.

add (n, 0) = n

add (n, succ (m)) = succ (add (n,m))

Which enables us to prove an (undeservedly) famous proposition.

Proposition 34 (One plus one equals two).

add (1, 1) = 2.

recursive functions 157

Proof. By definition,

add (1, 1) = add (succ (0) , succ (0))

= succ (add (succ (0) , 0))

= succ (succ (0))

= 2.

Something more difficult is (a+ b) + c = a+ (b+ c).

Proposition 35. ∀ℓ, n,m ∈ N,

add (ℓ, add (m,n)) = add (add (ℓ,m) , n)

(i.e. addition is an associative operation.)

Proof. Requires two inductions (one embedded in the other). See Ap-

pendix ??.

In general, functions constructed in this way are called primitive

recursive functions and—importantly—each one corresponds to a

recursive Turing machine.

Definition 105 (PRF). ∀k, ℓ ∈ N let n, n0, . . . , nℓ ∈ N and

g : Nk+1 → N,

h : Nℓ+1 → N,

h0 : N
ℓ+1 → N,

...

hk : Nℓ+1 → N.

The primitive recursive functions are constructed from

the basic prfs -

1. zero (n0, . . . , nk) = 0,

2. identj (n0, . . . , nk) = nj, and

recursive functions 158

3. succ (n) = n+ 1.

composition

g ⊙ 〈h0, . . . , hk〉 (n0, . . . , nℓ)

def.
= g (h0 (n0, . . . , nℓ) , . . . , hk (n0, . . . , nℓ))

and

primitive recursion

f(n1, . . . , nk, 0) = g (n1, . . . , nk) ,

f (n0, . . . , nk, succ (m)) = h (n1, . . . , nk, m, f (n1, . . . , nk, m)) .

Composition is typically used to ‘shed’ unwanted input. For exam-

ple, suppose we wanted to define

A(x, y, z) = B(x, z)

this is really

A(x, y, z) = B(ident1 (x, y, z) , ident3 (x, y, z))

or even more generally

A(x, y, z) = B ⊙ 〈ident1, ident3〉 .

Proving a function is a prf requires we build a recursive description

of that function using only the rules of Definition 105.

Proposition 36. Addition over N is primitive recursive.

Proof. We have

h = succ⊙ 〈ident3〉 ∈ prf

and so addition can be given in the following way

add (n, 0) = ident1 (n, 0) = n

recursive functions 159

add (n, succ (m)) = h (n,m, add (n,m))

= succ (ident3 (n,m, add (n,m)))

= succ (add (n,m)) ∈ prf

Proposition 37. Multiplication over N is primitive recursive.

(Note: n× (m+ 1) = n+ n×m.)

Proof. We have

h = add⊙ 〈ident1, ident3〉 ∈ prf

and so multiplication can be given in the following way

mul (n, 0) = zero (n, 0) = 0

mul (n, succ (m)) = h (n,m, mul (n,m))

= add (ident1 (n,m, mul (n,m)) , ident3 (n,m, mul (n,m)))

= add (n, mul (n,m)) ∈ prf

Proposition 38. Power (e.g. nm) over N is primitive recursive.

(Note: nm+1 = n× nm.)

Proof. We have

h = mul⊙ 〈ident1, ident3〉 ∈ prf

and so power can be given in the following way

pow (n, 0) = succ⊙ 〈zero〉 = succ (zero (n, 0)) = 1

pow (n, succ (m)) = h (n,m, pow (n,m))

= mul (ident1 (n,m, pow (n,m)) , ident3 (n,m, pow (n,m)))

= mul (n, pow (n,m)) ∈ prf

µ-recursion 160

Proposition 39. ‘Greater than’ (e.g. n > m) over N is primitive

recursive provided it is defined as

n > m ⇐⇒ > (n,M) =

1 if n−m > 0

0 otherwise

Proof.

§6.6 µ-recursion

It is easy to prove addition over the positive fractions is primitive re-

cursive because it only requires addition and multiplication:

a

c
+

b

d
=

ad+ cb

cd
.

