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Abstract

The goal of this thesis is to develop an environment for doing delayed polynomial arithmetic.

We present the various known ‘heap’ methods for multiplication and division and adapt them

to create a high performance implementation in C.

We also present a storage-minimizing variant of this package that allows us to address

some fundamental problems with Bareiss’ fraction-free method for calculating determinants

and the subresultant algorithm. We show that the memory usage for both of these algo-

rithms can be linearly related to the size of the output instead of the intermediate values.
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“I really hate this damn machine,

I wish that they would sell it,

It never does quite what I want,

Just only what I tell it.”

— The Programmer’s Lament
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Chapter 1

Preliminaries

1.1 Introduction

Computer algebra emerged in the 1970’s evolving out of the more established field of artificial

intelligence. Today, computer algebra is not only regarded as entirely its own research area

but also as a profitable enterprise. The commercialization of products like Maple and

Mathematica have more than proved that there is a substantial interest in doing exact

computations in academic and industrial settings. Unlike numerical programs like MatLab,

computer-algebra systems can represent symbolic mathematical objects like polynomials,

exact rational numbers, and algebraic numbers. This essential advantage allows symbolic

systems to solve a range of problems that are inaccessible to those restricted solely to

numerics.

How we represent symbolic objects, notably polynomials, is a crucial and often difficult

question. There are many representations, each with unique advantages and weaknesses.

We discuss one such representation in Section 4.1 that has become more practical due to

the larger word size of modern processors. How we use this structure to do polynomial

arithmetic is the central theme of this thesis. As computer-algebra systems spend most of

their time doing arithmetic of this type, this is a worthwhile endeavor.

However, a quick look at the literature will show that there is an extensive amount of

research on this topic. One may appropriately question the relevance of a thesis that could

only be a survey of known results. Nevertheless, we intend to carry out the polynomial

arithmetic in a novel way, by using lazy computation. Lazy computation refers to an

environment where calculations are made only when absolutely necessary. We will see that

1



CHAPTER 1. PRELIMINARIES 2

there are many benefits to computing in this manner. Chapter 2 discusses the design of

such a library, and demonstrates the complexity of the resulting algorithms.

We also develop a storage-minimizing variant of this library that addresses a funda-

mental problems with Bareiss’ fraction-free method for calculating determinants and the

subresultant algorithm (the normal algorithms use too much space). Their implementations

are given in Chapter 3.

1.2 Definitions

We now introduce the basic definitions and concepts required for developing algorithms

involving polynomials.

Definition 1.2.1. A monomial in variables x1, x2, . . . , xn is a product in the form

xα1

1 · x
α2

2 · . . . · x
αn
n ,

where the exponents α1, . . . , αn are non-negatvie integers. The total degree of a monomial

is the sum α1 + . . .+ αn.

It is convenient to let x and α be the n-tuples (x1, . . . , xn) and (α1, . . . , αn) respectively.

We then set

xα = xα1

1 · x
α2

2 · . . . · x
αn
n

and let |α| = α1 + . . . + αn (the total degree). When referring to multiple monomials we

will also use additional greek letters, i.e. xβ and xγ .

Definition 1.2.2. A polynomial f in variables x1, . . . , xn with coefficients in the ring k is

a finite linear combination (with coefficients in k) of monomials in the form

f =
∑

α

aαx
α

with aα ∈ k. The set of all polynomials in the variables x1, . . . , xn with coefficients in the

ring k is denoted k[x1, . . . , xn].

Our examples typically use polynomials, usually refered to as f, g, and h, with only a

few variables. When this is the case it will be more convenient to dispense with subscripts

and use the variables x, y, and z. For instance we let f = x2y3z + xyz2 − 7xy + 4 instead

of g = x2
1x

3
2x3 + x1x2x

2
3 − 7x1x2 + 4.
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Definition 1.2.3. Let f =
∑

α aαx
α be a polynomial in k[x1, . . . , xn].

1. aα is called the coefficient of the monomial xα.

2. The product of a coefficient and a monomial, aαx
α, is called a term of f . When we

refer to a term of f it is assumed that aα 6= 0. The total degree of a term is the degree

of its associated monomial.

3. The degree of f , denoted deg(f) is the maximum total degree among all f ’s terms.

Example 1.2.4. For f = 5x2y3z + xyz2 − 7xy + 4.

1. −7xy is a term of f , its coefficient is −7.

2. The degree of f is six (deg(f)=6).

When f is unknown, we will refer to its non-zero terms as f1, f2, f3 and so on, so that

f = f1 + . . . + fn. However, in order to do this, we must impose some sort of ordering

on f ’s terms. Incidentally this is also an essential ingredient of most algorithms involving

polynomials.

Definition 1.2.5. A monomial ordering on the monomials in k[x1, . . . , xn] is a relation

>ord satisfying:

1. >ord is a total order on the monomials in k[x1, . . . , xn].

2. xα >ord x
β ⇒ xαxγ >ord x

βxγ for monomials xα,xβ and xγ .

3. >ord is a well ordering. That is, any non-empty subset consisting of monomials from

k[x1, . . . xn] has a >ord-least element.

We will extend this ordering to the terms of k[x1, . . . , xn] by saying aαx
α >ord aβx

β ⇔

xα >ord x
β.

Definition 1.2.6 (Lexicographic Order). We say xα >lex x
β when the first (from the left)

non-zero entry of the vector difference α− β is positive.

Example 1.2.7. For monomials in the ring Z[x, y, z] we have:

1. xy2z >lex y
3z4 since (1, 2, 1) − (0, 3, 4) = (1,−1,−4)

2. x >lex z
10 since (0, 0, 10) − (1, 0, 0) = (−1, 0, 10)
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It should be noted that the lexicographic ordering is not invariant with respect to a

permutation of the variables. For instance, if we instead use Z[z, y, x] in the previous

example, we now have xy2z 6lex y
3z4 and z10 >lex x. This is because there is an assumed

ordering of the components of the exponent vector α. In the ring Z[x, y, z] it is implied that

x >lex y >lex z, likewise for Z[z, y, x], z >lex y >lex x. In general, for any monomial ordering

>ord on the polynomial ring k[x1, . . . , xn], it is always implicit that x1 >ord . . . >ord xn.

