

Ontario Research Centre for Computer Algebra

— On Fulton's Algorithm for Computing Intersection Multiplicities —

Steffen Marcus, Marc Moreno Maza, and Paul Vrbik

Introduction

Let $f_1, \ldots, f_n \in \mathbf{k}[x_1, \ldots, x_n]$ such that $\mathbf{V}(f_1, \ldots, f_n) \subset \overline{\mathbf{k}}[x_1, \ldots, x_n]$ is zero-dimensional. The intersection multiplicity $I(p; f_1, \ldots, f_n)$ at the point $p \in \mathbf{V}(f_1, \ldots, f_n)$ specifies the *weights* of the weighted sum in Bézout's Theorem.

The number $I(p; f_1, \ldots, f_n)$ is not natively computable by MAPLE while it is computable by SINGU-LAR and MAGMA—but only when all coordinates of p are in k.

We are interested in removing this algorithmic limitation. We combine Fulton's Algorithm and the theory of regular chains, leading to a complete algorithm for n = 2. Moreover, we propose algorithmic criteria for reducing the case of n > 2 variables to the bivariate one. Experimental results are reported.

The case of two plane curves

Intuitively, the intersection multiplicity (IM) of two plane curves at a given point counts the number

Expansions About a Set of Points

We observe that this algorithm works the Taylor series of f_1, f_2 at a rational point p. To extend this idea when working with $\mathbf{V}(T)$, instead of a point p, we introduce two new variables y_1 and y_2 representing $x_1 - \alpha$ and $x_2 - \beta$ respectively, for an arbitrary point $(\alpha, \beta) \in \mathbf{V}(T)$. These variables are simply used as place holders in the following definition, where $f \in \{f_1, f_2\}$. Let $F \in \mathbf{k}[x_1, x_2][y_1, y_2]$ and $T \subset \mathbf{k}[x_1, x_2]$ be a regular chain such that we have $\mathbf{V}(T) \subset \mathbf{V}(f_1, f_2)$. We say that F is an expansion of f about $\mathbf{V}(T)$ if at every point $(\alpha, \beta) \in \mathbf{V}(T)$ we have

 $F(\alpha,\beta)(x_1-\alpha,x_2-\beta) = f(x_1,x_2).$ The fundamental example is $F = \sum_j \left(\sum_i f_{i,j} y_1^i\right) y_2^j$ where $f_{i,j} = \frac{1}{i!j!} \frac{\partial^{i+j}f}{\partial x^i \partial y^j}.$

\triangleright Our algorithm for the bivariate case \lhd

For an arbitrary zero-dimensional regular chain T, we apply the D5 Principle to Fulton's Algorithm in order to reduce to the irreducible case, as covered by the previous theorem. **Algorithm**_____ $IM_2(T; F^1, F^2)$

Input: F^1 and F^2 as described in the previous slide.

of times that these curves intersection multiplicity (nor) of two plane curves at a given point counts the number of times that these curves intersect at that point. More formally, given an arbitrary field \mathbf{k} and two bivariate polynomials $f, g \in \mathbf{k}[x, y]$, consider the affine algebraic curves $\mathcal{C} := \mathbf{V}(f)$ and $\mathcal{D} := \mathbf{V}(g)$ in $\mathbb{A}^2 = \overline{\mathbf{k}}^2$, where $\overline{\mathbf{k}}$ is the algebraic closure of \mathbf{k} . Let p be a point in the intersection. The intersection multiplicity of p in $\mathbf{V}(f, g)$ is defined to be

 $I(p; f, g) = \dim_{\overline{k}}(\mathcal{O}_{\mathbb{A}^2, p} / \langle f, g \rangle)$

where $\mathcal{O}_{\mathbb{A}^2,p}$ and $\dim_{\overline{k}}(\mathcal{O}_{\mathbb{A}^2,p}/\langle f,g\rangle)$ are the local ring at p and the dimension of the vector space $\mathcal{O}_{\mathbb{A}^2,p}/\langle f,g\rangle$.

Remarkably, and as pointed out by Fulton in his *Intersection Theory*, the intersection multiplicities of the plane curves C and D satisfy a series of properties which uniquely define I(p; f, g) at each point $p \in \mathbf{V}(f, g)$. Moreover, the proof of this remarkable fact is constructive, which leads to an algorithm.

\triangleright Fulton's Properties \lhd

The intersection multiplicities of two plane curves satisfy and are uniquely determined by the following.

1. I(p; f, g) is a non-negative integer for any C, D, and p such that C and D have no common component at p. We set $I(p; f, g) = \infty$ if C and D have a common component at p.