However, insisting the answer is reduced is not only more difficult, but

currently impossible.

Suppose we wanted to calculate

1

2
+

1

4

by doing
6÷ 2

8÷ 2
=

3

4
.

How can we calculate 6÷ 3?

To Evoke another strategy from primary school we calculate 6 ÷ 3

by asking

“How many times does 3 go into 6?”

or equivalently

“What is the least ℓ such that 3 · (ℓ+ 1) > 6?”

The answer to both questions is, of course, two.

The above describes a method for calculating the so-called quo-

tient; a precise description is given in Algorithm ??.

µ-recursion 161

Input: m,n ∈ N

Output: quo (m,n)
ℓ← 0;
while ℓ · n < m do

ℓ← ℓ+ 1;
return ℓ;

Algorithm 7: The Quotient Algorithm

Questions of this sort (ones involving while loops) can be solved

using minimization. The problem (as with while loops) is that termi-

nation is not guaranteed.

Definition 106. The minimization of the function g : Nk+1 → N is

any function µg satisfying

µg : N
k → N

(n0, . . . , nk) 7→ min (ℓ : g (n0, . . . , nk, ℓ) = 1) .

Definition 107 (µrf). The µ-recursive functions are given by

1. prf ⊂ µrf,

2. f ∈ µrf =⇒ µf ∈ µrf, and

3. closure over composition and primitive recursion.

(Equivalent to appending µ-recursion to Definition 105.)

Now that we have µ-recursion we can continue developing mathe-

matics provided we are okay with algorithms which may never termi-

nate. This may seem severe, but consider anyone who has written

1/3 = 0.333 · · ·

has already made this concession.

Proposition 40. The quotient function, as described in Algorithm 7,

is µ-recursive.

quo (m,n) ∈ µrf.

undecidable problems 162

Proof. It is left to the reader to show

P (m,n, ℓ) = ℓ · (n+ 1) > m ∈ prf.

Taking this for granted we can write

quo (m,n) = µP (m,n) .

§6.7 Undecidable Problems

Notice Definition 106 does not actually define µg. This may seem

strange but remember we are modelling computation in general and

not particular algorithms (this is the concern of complexity theory).

Our only assumption is any minimization algorithm requires a possibly

unbounded number of steps.

This divides what Turing machines can solve into two categories

1. Decidable problems which require only for loops (bounded it-

eration), and

2. Semi-Decidable problems which require while loops (possibly

unbounded iteration).

We can now pose the central question of this topic:

Is there a problem which is not decideable?

or equivalently

Is there a language which a Turing machine cannot detect?

§The Halting Problem

The difficulties with Turing machines could be resolved by detecting

and removing infinite loops as we did with context free grammars. So,

let us try to build a Turing machine halts(M,w) which can detect if

another Turing machine M halts on input w.

undecidable problems 163

This is analogous to a complier preprocess which could detect if while loops

terminate. A pipe dream.

Definition 108. Let M = (Q, Σ, Γ, δ, qs, H) be given. Define halts

to be the function

halts(M,w) =

⊤ if Mw ⊢∗ H

⊥ otherwise
.

Proposition 41 (The Halting problem).

halts 6∈ rtm.

We are going to do something weird here and let w =M inM(w). Consider

any program is merely a long string and thus can be used as input for

another program.

Proof. TAC suppose halts ∈ tm and let

foo(M) semi-decide ¬ halts(M,M).

That is, foo(M) halts only when halts(M,M) = ⊥.

Considerii

halts (foo, foo) ⇐⇒ foo (foo) halts ⇐⇒ ¬ halts (foo, foo)

§Reduction to the Halting Problem

Problems like the halting problem which are beyond the decision ca-

pabilities of Turing machines are called undecidable.

Definition 109. A proposition P is undecidable when

¬∃M ∈ tm : M semi-decides P.
ii Do not let the compactness of this expression undermine its importance!

undecidable problems 164

Every decidable turing machine is trivially semi-decidable. Thus if there is

no semi-decidable machine for a problem there is also no decidable one.