Definition 1.2.8 (Graded Lexicographic Ordering). We say that xα >grlex x
β when

|α| > |β|, or |α| = |β| and xα >lex x
β.

That is, we will first compare monomials using their total degree, and “break ties” using

the lex order.

Example 1.2.9. For monomials in the ring Z[x, y, z]

1. xy2z3 >grlex x
3y2 since |(1, 2, 3)| = 6 > |(3, 2, 0)| = 5

2. xy2z4 >grlex xyz
5 since |(1, 2, 4)| = |(1, 1, 5)| and xy2z4 >lex xyz

5.

To illustrate the difference between lex and grlex ordering, we write terms of a poly-

nomial, first in descending lexicographic ordering, then in descending graded lexicographic

ordering, both with x >lex y >lex z:

f(x, y, z) = 4x4y + x2yz + x2z2 + 3y4z + y3z + y3 + y2z + yz3 + yz2 + 7z6 (lex)

f(x, y, z) = 7z6 + 4x4y + 3y4z + x2yz + x2z2 + y3z + yz3 + y3 + y2z + yz2 (grlex)

From now on, whenever possible, we will write polynomial terms in descending graded

lexicographic order. For clarity, but also to emphasize that our proofs and algorithms work

with any monomial ordering, we will use ≻ instead of >ord.

1.3 Polynomial Arithmetic

Before discussing arithmetic on polynomials, we must first define how arithmetic works on

monomials. We have already seen sums of terms when defining polynomials, but we now

deal with the following special case:
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Definition 1.3.1. For two terms axα and bxβ in k[x1, . . . , xn], if α = β then

axα + bxβ = (a+k b)x
α

where +k is the ring addition of k.

A new operation is the term product, given by

Definition 1.3.2. For two terms axα and bxβ in k[x1, . . . , xn] the product axα · bxβ be

given by

axα · bxβ = (a×k b)x
α+β

where ×k is the ring multiplication from k.

Example 1.3.3. In Z[x, y], 2x2y3 + 3x2y3 = 5x2y3 and 4x4y3z6 · 2x2yz3 = 8x6y4z9.

We can now easily define polynomial addition and multiplication using the notation from

the previous section.

Definition 1.3.4. For the polynomials f = f1 + . . . + fn and g = g1 + . . . + gm in some

k[x1, . . . , xk] the polynomial sum, f + g, is given by

f + g = f1 + . . .+ fn + g1 + . . . + gm.

Definition 1.3.5. For any polynomial ring k[x1, . . . , xk] let the product of the term fi and

a polynomial g = g1 + · · ·+ gm be

fi · g = fi · g1 + . . . + fi · gm.

Then we can define the product of the polynomial f = f1 + . . .+ fn and g to be

f · g = f1 · g + . . .+ fn · g.

However, from a computational perspective, these definitions are not complete. We

would never write the polynomial sum of f = x+ y and g = x+ y as f + g = x+ y+ x+ y.

The true challenge comes from “collecting like terms”.
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Definition 1.3.6. Two terms axα and bxβ in k[x] are called like terms if α = β.

Example 1.3.7. The like terms of f = 2x+ 3x+ 4x+ 7y2 + 3y2 + z are 2x, 3x and 4x as

well as 7y2 and 3y2.

When we “collect the like terms” of f , we produce a unique polynomial f̃ such that

f = f̃ , where f̃ has no like terms. This is also called the simplified form of f .

Example 1.3.8. Collecting the like terms of f from Example 1.3.7 yields f = 9x+10y2 +z.

Definition 1.3.9. For some f = f1 + f2 + . . . + fn ∈ k[x1, . . . , xk] in simplified form and

some corresponding monomial ordering ≻, the leading term of f , denoted LT (f), is the

term fi such that fi ≻ fj for all j 6= i. In other words LT (f) is the ≻-greatest element

among f ’s terms.

If we let aαx
α = LT (f) then the leading monomial of f denoted LM (f) is xα.

Example 1.3.10. Let f = 8x3y2−x3z3 + 2x4 + z in Z[x, y, z]. With lex ordering, LT (f) =

2x4, and with grlex ordering LT (f) = −x3z3.

Definition 1.3.11. A polynomial f = f1 + . . .+ fn is in standard form if:

1. fi and fj are not like terms when i 6= j

2. fi 6= 0 for 1 6 i 6 n

3. f1, . . . , fn is given in ≻-descending order for some monomial order ≻.

We will denote the number of terms of a polynomial f in standard form by #f .

From now on we will assume that the polynomials we are working with are in the

standard form. Our algorithms will be required to return polynomials in standard form

as well. This is possible using the machinery developed in the previous section. Using

monomial orders, we can systematically iterate over terms of a polynomial in a consistent

manner. For example, consider Algorithm 1 for adding two polynomials.

In this case Algorithm 1 is a straightforward adaptation of Definition 1.3.4. To do the

same with multiplication would not be as prudent. Recall Definition 1.3.5 for polynomial

multiplication. To calculate f · g in this manner could require O(mn2) monomial compar-

isons.
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Algorithm 1 Addition (A merge)

Input: f = f1 + . . . + fn, g = g1 + . . .+ gm, where f and g are in standard form.
Output: h = f + g = h1 + . . . hl such that h is in standard form.

1: (i, j, k) ← (1, 1, 1);
2: while i ≤ n or j ≤ m do

3: if i ≤ n and j ≤ m and fi and gj are like terms then

4: if fi + gj 6= 0 then

5: hk ← fi + gj ;
6: (i, j, k) ← (i+ 1, j + 1, k + 1);
7: else

8: (i, j)← (i+ 1, j + 1)
9: end if

10: else if i ≤ n and fi ≻ gj then

11: hk ← fi;
12: (i, k)← (i+ 1, k + 1)
13: else if j < m then

14: hk ← gj
15: (j, k)← (j + 1, k + 1)
16: end if

17: end while

18: return h

Example 1.3.12. Let f = xn + xn−1 + . . . + x and g = ym + ym−1 + . . . + y which are in

the standard form for monomial order >lex. The product of f and g is given as

f · g = (xn + . . .+ x)(ym + . . .+ y)

= (xnym + . . .+ xny) + . . . + (xym + . . . + xy)

= xn · g + xn−1g + . . . + x · g.

