
Visualization of Homotopy’s and their Properties

Paul Vrbik : 250389673 : AM 9505 : Spring 2009

May 25, 2009

1 Preliminaries

To begin we define the notation and objects used throughout. Let k[x1, . . . , xn] denote the poly-
nomials in variables x1, . . . , xn with coefficients in any arbitrary ring k. Interpret kn as the set
obtained by applying the cartesian product n times, namely kn = k× · · ·×

︸ ︷︷ ︸

n times

k. Lastly, bold symbols,

like F and x, are used to indicate that an object is a vector.

2 Introduction

One of the nicest (in this author’s opinion) mathematical algorithms is:

Definition 1 (n-dimensional Newton’s Method). Let F ∈ Q[x1, . . . , xn]n, x0 ∈ Cn, and ε > 0 be
given. If we iterate as

xi = xi−1 −
[
Jac(F)|xi−1

]
−1

F (xi−1)

then we will eventually produce xN , N 6= ∞, such that

|F (xN) − F (RootOf(F))| < ε.

This definition is far from being complete. For instance, we are assuming that the Jacobian
is non-singular. Looking more deeply we see that in order to guarantee the existence of xN with
the desired property we must also assume we have infinite precision, which is fine theoretically but
absurd from a computational standpoint.

However, despite these problems Newton’s method is still very powerful. For one, at least
superficially, it is a simple recursive formula which is easy to implement. If this wasn’t already a
good enough reason to use it, we also know that the method converges quadratically. This means
for every iteration we expect to double the number of correct digits of the root we are building (a
rare case of high pay off for little work).

But this isn’t to say that Newton’s method is without fault. The method is highly dependent
on a good selection of the initial point x0. That is, we can observe highly varying behavior of
Newton’s method depending on the input (a generally undesirable feature). It is hard to see this
in the one variable case as there is much less opportunity for the tangent to throw the algorithm
off (in contrast to the multivariate case). This can only happen at singularities which are easily
detectable for univariate polynomials. For the multivariate case we have the following example.

1

Example 1. Density plots show the values of a function of two variables at a regular array of
points. Shading indicats the “height” of the surface. Below is a density plot measuring the speed
of convergence for Newton’s method given the system F =

〈
x2 − 1

2
y2, 2x2 + xy − 3x − 1

〉
.

In this case lighter regions correspond to those initial values that yield fast convergence. The
solutions of F are (approximately) {(5.0,−6.7), (1.1, 1.6)}. Notice how easily one could pick an
initial point in the “bad” darker region. The black region at the origin are points that seeded runs
that exceeded fifty iterations (and as a result were cut off).

The natural question to ask now is : can we devise a method to generate better x0’s (initial
guesses)? The answer to this question is of course “yes”, accomplished by doing something called
homotopy continuation. The development of this method claims a large portion of this paper. It
is the author’s hope that by highlighting the theory with detailed illustrations and examples that
this method will become clear. The later part of this paper will be an exposé of the deficiencies of
this method (after all no method is perfect), also exemplified through illustrations.

3 Homotopy Continuation

Homotopy continuation, like Newton’s method, is an iterative approach for finding the isolated
complex roots of a polynomial (or system of polynomials). But unlike Newton’s method this process
is much less sensitive to its input (because as we see this input will be controlled). First, to be
somewhat rigorous, let p(z), q(z) ∈ Q[x1, . . . , xn]n, with z ∈ Cn (so p, q : Cn → Cn). The
underlying idea is to connect the solutions of an exactly solvable system q(z) = 0 with the solutions
of the desired (target) system p(z) = 0 via a homotopy map:

H(z, t) = tq(z) + (1 − t)p(z),

where t ∈ [0, 1]. By homotopy we mean that it is a continuous transformation from one function to
another. We use the term 11homotopy continuation” in reference to how we use this homotopy to
“track” (or follow) the roots of H(z, 1) = q(z) to the desired roots of H(z, 0) = p(z).

To make our goal explicit, we are searching for zN such that H(zN , 0) = q(z) = 0 starting
with the initial data H(z0, 1) = p(z) = 0. For now assume that p(z) is exactly solvable (for those
impatient readers p(z) can easily be something like p(z) = zn − 1, but this is not ideal). Consider:

Definition 2. The first order taylor expansion of H = 〈H1, . . . , Hn〉 is

H(z + ∆z, t + ∆t) = H(z, t) + Hz(z, t)∆z + H t(z, t)∆t (1)

where Hz = ∂H/∂z is the n × n Jacobian and H t = ∂H/∂t is the size n × 1 gradient, (note that
∆t is negative as we are going from 1 → 0).

