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Introduction

Let f1, . . . , fn ∈ k[x1, . . . , xn] such that V(f1, . . . , fn) ⊂ k[x1, . . . , xn] is zero-dimensional. The
intersection multiplicity I(p; f1, . . . , fn) at the point p ∈ V(f1, . . . , fn) specifies the weights of the
weighted sum in Bézout’s Theorem.

The number I(p; f1, . . . , fn) is not natively computable by Maple while it is computable by Singu-
lar and Magma—but only when all coordinates of p are in k.

We are interested in removing this algorithmic limitation. We combine Fulton’s Algorithm and the
theory of regular chains, leading to a complete algorithm for n = 2. Moreover, we propose algorithmic
criteria for reducing the case of n > 2 variables to the bivariate one. Experimental results are reported.

The case of two plane curves

Intuitively, the intersection multiplicity (IM) of two plane curves at a given point counts the number
of times that these curves intersect at that point. More formally, given an arbitrary field k and two
bivariate polynomials f, g ∈ k[x, y], consider the affine algebraic curves C := V(f ) and D := V(g) in

A
2 = k

2
, where k is the algebraic closure of k. Let p be a point in the intersection.

The intersection multiplicity of p in V(f, g) is defined to be

I(p; f, g) = dimk(OA2,p/ 〈f, g〉)

where OA2,p and dimk(OA2,p/ 〈f, g〉) are the local ring at p and the dimension of the vector space
OA2,p/ 〈f, g〉.
Remarkably, and as pointed out by Fulton in his Intersection Theory, the intersection multiplicities of
the plane curves C and D satisfy a series of properties which uniquely define I(p; f, g) at each point
p ∈ V(f, g). Moreover, the proof of this remarkable fact is constructive, which leads to an algorithm.

⊲ Fulton’s Properties ⊳

The intersection multiplicities of two plane curves satisfy and are uniquely determined by the following.

1. I(p; f, g) is a non-negative integer for any C,
D, and p such that C and D have no com-
mon component at p. We set I(p; f, g) =∞
if C and D have a common component at p.

2. I(p; f, g) = 0 if and only if p /∈ C ∩D.

3. I(p; f, g) is invariant under affine change of
coordinates on A

2.

4. I(p; f, g) = I(p; g, f )

5.

I(p; f, g) is greater or equal to the product of
the multiplicity of p in f and g, with equal-
ity occurring if and only if C and D have no
tangent lines in common at p.

6.
I(p; f, gh) = I(p; f, g) + I(p; f, h) for all
h ∈ k[x, y].

7.
I(p; f, g) = I(p; f, g + hf ) for all h ∈
k[x, y].

Fulton’s Algorithm IM2(p; f1, f2)

Input: p = (α, β) ∈ A
2(k) and f, g ∈ k[y ≻ x] such that gcd(f, g) ∈ k

Output: I(p; f, g) ∈ N satisfying (2-1)–(2-7)
if f (p) 6= 0 or g(p) 6= 0 then

return 0;

r, s = deg (f (x, β)) ,deg (g(x, β)) ; assume s ≥ r.
if r = 0 then

write f = (y − β) · h and g(x, β) = (x− α)m (a0 + a1(x− α) + · · ·);
return m + IM2(p;h, g);
IM2(p; (y − β) · h ∩ g) = IM2(p; (y − β), g) + IM2(p;h, g)
IM2(p; (y − β) ∩ g) = IM2(p; (y − β) ∩ g(x, β)) = IM2(p; (y − β) ∩ (x− α)m) = m

if r > 0 then

h← monic (g)− (x− α)s−rmonic (f );
return IM2(p; f, h);

Our Goal: Extending Fulton’s Algorithm

Limitations of Fulton’s Algorithm:

• does not generalize to n > 2, that is, to n polynomials f1, . . . , fn ∈ k[x1, . . . , xn] since
k[x1, . . . , xn−1] is no longer a PID.