When merging, the sum xn · g + xn−1 · g requires m monomial comparisons and yields a

polynomial that is 2m terms long (there will be no like terms in this sum, in fact there are

no like terms in the entire product). This means that (xn · g + xn−1 · g) + xn−2 · g requires

2m comparisons yielding a 3m long term. Continuing in this fashion means that we will do

m
n−1∑

i=1

i = m

(
n(n− 1)

2

)

or O(mn2) monomial comparisons.

In 1974 Johnson showed that we can do much better than O(mn2) monomial comparisons

by merging the terms of fg1, . . . , fgm simultaneously using a heap. To elaborate, let f =
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f1 + . . . + fn and g = g1 + . . . + gm be in the standard form with respect to ≻. Reducing

f × g to the standard form is equivalent to sorting the list

L = [f1g1, . . . , fng1, f1g2, . . . , fng2, . . . , f1gm, . . . , fngm]

with respect to ≻ and then collecting like terms.

The sorting problem can be reduced to merging the set of sorted sequences

S = {(f1g1, . . . , fng1), (f1g2, . . . , fng2), . . . , (f1gm, . . . , fngm)}

where each individual sequence, S[j] = (f1gj , . . . , fngj), satisfies f1gj ≻ . . . ≻ fngj . We

can refine our search for the largest term of L by exploiting this ordering and creating a

list H = [f1g1, . . . , f1gm] consisting of the first elements of each sequence. Since f1gj is the

largest term of S[j], we are guaranteed that the ≻-largest term of H is the ≻-largest term

of L. Merging is just the repeated application of this idea.

Namely, to merge the elements of S we do the following:

1. Create a list H = [f1g1, . . . , f1gm] and an empty sequence F .

2. Find the ≻-largest element of H, say figj (if there are multiple ≻-largest terms, pick

the one with least i).

3. Add figj to the last term of F if they are like terms (this constitutes collecting like

terms). Otherwise make figj the next term of F .

4. If i < n then (in the list H) replace figj with fi+1gj (the ≻-next largest term of S[j]).

Otherwise, replace figj with 0.

5. Repeat steps 2 to 4 while there are non-zero terms of H.

To find the largest element of H in a naïve way requires m− 1 monomial comparisons;

in general we will have to do this O(nm) times, yielding O(nm2) monomial comparisons.

Johnson’s contribution was to make H a heap, instead of a list. A heap is a binary tree-based

storage structure that yields constant-time access to its largest element, and has efficient

extraction and insertion.

Definition 1.3.13. A heap is a partially ordered set ({H1,H2, . . . ,Hn},≥) such that for

all 1 < i ≤ n/2

Hi ≥ H2i and Hi ≥ H2i+1.
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A heap is typically implemented using an array, where Hi is stored at array position i,

because arrays are compact and yield constant time access to terms. To remove H1 (the

≥-largest element) requires O(log n) comparisons. Removing the largest element of the heap

is called extraction. Inserting an element requires O(log n) comparisons [14].

Example 1.3.14. The array (or vector) H = [100, 25, 36, 19, 3, 2, 7, 17, 1] is a heap that

corresponds to the following binary tree.

100

25 36

19 3 2 7

17 1

1

2 3

4 5 6 7

8 9

Now, finding the largest term of H requires zero monomial comparisons, but inserting

to and extracting from H is no longer free. In our example, the heap has m elements, and

we insert/extract to/from it O(nm) times at a cost of O(logm) monomial comparisons per

insertion/extraction. This totals O(nm logm) monomial comparisons, which is better then

the naïve O(nm2).

For this reason we will be using Johnson’s algorithm for multiplication (and division).

However, in Chapter 2 it will be of great importance that our algorithms use as few terms

of f and g as possible. Since step one of Johnson’s method uses every term of g, we will

provide an optimization that avoids this.

Claim 1.3.15. (Using the notation given in the explanation of merging.) If f1gj is in the

heap H, then no term of the sequences S[j + 1], . . . , S[m] can be the largest term of H.

Proof. By the definition of monomial ordering we have: if gj ≻ gj+1 ≻ . . . ≻ gm, then

f1gj ≻ f1gj+1 ≻ . . . ≻ f1gm. As f1gj+1, . . . , f1gm are (respectively) the ≻-largest terms of

S[j + 1], . . . , S[m], it follows that f1gj is ≻-larger than any term of S[j + 1], . . . , S[m] (see

Figure 1.1). The claim is an immediate consequence of this.

Using this claim we can ensure that no unnecessary terms are put in the heap. That

is, we will not begin inserting terms of the sequence S[j + 1] until the term f1gj has been
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f1 f2 f3 f4 f5

g1

g2

g3

g4

g5

Figure 1.1: Points represent the terms of the product f · g. The shaded region covers the
terms that must be ≻-less than f3g2 or f1g3. The j-th row consists of the terms of S[j]. As
we see, the term f1g3 shades a region which includes all points of S[4], S[5], . . . as posited
in Claim 1.3.15.

extracted from the heap (Claim 1.3.15 ensures that these terms could not be the ≻-largest).

In other words, we do not introduce new terms of g unless we have to. The same can be

said of the terms of f , since fi+1gj will only be inserted if figj is extracted.

By using this population strategy for the heap, we have addressed the requirement of

using as few terms of f and g as possible (for this method). The replacement scheme is

illustrated by Figure 1.2 and is used in the restatement of the merge process given below.

To merge elements of S with heaps, we do the following:

1. Create a heap H = [f1g1] and an empty sequence F .

2. Extract the ≻-largest element of H, say figj .

3. Add figj to the last term of F if they are like terms (this constitutes collecting like

terms). Otherwise, make figj the next term of F .

4. If i < n then insert fi+1gj (the ≻-next largest term of S[j]) into the heap.

5. If i = 1 and j < m then add f1gj+1 to the heap (that is, begin merging S[j + 1] with

S[1], . . . , S[j]).

6. Repeat steps 2 to 5 until the heap is empty.
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f1

g1

f2

g2

f3

g3

f4+ + + + . . .

+

+

+
...

Figure 1.2: Points represent terms of the product f · g, arrows indicate which terms are
inserted when a term has been extracted from the heap. For example, after f1g1 (the top
left point) is removed, the terms f2g1 and f1g2 are added.

Finally, Algorithm 2 gives the implementation of polynomial multiplication using these

ideas (the algorithm is our minor variant to Johnson’s algorithm).