We have already shown any tm which semidecides the halting prob-

lem derives contradiction. Thus the halting problem is undecidable.

Here are some more undecidable problems:

The following problems Turing machines are undecidable.

1. Does M halt on w? (halting problem)

Mw ⊢∗ H

2. Does M halt on the empty tape?

Mε ⊢∗ H

3. Is there input for which M halts?

∃w ∈ Σ∗; Mw ⊢∗ H

4. Does M halt on every input?

∀w ∈ Σ∗; Mw ⊢∗ H

5. Do M1 and M2 halt on the same inputs?

∀w ∈ Σ∗; M1 ⊢∗ H ⇐⇒ M2 ⊢∗ H

Instead of deriving contradictions for each problem individually it is

best to develop a general method of reducing one problem to another.

In other words, a formal way of saying “if this problem is decidable then

so is the halting problem”.

The converse is not useful. Nothing is accomplished by showing a problem

is decidable if the halting problem is decidable—because it isn’t!

undecidable problems 165

Notation. Let M1,M2 ∈ tm and denote by and M1M2 the Turing

machine given by

(M1M2) (w) = M1 (M2(w)) .

(This is the usual notion of function composition.)

Proposition 42.

M1,M2 ∈ rtm =⇒ M1M2 ∈ rtm.

Proof. Exercise. One would just need to formalize what we mean by

M1(M2(w)).

Definition 110 (Reducible). M1 is reducible to M2 when

∃τ ∈ rtm : ∀w ∈ Σ∗; M1(w) = (M2τ)w.

Notation.

M1 →֒τ M2

def.
⇐⇒ M1 reduces to M2

Theorem 21.

[M1 6∈ rtm ∧ M1 →֒τ M2] =⇒ M2 6∈ rtm.

Proof. TAC let

[M1 6∈ rtm] ∧ [M1 →֒τ M2] ∧ [M2 ∈ rtm] .

Because M1 →֒τ M2 we have

[∀w ∈ Σ∗; M1(w) = M2(τ(w))] ⇐⇒ M1 = M2τ

However M2, τ ∈ rtm means M2τ ∈ rtm and thus M1 ∈ rtm.

 .

undecidable problems 166

Proposition 43. There is no P ∈ rtm such that

P (M) ⇐⇒ Mε ⊢∗ H

Proof. Fix a w ∈ Σ∗ and TAC suppose there is such a P as given in

the problem statement. Let τ(v) = M(w) (a function which maps any

input to w then runs M); this function is trivially recursive.

P (τ) ⇐⇒ τε ⊢∗ H ⇐⇒ Mw ⊢∗ H .

Thus we have solved the halting problem. .

A Brief Reflection

Let us pause to appreciate what has been accomplished. The purpose

of our endeavour was to create a theoretical model for computation

powerful enough to do mathematics. Our early attempts for this failed

because no fsm, ndfsm, εfsm, cfg, or pda could read

{anbncn : n ∈ N}

and any reasonable computational model should be able to do this.

We finally arrived at Turing machines after recognizing the crucial

feature that all our former machines lacked is the ability to read and

write. However, a side effect of this feature—machines which never

halt—is hugely problematic as algorithms (by definition) must termi-

nate.

Accepting this side effect we investigated how much of mathemat-

ics could be modelled with Turing machines which are guaranteed to

terminate (prfs) and found these insufficient (e.g. we would like to

do simple things like divide). Extending our Turing machines to allow

‘while’ loops (µ-recursion) provided us sufficient computational power

to do division and from there we can expect to get the remaining nu-

merical operations.

Thus we have accomplished our goal of deriving the standard model

of computation. . .

However, there is a crucial deficiency of our computational model. If

we say a ‘computer’ is some realization of a Turing machine (something

with a processor and memory) then:

167

undecidable problems 168

There are logical statements in mathematics that cannot be

decided by computers.

Not current computers, not future computers, not any computer ever.

Bibliography

[1] Kenneth Rosen. Discrete Mathematics and Its Applications.

McGraw-Hill Science/Engineering/Math, 2011.

169