From this we see that we can get a point (z1, t1) = (z0 + ∆z, 1 + ∆t) such that H(z1, t1) ≈ 0.
Remember, H(z0, 1) = 0 by our design and an appropriate value of ∆t is chosen by us (more on
this later). Solving for ∆z in (1) we get

∆z = −H−1

z
(z1, t1)H t(z1, t1)∆t,

which we recognize to be Euler’s method. We call this the “prediction” step.
The next step, called “correction”, is necessary because Euler’s method is not that great. That

is, it will likely be the case that H(z1, t1) is not as close to zero as we would like. We can fix this
by using Newton’s method to refine it. Fortunately we have a good starting point as (z1, t1) is
reasonably close to the curve. This means Newton’s method is likely to converge quickly (in fact
we will classify anything that takes longer than three iteration as a failure). We may see this as
setting ∆t = 0 in (1) to get:

z1 = −H−1

z
(z0 + ∆z, t1)H(z0, t1).

Example 2. Below we illustrate how given (z1, t1) such that H(z1, t1) ≈ 0 one can predict a new
approximate solution at t1 + ∆t.

t=1 t=0

∆t

Predict (Euler's method)

Correct (Newton's
method)

z(t)

(set H(z+∆z,t+∆t)=0)

(set ∆t=0)

We now have (z1, t1) such that H(z1, t1) ≈ 0. Repeating what we did above we can get another
point (z2, t2) with the same property. As 1 = t0 > t1 > t2 > · · · > 0 what this process eventually
leaves us with is (zN−1, tn−1) with tN ≈ 0. As a final step we use Newton’s method, seeded by
(zN−1, 0) to calculate zN such that H(zN , 0) = q(zN) ≈ 0. This is one of the desired solutions to
our original system.

To conclude this section we note an issue surrounding the implementation of this idea. Initially
you may choose ∆t to be some small value like 1/100. Generally as ∆t become larger the new
points generated by Euler’s method will become much worse approximations. This may mislead
one to choose a ∆t as small as possible but recall that we are trying to reach t = 0. The smaller our
step length the longer it will take for our algorithm to run. To strike a balance between these two
ideas a good strategy is to cut ∆t in half if Newton’s method fails to converge in three iterations
and double ∆t after m successful corrections. A choice of m in the range of two to five works well.

4 Path Tracking In Action

We have so far only discussed what it means to follow a single root from p(z) to a root of q(z). In
fact what we would like to do is follow enough paths to recover all isolated roots of q(z). We do this
by to chosing p(z) so that it has at least as many roots as q(z) (to prove that each root of q(z) is
associated with at least one path is non-trivial so I refer to Sommese’s and Wampler’s book). The
simplest start system we can construct is p(z) = zd −1 where d is the product of the largest degree
for each variable over all polynomials in the target system. That is, for a target system 〈f1, . . . , fn〉
with fi ∈ Q[x1, . . . , xn]

d =
n∏

i=1

max(degxi
(f1), . . . , degxi

(fn)).

Example 3. For F =
〈
x2 − 1

2
y2, 2x2 + xy − 3x − 1

〉
, d = 2 × 2 and we would choose the start

system p(z) = z4 − 1.

Now that we have multiple paths we may now begin to see things go wrong. It is possible that
a tracker will actually jump paths and converge to the wrong root.

Example 4. An example where tracking fails. Below are the paths for solving the system −7x5 +
22x4 − 55x3 − 94x2 + 87x − 56. The brown and green paths converge to the real root -1.6 whereas
the blue and yellow paths converge to the complex root 0.4-0.5i. The red root is escaping to infinity
and is (quickly) flagged as a failed path. We do not find all roots.

Start roots on

unit circle

(ellipse due to

scale).

To fix this we introduce the random co-ordinates θ, φ ∈ [−π, π] and modify our original homotopy
to use q(z) = teiθ(zd − eiφ). To explain why this helps consider walking from the middle of a circle
to its boundary. If many people are walking in this circle it is likely that some paths will intersect
with one another. The variable θ can be thought of as the cardinal direction one must start walking
in, this will avoid some intersections but not all. The addition of φ allows us to place our roots
along separate great circles of the sphere S2 given by the co-ordinates (θ, φ). The paths now travel
through the interior of the sphere and can only collide within a set of measure 0 (i.e. with probability
one).