Theorem 1.3.16. To find the standard form of f × g, the heap multiplication algorithm

will use O(#f · #g + #g) space and do O(#f ·#g · log #g) many monomial comparisons

(the same as the unmodified Johnson’s algorithms).

Proof. The size of the heap is not effected by line (8), as this merely replaces the term

coming out of the heap in line (6). The only place the heap can grow is in line (11), which

is bounded by the number of terms of g. Therefore O(#g) space is required for the heap.

Since the product f × g has O(#f ·#g) many terms, the total amount of storage required

will be O(#f ·#g + #g).

Extracting/inserting from/to a heap with #g elements does O(log #g) many monomial

comparisons. Since every term of the product passes through the heap, we do O(#f#g)

extractions/insertions totaling O(#f#g log #g) monomial comparisons[15].

Remark 1.3.17. It is possible to improve multiplication so that the number of monomial

comparisons done are O(#f#g log min(#f,#g)) and amount of storage used is O(#f#g+

min(#f,#g)) . If we were allowed to switch the order of the input (i.e. calculate g×f instead

of f × g) this could potentially make the heap much smaller. Recalling the replacement

scheme from Figure 1.2 we can see the heap would be quite large if g had many terms. This

would not be the case if it was f with many terms. Unfortunately, as we will see later, we

will not be able to predict how many terms f or g have. So, we must quote the worst case
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Algorithm 2 Multiplication

Input: f = f1 + . . . + fn, g = g1 + . . .+ gm, where f and g are in standard form.
Output: h = f × g = h1 + . . . hl such that h is in standard form.

1: Initialize a heap H and insert (f1g1, 1, 1) {Order the heap by ≻ on the monomials in
the first position.}

2: k ← 1;
3: while H is not empty do

4: t← 0;
5: repeat

6: Extract (s, i, j) ← Hmax from the heap and assign t← t+ s;
7: if i < n then

8: Insert (fi+1gj , i+ 1, j) into H;
9: end if

10: if i = 1 and j < m then

11: Insert (f1gj+1, 1, j + 1) into H;
12: end if

13: until (H is empty) or (t and Hmax are not like terms)
14: if t 6= 0 then

15: hk ← t;
16: k ← k + 1;
17: end if

18: end while

19: return h

scenario in our complexities (in fact this will be emphasized later by using max(#f,#g) in

our complexities).

This heap approach for doing polynomial arithmetic can be extended to polynomial

division as well. We assume the reader is familiar with polynomial division in one variable

and extend this idea to polynomials of many variables.

Definition 1.3.18. The monomial xα ∈ k[x1, . . . , xn] is divisible by xβ, denoted xβ|xα,

when the vector difference α− β contains no negative elements.

Example 1.3.19. In Q[x, y, z] we have that

1. 4x4y2 is divisible by x2y because (4, 2, 0) − (2, 1, 0) = (2, 1, 0) has no negative entries.

2. zxy is not divisible by z2 because (1, 1, 1) − (2, 0, 0) = (−1, 0, 0) has a negative entry.
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Definition 1.3.20. In k[x1, . . . , xn], when the monomial xα is divisible by xβ, the division

of the term axα by bxβ with b 6= 0, denoted axα ÷ bxβ, is given as

axα ÷ bxβ =

(
a

b

)

xα−β.

In this case it is necessary that b is an invertible element of k. To eliminate this requirement

we will always assume that k is a field (denoted F) when doing division.

Example 1.3.21. In Q[x, y, z] we have 9x2y3z4 ÷ 3xy2z2 = 3xyz2.

The goal in the one variable case, when dividing f by g in F[x], is to determine a quotient

q and remainder r such that:

f = q · g + r,

where r = 0 or deg(r) < deg(g). This is typically accomplished by the “long division”

approach, known to anyone who has completed an entry level calculus course. The procedure

involves multiplying g by some appropriate term t, so that f − t ·g “cancels out” the leading

term of f . At every step f is set to f − t · g and the process is repeated until f is zero. In

the cases where no such t exists, a term is added to the remainder r.

The process for doing polynomial division in many variables is the similar. In this case

we take the leading term with respect to the monomial ordering ≻. We illustrate this with

the following example.

Example 1.3.22. Working in Q[x, y, z] we divide f = x5z2 +x4y+x2y2z+x3z+x2z2 + y2

by g = x2z + 1 using ≻ (the graded lexical order).

q = x3z + y2 + z

x2z + 1 )x5z2 + x4y + x2y2z + x3z + x2z2 + y2

x5z2 + x3z

x4y + x2y2z + x2z2 + y2

x2y2z + x2z2 + y2

x2y2z + y2

x2z2

x2z2 + z

−z

0

r = x4y − z

→ x4y

→ −z

In the first step we multiply LT (g) = x2z by the monomial x3z to eliminate LT (f) = x5z2.

We see that the result of f − (x2z) · g has a leading term that is not divisible by LT (g) so

x4y is added to the remainder. The rest of the example carries on in this fashion.
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To give polynomial division a stricter definition we have the theorem:

Theorem 1.3.23. Let F be a field and let g be a non-zero polynomial in F[x1, . . . , xk] with

some monomial order ≻. Then every f ∈ F[x1, . . . , xk] can be written as

f = q · g + r,

where q, r ∈ F[x1, . . . , xn] and either r = 0 or no term of r is divisible by LT (g). Further-

more, q and r are unique.

Proof of existence. The proof is constructive in that we present the division algorithm to

show the existence of q and r.

Input: f , g in F[x1, . . . , xk].

Output: q and r satisfying the conditions of Theorem 1.3.23.

1: (q, r, p)← (0, 0, f);

2: while p 6= 0 do

3: if LT (g) |LT (p) then

4: t← LT(p)
LT(g)

5: (p, q) = (p− t · g, q + t)

6: else

7: (p, r) = (p− LT (p) , r + LT (p))

8: end if

9: end while

10: return (q, r)

First let

LI (n) = f − q · g − (p+ r) = 0,

which is the so-called loop invariant for iteration n. We demonstrate that this predicate

holds throughout the entire execution of the algorithm and that r = 0 or that no term of r

is divisible by LT (g) = g1.