• is limited to computing the IM at a single point with rational coordinates, that is, with coordinates in
the base field k. (Approaches based on standard or Gröbner bases suffer from the same limitation)

⊲ Our contributions ⊳

•We adapt Fulton’s Algorithm such that it can work at any point of V(f1, f2), rational or not.

• For n ≥ 2, we propose an algorithmic criterion to reduce the n-variate case to that of n−1 variables.

⊲ Our tools ⊳

Regular Chains

To deal with non-rational points, we extend Fulton’s Algorithm to compute IM2(T ; f1, f2), where
T ⊂ k[x1, x2] is a regular chain such that we have V(T ) ⊆ V(f1, f2). This makes sense thanks
to the following theorem.

Theorem 1.Recall that V(f1, f2) is zero-dimensional. Let T ⊂ k[x1, x2] be a regular chain such that
we have V(T ) ⊂ V(f1, f2) and the ideal 〈T 〉 is maximal. Then IM2(p; f1, f2) is the same at any point
p ∈ V(T ).

Expansions About a Set of Points

We observe that this algorithm works the Taylor series of f1, f2 at a rational point p. To extend this idea
when working with V(T ), instead of a point p, we introduce two new variables y1 and y2 representing
x1− α and x2− β respectively, for an arbitrary point (α, β) ∈ V(T ). These variables are simply used
as place holders in the following definition, where f ∈ {f1, f2}.
Let F ∈ k[x1, x2][y1, y2] and T ⊂ k[x1, x2] be a regular chain such that we have V(T ) ⊂ V(f1, f2).
We say that F is an expansion of f about V(T ) if at every point (α, β) ∈ V(T ) we have
F (α, β)(x1−α, x2−β) = f (x1, x2). The fundamental example is F =

∑

j

(
∑

i fi,j y
i
1

)

yj2 where fi,j =
1
i!j!

∂i+jf
∂xi∂yj .

⊲ Our algorithm for the bivariate case ⊳

For an arbitrary zero-dimensional regular chain T , we apply the D5 Principle to Fulton’s Algorithm in
order to reduce to the irreducible case, as covered by the previous theorem.
Algorithm IM2(T ;F

1, F 2)
Input: F 1 and F 2 as described in the previous slide.
Output: Finitely many pairs (Ti, mi) where Ti ⊂ k[x1, x2] are regular
chains and mi ∈ Z

+ such that ∀p ∈ V (T i) I(p; f1, f2) = mi.
for

(

F 1
1 , T

)

∈ Regularize
(

F 1
1 , T

)

do

if F 1
1 6∈ 〈T 〉 then

output(T, 0);

else

for
(

T, F 2
1

)

∈ Regularize
(

F 2
1 , T

)

do

if F 2
1 6∈ 〈T 〉 then

output(T, 0);

else

for (T, aF 1) ∈ LT
(

F 1
<y2

, T
)

do

for (T, aF 2) ∈ LT
(

F 2
<y2

, T
)

do

/* Wlog deg(F 1
<y2

) ≤ deg(F 2
<y2

) */

if aF 1 ∈ 〈T 〉 then
for (T, d) ∈ TDeg

(

F 2
<y2

, T
)

do

for (T, i) ∈ IM2(T,
F 1−F 1

<y2
y2

, F 2) do

output(T, (d + i));

else

H ← F 2 − aF 2 · Inverse
(

a1F , T
)

· F 1;

output
(

IM2(T, F
1, H)

)

;

Notations

In the adjacent algorithm, the polynomials
F 1
1 and F 2

1 consist of the terms of F 1 and F 2

of degree 0 in both y1 and y2. The command
Regularize

(

F 1
1 , T

)

separates the points of
V(T ) cancelling F 1

1 from the others. The
command LT

(

F 1
<y2

, T
)

partitions V(T ) ac-
cording to the degree of F 1

<y2
, thus comput-

ing the leading term of F 1
<y2

at each point of
V(T ). The command TDeg

(

F 2
<y2

, T
)

works
similarly but deals with the trailing degree in-
stead.