2. I(p; f, g) = 0 if and only if $p \notin C \cap D$.

3. I(p; f, g) is invariant under affine change of coordinates on \mathbb{A}^2 .

4. I(p; f, g) = I(p; g, f)

Fulton's Algorithm_

 $_$ IM $_2(p; f_1, f_2)$

Output: Finitely many pairs (T_i, m_i) where $T_i \subset k[x_1, x_2]$ are regular chains and $m_i \in \mathbb{Z}^+$ such that $\forall p \in V(T^i) \ I(p; f_1, f_2) = m_i$. for $(F_1^1, T) \in \text{Regularize} (F_1^1, T)$ do

if $F_1^1 \notin \langle T \rangle$ then \Box output(T, 0);

else for $(T, F_1^2) \in \text{Regularize}(F_1^2, T)$ do

Notations

In the adjacent algorithm, the polynomials F_1^1 and F_1^2 consist of the terms of F^1 and F^2 of degree 0 in both y_1 and y_2 . The command Regularize (F_1^1, T) separates the points of $\mathbf{V}(T)$ cancelling F_1^1 from the others. The command LT $(F_{<y_2}^1, T)$ partitions $\mathbf{V}(T)$ ac-*/ cording to the degree of $F_{<y_2}^1$, thus computing the leading term of $F_{<y_2}^1$ at each point of $\mathbf{V}(T)$. The command TDeg $(F_{<y_2}^2, T)$ works similarly but deals with the trailing degree instead.

Reducing the *n*-dimensional case to the n-1 case

The intersection multiplicity of p in $\mathbf{V}(f_1, \ldots, f_n)$ is given by

 $I(p; f_1, \ldots, f_n) := \dim_{\overline{k}} (\mathcal{O}_{\mathbb{A}^n, p} / \langle f_1, \ldots, f_n \rangle).$

where $\mathcal{O}_{\mathbb{A}^n,p}$ and $\dim_{\overline{k}}(\mathcal{O}_{\mathbb{A}^n,p}/\langle f_1,\ldots,f_n\rangle)$ are respectively the local ring at the point p and the di-

Input: $p = (\alpha, \beta) \in \mathbb{A}^2(\mathbf{k})$ and $f, g \in \mathbf{k}[y \succ x]$ such that $\mathbf{gcd}(f, g) \in \mathbf{k}$ **Output**: $I(p; f, g) \in \mathbb{N}$ satisfying (2-1)–(2-7) if $f(p) \neq 0$ or $g(p) \neq 0$ then

return 0;

 $r, s = \deg(f(x, \beta)), \deg(g(x, \beta));$ assume $s \ge r$. if r = 0 then write $f = (u - \beta), h$ and $g(x, \beta) = (x - \alpha)^m (a - \beta)$

write $f = (y - \beta) \cdot h$ and $g(x, \beta) = (x - \alpha)^m (a_0 + a_1(x - \alpha) + \cdots);$ return $m + \mathsf{IM}_2(p; h, g);$

 $\mathsf{IM}_2(p;(y-\beta)\cdot h\cap g) = \mathsf{IM}_2(p;(y-\beta),g) + \mathsf{IM}_2(p;h,g)$

 $\mathsf{IM}_2(p;(y-\beta)\cap g) = \mathsf{IM}_2(p;(y-\beta)\cap g(x,\beta)) = \mathsf{IM}_2(p;(y-\beta)\cap (x-\alpha)^m) = m$

if r > 0 then

 $h \leftarrow \operatorname{monic}(g) - (x - \alpha)^{s-r} \operatorname{monic}(f);$ return $\operatorname{IM}_2(p; f, h);$

Our Goal: Extending Fulton's Algorithm

Limitations of Fulton's Algorithm:

• does not generalize to n > 2, that is, to n polynomials $f_1, \ldots, f_n \in \mathbf{k}[x_1, \ldots, x_n]$ since $\mathbf{k}[x_1, \ldots, x_{n-1}]$ is no longer a PID.

• is limited to computing the IM at a single point with rational coordinates, that is, with coordinates in the base field **k**. (Approaches based on standard or Gröbner bases suffer from the same limitation)

\triangleright Our contributions \lhd

• We adapt Fulton's Algorithm such that it can work at any point of $\mathbf{V}(f_1, f_2)$, rational or not.

mension of the vector space $\mathcal{O}_{\mathbb{A}^n,p}/\langle f_1,\ldots,f_n\rangle$. The next theorem reduces the *n*-dimensional case to n-1, under assumptions which state that f_n does not contribute to $I(p; f_1,\ldots,f_n)$.

Theorem 2. Assume that $h_n = \mathbf{V}(f_n)$ is non-singular at p. Let v_n be its tangent hyperplane at p. Assume that h_n meets each component (through p) of the curve $\mathcal{C} = \mathbf{V}(f_1, \ldots, f_{n-1})$ transversely (that is, the tangent cone $TC_p(\mathcal{C})$ intersects v_n only at the point p). Let $h \in \mathbf{k}[x_1, \ldots, x_n]$ be the degree 1 polynomial defining v_n . Then, we have $I(p; f_1, \ldots, f_n) = I(p; f_1, \ldots, f_{n-1}, h)$.