For the base case at iteration zero we have p = f , q = 0 and r = 0 so

LI (0) = f − q · g − (p+ r) = f − f = 0.

For the induction assume at loop n − 1 that LI (n− 1) = f − q · g − (p + r) = 0 and

r = 0 or no term of r is divisible by g1. Now, at loop n we have two cases given by the ‘if’
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statement in line (3) of the division algorithm. In the case where LT (g) |LT (p) we have:

t =
LT (p)

LT (g)
p = p− t · g q = q + t

which means the loop invariant becomes

LI (n) = f − (q + t) · g − (p− t · g + r)

= f − q · g − (p+ r) + (−t · g + t · g)

= LI (n− 1) + 0

= 0

where LI (n− 1) = 0 by the induction hypothesis. Since r is unchanged from iteration n−1,

in this case, it maintains the desired property.

In the case where LT (g) does not divide LT (p) we have:

p = p− LT (p) r = r + LT (p)

so the loop invariant is now

LI (n) = f − q · g − (p − LT (p) + r + LT (p))

= f − q · g − (p + r)

= LI (n− 1)

= 0

via the induction hypothesis.

Let us rewrite r = r + LT (p) to be rn = rn−1 + LT (p) so that rn−1 is the remainder

from iteration n − 1. It is the case that the term LT (p) is not divisible by g1 and by the

induction hypothesis rn−1 has no term divisible by g1 either. Collectively this means that

rn = rn−1 + LT (p) has no term that is divisible by g1 as desired. We have thus shown

that the loop invariant is held at every iteration with an r that has no term divisible by

g1. To complete the proof, we show that the algorithm terminates. The value of p is

updated on lines (5) and (7), and in both cases the leading term of p is eliminated. Since p

is strictly greater then p−LT (p) with respect to the monomial ordering (otherwise LT (p) =

LT (p− LT (p)), a contradiction), the values of p yield a strictly descending sequence on ≻.

Since ≻ is a well ordering, this must be a finite sequence with a least element ([9, Section



CHAPTER 1. PRELIMINARIES 16

2.2 Lemma 2]). Therefore, we may only eliminate the leading term of p finitely many times,

until p = 0. Now suppose that the division algorithm terminates at iteration M (when the

terminating condition p = 0 is met). This gives

⇒ LI (M) = f − q · g − (0 + r)

⇒ 0 = f − q · g − r

⇒ f = q · g + r

where no term of r is divisible by g1 as Theorem 1.3.23 requires.

Proof of uniqueness. Suppose that we have

f = q · g + r = q′ · g + r′

where q 6= q′ and r 6= r′. Neither r or r′ has a term divisible by g1 but (q− q′) ·g does. Since

r − r′ = (q − q′) · g, r − r′ must have a term that is divisible by g1. This is only possible

when r − r′ = 0 contradicting our assumption. Therefore q and r must be unique.

It would be tempting to simply use the algorithm in Theorem 1.3.23 to do polynomial

division. But, we can show that this classical implementation suffers from many weaknesses.

Consider line (5) in the algorithm given in Theorem 1.3.23 where we update p by p−t ·g.

Recall that our addition algorithm works as a merge, repeatedly comparing monomials until

the terms of one input polynomial are exhausted. This becomes problematic when one of

the polynomials is much larger than the other as seen in Example 1.3.24.

Example 1.3.24. Let f = xn+1, g = yn+yn−1 + . . .+y and h = f ·g = (xnyn+xnyn−1 +

. . .+ xny) + (yn + yn−1 + . . . + y). Consider the division of h by f :

q = yn + yn−1 + . . .

xn + 1 )xnyn + xnyn−1 + . . . + xny + yn + . . . + y

xnyn + yn

xnyn−1 + . . . + xny + . . . + y

xnyn−1 + yn−1

...

→ does n monomial comparisons

→ does n − 1 monomial comparisons

As we can see, to merge xiyi + yi for some i will require i monomial comparisons. In total

the number of comparisons will be

n∑

i=1

i =
n2

2
+
n

2
,
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which is an order of magnitude larger then the produce (xn + 1) · q and requires an unnec-

essarily large amount of auxiliary space.

As with multiplication, we can use heaps and a replacement scheme to overcome the

problems in Example 1.3.24 and drastically reduce the amount of monomial comparisons.

The heap itself will be used to store the intermediate p’s and our replacement scheme will

allow us to minimize this heap’s size.

The key observation is that we only require the leading term of p to calculate the next

term of the quotient. Since we are ordering the heap with ≻, the leading term will always

be the ≻-largest element (or, in the case where this element has like terms in the heap,

the sum of the top few elements of the heap). All we need is a replacement scheme that

guarantees that the heap will produce the terms of f − q · g in ≻-descending order.

To be more clear, we will be merging the set of sequences

{(f1, . . . , fn), (−q1g1, . . . ,−qkg1), . . . , (−q1gm, . . . ,−qkgm)}.

An alternate way to understand this merge is to see the heap as storing the difference

f −
m∑

i=2

gi × (q1 + q2 + . . .+ qk)

where g and q are of lengths m and k respectively and the terms qi may be unknown.

As with multiplication, we replace a term coming out of the heap with the ≻-next largest

term in the sequence it was taken from. That is, we replace fi with fi+1 and −qigj with

−qi+1gj (we also use the optimization that says only add −q1gj+1 after removing −q1gj).

However, it is possible that we remove −qi−1gj before qi is known, in which case we would

not be able to insert the term −qigj . But, since −qigj can certainly not be required to

calculate qi, there must already be a sufficient amount of terms in the heap to establish qi.

Therefore, we can just remember the terms that should have been added to the heap, and

eventually add them once qi has been calculated. In the heap-division algorithm, this is

referred to as ‘sleeping’.

The heap division algorithm [15] is given by Algorithm 3.

Theorem 1.3.25. The heap-division algorithm requires O(#g + #q + #r + 1) storage for

terms and does O((#f + #q#g) · log #g) monomial comparisons.

Proof. The size of the heap H, denoted |H| is unaffected by lines (11) and (13) since these

lines only replace terms coming out of the heap. Line (15) merely increments s and does
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Algorithm 3 Heap-Division

Input: f , g 6= 0 in F[x1, . . . , xn].
Output: q and r, in standard form, satisfying the conditions of Theorem 1.3.23.