Now we can observe the paths are (more or less) well behaved.

Example 5. In the diagrams below the paths start from the unit circle. The diagram on the left
can be interpreted as looking at the diagram on the right (which has the added dimension t) head
on down the t axis.

Using q(z) = teiθ(zd − eiφ) as we defined above is what we call a total degree homotopy. It
is not optimal because it usually the case that a system equations has far fewer roots than it’s

theoretical maximum (given by d). This means a lot of paths will either converge to the same root
or just diverge. In both cases we are wasting computation. A smarter heuristic is to estimate the
number of roots of the target system using mixed volume computations. The mixed volume is a
much more strict bound then the total degree. For information about this and to find some smarter
start systems I refer to the Thesis of T-Y Li.

5 Basins of Attraction

Another unfortunate deficiency of Newton’s method is that Newton’s method will converge to
different roots depending on what initial value it is seeded. Thereby at the correction step, Newton’s
method can throw the path off course by converging to the wrong root. Unfortunately it is hard
(nearly impossible) to predict if this is going to happen. We begin by defining:

Definition 3 (Basin of Attraction). For some polynomial f(x) ∈ Q[x] suppose that we use Newton’s
method to find the roots ζ1, . . . , ζn ∈ C of f . We say

Basin of attraction of ζi = {initial points yielding the root}.

We can visualize basins by coloring points in the complex plane by which basis they lie in.

Example 6. The basin of attraction for −7x5 + 22x4 − 55x3 − 94x2 + 87x− 56 and x7 − 1. In both
cases we see that the boundaries are fractal in nature, and therefore hard to study.

However our interest is in seeing how these basins effect our algorithm at each time step ti. For
this we have what we call a “tube of attraction”. Which we illustrate in the following example.

Example 7. We take the brown path from Example 5 and plot a small disc basin for each time
step. Notice how the path stabilized when the basin is dominated by one root. This is interesting
as it is in conflict with the literature which says that it is the “end game” or final stage of the
algorithm which is the most unstable. However, it is clear from the picture below that our path
must deal with being in basins which are highly irregular at the beginning.

To visualize the basin of attraction for the entire complex plane we can use a stereographic
projection to plot on a Riemann sphere. This gives us some global insight of how the basins act.

Example 8. From left to right is the basin of attraction for x3 −1 (from the bottom of the sphere)
and x5 + 1 (from the side).

Fractals are very interesting as they are quite beautiful to look at, but very problematic to study
mathematically. Some future work in this area include:

1. characterizing the boundaries of these basins.

2. finding the largest basins.

3. boundary avoidance algorithms.

6 Diverging Paths

A phenomena which we do not observe in the univariate case is diverging paths. These paths are
interesting because we can never be completely sure as to when a path is diverging. It is always
possible that a path heading towards infinity can turn around and converge to a root. However, as
we can not afford to hold on to explosively large values, or run an algorithm for an infinite amount
of time, such paths must be cut off. This is not ideal, but it is the nature of the field to have to
make such compromises.

Consider the target system:

p(z) =

[
x3y + xy2 + 1
x4 + xy2 + 1

]

Now ∂H
∂z

(the Jacobian) can become singular and our predictor will point to infinity. To visualize
this we again use stereographic projection to plot the paths on a Riemann sphere so we may see
paths converge to infinity (the north pole).

The target system p(z) may have up to 16 roots so we must track 16 paths. All possible pairs
(xi, yj) with 0 ≤ i, j ≤ 3 constitute our 16 start points. Each sphere represents a path that a single
component of the solution (x or y) takes. We will observe that half the paths diverge.

x0 x2x1

x3

y1

y0

y3y2

Start
Points

7 Conclusion

Homotopy continuation is an effective way to determine the solutions to systems of polynomials
equations. It often works in many situations where there are no other numerical methods that will
work. It has made its mark, through software packages like Bertini, as being one of the fastest and
most reliable methods, and is a big contender to the triangular decomposition and Gröbner basis
methods.

Yet there is still much to be gained by studying the nature of this method through visualization.
Illustrations can often lead to insights that are obfuscated by mathematical expressions. In addition
to this visualization is sometimes the most effective way to explain a concept.