The reduction in practice_

Label

11

How to use this theorem in practice? Assume that the coefficient of x_n in h is non-zero, thus $h = x_n - h'$, where $h' \in \mathbf{k}[x_1, \ldots, x_{n-1}]$. Hence, we can rewrite the ideal $\langle f_1, \ldots, f_{n-1}, h \rangle$ as $\langle g_1, \ldots, g_{n-1}, h \rangle$ where g_i is obtained from f_i by substituting x_n with h'. If instead of a point p, we have a zero-dimensional regular chain $T \subset \mathbf{k}[x_1, \ldots, x_n]$, we use the techniques developed before.

When this reduction does not apply a priori, one can look for a more favorable system of generators. For instance, consider the system *Ojika 2*:

$$x^{2} + y + z - 1 = x + y^{2} + z - 1 = x + y + z^{2} - 1 = 0.$$
 (1)

The above theorem does not apply. However, if one uses the first equation, say $x^2 + y + z - 1 = 0$, to eliminate z from the other two, we obtain two bivariate polynomials $f, g \in \mathbf{k}[x, y]$. At any point of $p \in \mathbf{V}(h, f, g)$ the tangent cone of the curve $\mathbf{V}(f, g)$ is independent of z; in some sense it is "vertical". On the other hand, at any point of $p \in \mathbf{V}(h, f, g)$ the tangent space of $\mathbf{V}(h)$ is not vertical. Thus, the previous theorem applies without computing any tangent cones.

Experimental Results

• For $n \ge 2$, we propose an algorithmic criterion to reduce the *n*-variate case to that of n-1 variables. \triangleright **Our tools** \lhd **Regular Chains** To deal with non-rational points, we extend Fulton's Algorithm to compute $IM_2(T; f_1, f_2)$, where $T \subset \mathbf{k}[x_1, x_2]$ is a regular chain such that we have $\mathbf{V}(T) \subseteq \mathbf{V}(f_1, f_2)$. This makes sense thanks to the following theorem. **Theorem 1.** Recall that $\mathbf{V}(f_1, f_2)$ is zero-dimensional. Let $T \subset \mathbf{k}[x_1, x_2]$ be a regular chain such that we have $\mathbf{V}(T) \subset \mathbf{V}(f_1, f_2)$ and the ideal $\langle T \rangle$ is maximal. Then $IM_2(p; f_1, f_2)$ is the same at any point $p \in \mathbf{V}(T)$.

			System	Dim	$Time(\triangle ize)$	#rc's	Time(rc_im)					
Nessee	1		$\langle 1, 3 \rangle$	888	9.7	20	19.2					
Name	terms	degree	$(1 \ 1)$	1/56	226.0	o	0.022					
hard_one	30	37	$\langle 1, 4 \rangle$	1450	220.0	0	9.025					
1.6 circles	4	24	$\langle 3, 5 \rangle$	1413	22.5	27	28.6					
<u> </u>		50	$\langle 4, 5 \rangle$	1781	218.4	9	13.9	Namo	Dim	Dointe	∧ izo	
spiral29_24	63	52	/5 1)	1750	112 0	10	15.8	Name		FOILS		``
tryme	38	59	$\langle 0, 1 \rangle$	1759	113.0	10	15.0	Nbody5	99	49	1.60	
shallon na 10	40	20	$\langle 6, 9 \rangle$	2560	299.3	10	22.9		07	10	0 5 6	-
challenge_12	49	30	(6 11)	1440	50.8	17	27 5	mtn191	21	18	0.50	5,
challenge_12_1	64	40	$\langle 0, 11 \rangle$	1450	59.0	11	21.5	ojika2	8	5	0.20	
compact curf	FO	10	$\langle 7,8\rangle$	1152	32.8	12	16.2			20	0.00	1
compact_sun	52	10	$\langle 7 \rangle$	756	18 5	16	11.2	E-Arnola1	45	30	0.89	L
degree_6_surf	467	42		100	10.0	10	11.2	ShiftedCubes	27	25	0.66	
mignotto	Q1	64	$\langle 7, 11 \rangle$	648	9.2	25	11.1		<u>II</u>		L	
Inighotte_xy	01	04	$\langle 8, 10 \rangle$	1362	232.5	7	9.3					
SA_4_4_eps	63	33	(-), -)	1050	40.0	1 7						
spider	202	36	$\langle 8, 11 \rangle$	1256	49.6	17	45.7					
spidei	292	50	$\langle 9, 10 \rangle$	2080	504.9	12	34.812					
			$\langle 10, 11 \rangle$	1180	40.9	17	21.3					

Name	Dim	Points	riangleize	Cones	COV	rc_im	Total	Success
Nbody5	99	49	1.60	0.00	0.06	1.90	2.00	51/99
mth191	27	18	0.56	5400.00	0.04	0.01	5400.00	23/27
ojika2	8	5	0.20	8.20	0.13	0.47	8.80	8/8
E-Arnold1	45	30	0.89	1100.00	0.01	1800.00	2900.00	45/45
ShiftedCubes	27	25	0.66	0.00	0.00	0.52	0.52	27/27