1: if f = 0 then

2: return (0, f)
3: end if

4: Initialize a new heap H and insert f1 into H;
5: (q, r, s)← (0, 0, 2);
6: while H is not empty do

7: t← 0;
8: repeat

9: Extract x← Hmax from the heap and assign t← t+ x;
10: if x = fi and fi+1 exists then

11: Insert fi+1 into H;
12: else if x = giqj and qj+1 is calculated then

13: Insert −giqj+1 into H;
14: else if x = giqj and qj+1 is not yet calculated then

15: s ← s + 1; {Sleep −giqj+1}
16: end if

17: if x = giq1 and gi+1 exists then

18: Insert −gi+1q1 into H;
19: end if

20: until (H is empty) or (t and Hmax are not like terms)
21: if t 6= 0 and g1|t then

22: Make t/g1 the next term of q;
23: for k from 2 to s do

24: Insert −gk · t/g1 into H; {Insert all terms that are sleeping into H}
25: end for

26: else

27: Make t the next term of r;
28: end if

29: end while

30: return (q, r)
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not increase |H|. The only place where H can grow is line (18) in which a new term of g

is added to the heap, this is clearly bounded by #g. Accounting for the storage needed for

the solution, we need O(#g) storage for the heap and O(#q + #r) for the quotient and

remainder, totaling O(#g + #q + #r + 1).

All terms of f and q · g are added to the heap, which is #f + #q#g terms. Passing

this many terms through a heap of size #g requires O((#f + #q#g) log #g) monomial

comparisons [14].

In this section we have defined polynomials, monomial orderings and explored how to

use these definitions in algorithms to do polynomial arithmetic. In the next section we will

derive a variant of these algorithms that will allow us to do delayed polynomial arithmetic.



Chapter 2

Lazy and Forgetful Polynomials

The term ‘lazy evaluation’ (or ‘delayed computation’) refers to the technique of postponing

a computation until its value is known to be needed. This notion is the defining feature of

most functional programming languages like Haskell or MosML. In these languages, the use

of lazy evaluation allows for the creation of infinite lists, or ‘streams’ [16]. To overcome the

problem of needing an infinite amount of memory to store an infinite list, a stream mimics

an infinite list by storing a head element and a subsequent rule to get you from one element

to the next, called a tail function (much like the base case and inductive step in an inductive

proof). Any element of the stream can be accessed, but it is only calculated when its value

is needed.

We can adapt this idea to do polynomial operations [19]. If we order the terms of the

polynomial with some monomial ordering ≻, then we can number the terms from 1 to n,

where 1 is the ≻-largest term. If we then restrict our algorithms to only return a single

term from a polynomial (for example if f = x2y + xy2 + 7 then f3 = 7) then we can also

be lazy in our calculations. To calculate the n-th term from the sum of two polynomials

would not require the calculation of the (n+ 1)-st term. We could simply halt after enough

work has been done. Furthermore, if we saved intermediate results from this calculation,

then the m-th term where m ≤ n could be ‘calculated’ instantaneously.

In this section we present the variations of the algorithms given in Chapter 1 that will

allow us to compute in a lazy manner.

20
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2.1 Motivation

Our motivation comes from an intermediate calculation in Buchberger’s algorithm [9]. Buch-

berger’s algorithm transforms a set of generators for a polynomial ideal into a Gröbner basis

[9]. At each iteration the algorithm generates many ‘S-Polynomials’, namely the value

S(f, g) =
L

LT (f)
· f −

L

LT (g)
· g

where L = lcm (LM (f) ,LM (g)). This calculation appears to be wasteful as it is known

that S(f, g) reduces to zero when gcd (LT (f, ) ,LT (g)) = 1. Why completely determine f

and g in this case when only the leading terms are needed?

An environment where one could determine LT (f) without calculating f in its entirety

could theoretically speed up Buchberger’s algorithm significantly. However, although this

may be the case, this undertaking is perhaps too ambitious to be carried out in this the-

sis. Thankfully, investigations exposed simpler algorithms that could benefit from delayed

arithmetic in the same way. We discuss these applications in Sections 3.1 and 3.2.

2.2 Lazy Polynomials

We begin development of an environment for performing lazy arithmetic with polynomials

by first discussing what this entails. Our primary objective will be to compute the n-th

term of some arbitrary polynomial expression, say f × g, using as few terms of f and g

as possible. Our notion of ‘work’ or ‘amount of computation’ will then be a measure of

how many monomial comparisons are done to determine this n-th term as well as the work

necessary to calculate the individual terms of f and g that are used. Our goal will be to

create algorithms that do as little work as possible (one may characterize this as laziness).

Unfortunately we are not able to measure the number of monomial comparisons required

to calculate only the n-th term of f × g in general. We can only give an upper bound on

the number of monomial comparisons required to calculate every term and take for granted

that it takes less monomial comparisons to calculate fewer then all terms (which, as we saw

in the motivation is to our advantage).

This restriction also prevents us from calculating the work done to produce individual

terms of f and g as well. We can merely assume that some work will be done in order to

calculate a given term of f and g and strive to devise algorithms that use as few of these

terms as possible.
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In Chapter 1, we have developed heap methods for polynomial arithmetic and estab-

lished the amount of monomial comparisons that each method requires. Although we can’t

prove that this is the minimal amount of comparisons possible, we demonstrated that these

algorithms are performing substantially better than classical methods. We also devised a

replacement scheme that ensured the heap contained only those terms essential for the cal-

culation of the next term. This property will be crucial now, as it ensures that no work is

done calculating unneeded terms of f and g.

In this sense, we can claim that our algorithms are doing a minimal amount of work

in general. We use algorithms that avoid doing any unnecessary work (like calculating un-

needed terms of f and g) and use as few (but not provably minimal) monomial comparisons

by way of our heap algorithms. By this premise, we can at least superficially conclude that

we are doing a minimal amount of work to calculate a single term.

We will now begin the development of the lazy algorithms that utilize these ideas. These

algorithms will be a variation of the heap algorithms given in Chapter 1, which were delib-

erately designed in a manner to be conducive to these lazy ambitions.

Definition 2.2.1. A lazy or delayed polynomial, F , is an approximation of the polynomial

f = f1 + . . .+ fn (in standard form), given by

FN =
N∑

i=1

fi

where 0 ≤ N ≤ n.