Reducing the n-dimensional case to the n − 1 case

The intersection multiplicity of p in V(f1, . . . , fn) is given by

I(p; f1, . . . , fn) := dimk (OAn,p/ 〈f1, . . . , fn〉) .

where OAn,p and dimk(OAn,p/ 〈f1, . . . , fn〉) are respectively the local ring at the point p and the di-
mension of the vector space OAn,p/ 〈f1, . . . , fn〉. The next theorem reduces the n-dimensional case to
n− 1, under assumptions which state that fn does not contribute to I(p; f1, . . . , fn).

Theorem 2.Assume that hn = V(fn) is non-singular at p. Let vn be its tangent hyperplane at p.
Assume that hn meets each component (through p) of the curve C = V(f1, . . . , fn−1) transversely
(that is, the tangent cone TCp(C) intersects vn only at the point p). Let h ∈ k[x1, . . . , xn] be the
degree 1 polynomial defining vn. Then, we have I(p; f1, . . . , fn) = I(p; f1, . . . , fn−1, h).

The reduction in practice

How to use this theorem in practice? Assume that the coefficient of xn in h is non-zero, thus h = xn−h
′,

where h′ ∈ k[x1, . . . , xn−1]. Hence, we can rewrite the ideal 〈f1, . . . , fn−1, h〉 as 〈g1, . . . , gn−1, h〉 where
gi is obtained from fi by substituting xn with h′. If instead of a point p, we have a zero-dimensional
regular chain T ⊂ k[x1, . . . , xn], we use the techniques developed before.

When this reduction does not apply a priori, one can look for a more favorable system of generators.
For instance, consider the system Ojika 2:

x2 + y + z − 1 = x + y2 + z − 1 = x + y + z2 − 1 = 0. (1)

The above theorem does not apply. However, if one uses the first equation, say x2 + y + z − 1 = 0,
to eliminate z from the other two, we obtain two bivariate polynomials f, g ∈ k[x, y]. At any point of
p ∈ V(h, f, g) the tangent cone of the curve V(f, g) is independent of z; in some sense it is “vertical”.
On the other hand, at any point of p ∈ V(h, f, g) the tangent space of V(h) is not vertical. Thus,
the previous theorem applies without computing any tangent cones.

Experimental Results

Label Name terms degree

1 hard one 30 37

2 L6 circles 4 24

3 spiral29 24 63 52

4 tryme 38 59

5 challenge 12 49 30

6 challenge 12 1 64 40

7 compact surf 52 18

8 degree 6 surf 467 42

9 mignotte xy 81 64

10 SA 4 4 eps 63 33

11 spider 292 36

System Dim Time(△ize) #rc’s Time(rc im)

〈1, 3〉 888 9.7 20 19.2

〈1, 4〉 1456 226.0 8 9.023

〈3, 5〉 1413 22.5 27 28.6

〈4, 5〉 1781 218.4 9 13.9

〈5, 1〉 1759 113.0 10 15.8

〈6, 9〉 2560 299.3 10 22.9

〈6, 11〉 1440 59.8 17 27.5

〈7, 8〉 1152 32.8 12 16.2

〈7, 9〉 756 18.5 16 11.2

〈7, 11〉 648 9.2 25 11.1

〈8, 10〉 1362 232.5 7 9.3

〈8, 11〉 1256 49.6 17 45.7

〈9, 10〉 2080 504.9 12 34.812

〈10, 11〉 1180 40.9 17 21.3

Name Dim Points △ize Cones COV rc im Total Success

Nbody5 99 49 1.60 0.00 0.06 1.90 2.00 51/99

mth191 27 18 0.56 5400.00 0.04 0.01 5400.00 23/27

ojika2 8 5 0.20 8.20 0.13 0.47 8.80 8/8

E-Arnold1 45 30 0.89 1100.00 0.01 1800.00 2900.00 45/45

ShiftedCubes 27 25 0.66 0.00 0.00 0.52 0.52 27/27