The terms F1, . . . , FN are called the forced terms of F and the nonzero terms of f −FN

are called the delayed terms of F . We denote the number of forced terms of a delayed

polynomial F by |F |. Note that it is always the case that Fi = fi for all i and that FN+1

is a better approximation to f than FN when N < n.

A delayed polynomial must satisfy the following conditions regarding computation. If

F is approximating a polynomial expression of the type g + h, g × h, or g ÷ h (either the

quotient or remainder of the division) then:

1. Calculating Fi when Fi is a forced term requires no monomial comparisons. That is:

all the forced terms of F should be cached for re-access.

2. The scheme to calculate a delayed term of F uses as few terms of g and h as possible.
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3. The number of monomial comparisons required to calculate every term of F is no

more then the number of monomial comparisons done by the heap algorithms given

in Chapter 1.

From now on it will be necessary to distinguish regular polynomials from those that are

delayed. When a polynomial is delayed we will denote it with capitals letters, typically F ,

G or H and continue using lower case letters when they are not.

Remark 2.2.2. The polynomial f = f1 + . . .+ fn that we are approximating is unknown.

Since this also means that n is unknown we are unable to say if FN exists. For instance,

if f = x + y then F 3 would not have a value by Definition 2.2.1. To resolve this we

append an infinite amount of zeros to the end of f so that f = f1 + . . . + fn + 0 + 0 + . . .

(now F 3 = x+ y + 0). For clarity we will continue omitting zero terms when describing a

polynomial.

This admits the useful notation F∞ which is the lazy polynomial with no delayed terms.

That is F∞ = f when F is approximating f .

Example 2.2.3. Let f = x3y2 + xy + y + 1 and let F approximate f .

F 2 = x3y2 + xy F3 = y F100 = 0

Let us refine our focus and address the problem of determining the n-th term of a

polynomial when it is the result of some operation. That is, given delayed polynomials F

and G that approximate f and g respectively, can we determine the n-th term of f + g or

f × g?

The new difficulties we will encounter are caused by the mysterious nature of the terms

of F and G. Since these delayed polynomials are merely approximations of the polynomials

we are operating on, we can rarely speculate about the qualities of these terms (like how

many terms there are). What we can assume, since Fi = fi (where f is in standard form

for some monomial ordering ≻) is that Fi ≻ Fi+1, which all of our algorithms will exploit.

Furthermore, since accessing Fi will presumably do some calculation, we would like to access

as few terms of F (and G) as possible. 1

First, let us dispel of the notion that we could use using naive algorithms for this

purpose. These algorithms are ill suited to our goal, as they prematurely access terms. To

1In fact this is the most important feature of our algorithms. The entire environment is set up so that
we can force as few terms of a delayed polynomial as possible.
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best illustrate this, recall the first step of naïve multiplication, where we merge f1 · g with

f2 · g. To accomplish this, it would be necessary to use every term of g. Division is worse.

When updating f by f − t · g, all terms of both f and g would have to be used.

Remark 2.2.4. It is usually not a problem to use every term of a polynomial in a calculation

(the terms are traditionally known). In fact Johnson’s [12] algorithms typically begin by

populating the heap with all the terms of some polynomial. The slight modifications to

these algorithms given in Chapter 1 were done to overcome this problem.

We will find it is simple to modify the algorithms of Chapter 1 to calculate a specific

term of a polynomial. To demonstrate this we modify heap multiplication (Algorithm 2) to

return the n-th term of a product. The modification is given by Algorithm 4. We will see

the modifications of division and addition later, as part of the complete delayed algorithms,

so we will not present them.

The first of the changes are made to the conditions on lines (7) and (10) of Algorithm

4. Since we do not know the length of f (and g) we are unable to determine if some term fi

exists. Instead we can check if fi is zero, in which case the previous term was the last non-

zero term. This strategy will be repeated in all our algorithms and should be interpreted

as checking if fi exists. The next change is a reflection of our goal, line (17) returns the

n-th term once it is calculated. This is easy to determine as the algorithm is incrementing

through the terms of f × g in ≻-order. Of course, if the algorithm terminates before k = N ,

this means that the n-th term does not exist. So, to be consistent with our definitions, we

return zero (line (21)).

While being able to calculate the N -th term of a polynomial is a good start we would also

expect no work be repeated to calculate FN−1, . . . , F1 after calculating FN . We can make

this change by passing our algorithms any pertinent partial solution (i.e the approximation

FN ). By doing this our algorithms can be thought of more as a method for picking up

where the last calculation left off. However, in order to accomplish this the partial solutions

have to remember the state of the algorithm they were passed to. They must remember

the heap the calculation was using and local variables that would otherwise get erased. For

now, assume that this information is associated with the partial solution in some way, which

we will resolve in Chapter 4.

Now we can modify Algorithm 4 so it does not waste computation if more terms are

needed from the same polynomial. Recall that |F | is the number of forced terms of the
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Algorithm 4 Calculate N -th term of a product

Input: The delayed polynomials F and G so that F∞ = f and G∞ = g and a positive
integer N .

Output: The N -th term of the product f × g.
1: Initialize a heap H and insert (F1G1, 1, 1) {Order the heap by ≻ on the monomials in

the first position.}
2: k ← 1;
3: while H is not empty do

4: t← 0;
5: repeat

6: Extract (s, i, j) ← Hmax from the heap and assign t← t+ s;
7: if Fi+1 6= 0 then

8: Insert (Fi+1Gj , i+ 1, j) into H;
9: end if

10: if i = 1 and Gj+1 6= 0 then

11: Insert (F1Gj+1, 1, j + 1) into H;
12: end if

13: until (H is empty) or (t and Hmax are not like terms)
14: if t 6= 0 then

15: k ← k + 1;
16: end if

17: if k = N then

18: return t;
19: end if

20: end while

21: return 0;

delayed polynomial F . The implementation is given by Algorithm 5.

It is a simple task to extend this idea to addition, which is given by Algorithm 6. In this

case the algorithm does not require a heap since it is only doing a simple merge. Instead

what must be remembered by the solution X is how far along F and G the merge is. Or

specifically, the indices i and j of the next terms from F and G to be merged.

Lastly we modify division (Algorithm 7) which has a slight twist. The division algorithm

returns two polynomials, the quotient and the remainder, so there can be some ambiguity

about which quantity the n-th term is referring to. In our implementation we return the

n-th term of the quotient, but with a trivial change it could easily be the n-th term of the

remainder instead. A key feature of the algorithm is that it updates both Q and R. That

is to say that no work would be repeated to calculate terms of the remainder if they were
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forced while calculating terms of the quotient.

Remark 2.2.5. This feature also yields an algorithm for divisibility testing. Suppose Q

and R are the quotient and remainder which result when we pass F and G to Algorithm 7;

then

F |G⇔ R1 = 0.

Testing in this manner will require less computation then if the entire remainder was to be

computed (provided that the remainder has more than one term).

2.3 Forgetful Polynomials

There is a variant to delayed polynomial arithmetic that has some useful properties. Con-

sider that the operations from the previous section can be compounded to form polynomial

expressions. That is, we could use delayed arithmetic to calculate the n-th term of say,

A · B − C · D. When we did this we stored the intermediate calculations (namely the

products A · B and C · D) to provide quick re-access to terms. But, if re-access was not

required we could have easily “forgoten” these terms instead. A “forgetful” operation will

be like a delayed operation but intermediate terms won’t be stored. For this reason, forget-

ful operations are quite useful when expanding compounded polynomial expressions with

large intermediate subexpressions. This is because we are ensuring we use the minimal

amount of memory (much in the same spirit as doing minimal computation) which has clear

advantages.

We can make some straightforward modifications to our delayed algorithms to accom-

plish this forgetful environment. Essentially all that is required is the removal of lines that

save terms to the solution polynomial (i.e. lines that look like Xi ← �) and eliminating any

references to previous terms (or even multiple references to a current term). To emphasize

this change we will limit our access to a polynomial by way of a next command.

Definition 2.3.1. For some delayed polynomial F and monomial order ≻, the next com-

mand returns the ≻-next un-calculated term of a polynomial (eventually returning only

zeros) and satisfies

next (F ) + next (F ) + next (F ) + . . . = F∞

and

next (F ) ≻ next (F ) ≻ . . . .
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Definition 2.3.2. A forgetful polynomial is a delayed polynomial that is accessed solely

via the next command. That is, intermediate terms of F are not stored and can only be

accessed once. If the functionality to re-access terms is restored in any way (i.e. by caching

the intermediate results in memory), F is no longer considered a forgetful polynomial. Thus,

for a forgetful polynomial F , calculating Fn+1 forfeits access to the terms F1 through Fn,

even if these terms have never been accessed.

Although it would be ideal to have all of our forgetful routines take forgetful polynomials

as input and return forgetful polynomials as output, we will see this is not possible without

caching previous results. Multiplication for instance can not accept forgetful polynomials

as input (it will be able to return a forgetful polynomial). This is because regardless of the

scheme used to calculate f · g, it is necessary to multiply every term of f with g. Since we

are limited to single time access to terms this task is impossible. If we calculate f1g2 we

can not calculate f2g1 and vice versa.

The problems of multiplication will percolate to other algorithms that have multiplica-

tion as an intermediate step. Specifically, our division algorithm can not accept a forgetful

dividend as it must be repeatedly multiplied by terms of the quotient (for the same reason

the quotient can not be forgetful). However, we will see that the dividend can be forgetful

which is a highly desirable feature (see Chapter 3).

The only “fully” forgetful (forgetful input and output) routine we can have is addition,

given by Algorithm 8. The variant of multiplication that takes as input delayed polynomials,

returning a forgetful polynomial, is a trivial change to Algorithm 5. In this case all that

must be done is to remove the ‘if’ statement in line (28) so that the ≻-next, instead of the

N -th, term is returned. As this is not a significant change, we will not give pseudocode for

multiplication.

Lastly, division will be given as a special purpose algorithm that will be useful in some

specific applications. Division will take as input a forgetful dividend and delayed divisor

returning a fully forced quotient and remainder. Aside from enabling division (given by

Algorithm 9) to accept a forgetful dividend, there are no other improvements.

Theorem 2.3.3. When adding F and G with the forgetful addition, the worst case storage

complexity for the algorithm is O(1).

Proof. At any given time the Algorithm 8 will only have to remember ans, tF and tG.
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Theorem 2.3.4. When multiplying f (with #f terms) by g (with #g terms) the worst case

storage complexity for forgetful multiplication is O(max(#f,#g)) (the storage required for

the heap).

Proof. For delayed multiplication (Algorithm 5) the size of the heap H, denoted |H|, is

unaffected by line (18) since this merely replaces the term coming out of the heap on line

(16). The only place the heap can grow is on line (21), but this is bounded by the number of

non-zero terms of G∞. Since G∞ = f or G∞ = g (depending on the order of the input), G∞

can have at most max(#f,#g) non-zero terms. The solution will require at most O(#f ·#g)

space, totaling O(#f ·#g + max(#f,#g)) storage for delayed multiplication.

A quick inspection of Algorithm 5 will show that the only time a previous term of the

product is used is on line (3) and (30). In both cases the term is merely being re-accessed

and is not used to compute a new term of the product. Since we do not store or re-access

terms of a forgetful polynomial, we can eliminate the storage needed to do this, and reduce

the space complexity to O(max(#f,#g)) as desired.
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Algorithm 5 Delayed Multiplication

Input: The delayed polynomials F and G so that F∞ = f and G∞ = g, a positive integer
N (the desired term), and the delayed polynomial X so that X∞ = f × g.

Output: The N -th term of the product f × g.
1: if N ≤ |X| then

2: {XN has already been calculated.}
3: return XN ;
4: end if

5: if |X|=0 then

6: {X has no information.}
7: Initialize a heap H and insert (F1G1, 1, 1) {Order the heap by ≻ on the monomials

in the first position.}
8: k ← 1;
9: else

10: Let H be the heap associated with X.
11: k ← number of elements in H;
12: end if

13: while H is not empty do

14: t← 0;
15: repeat

16: Extract (s, i, j) ← Hmax from the heap and assign t← t+ s;
17: if Fi+1 6= 0 then

18: Insert (Fi+1Gj , i+ 1, j) into H;
19: end if

20: if i = 1 and Gj+1 6= 0 then

21: Insert (F1Gj+1, 1, j + 1) into H;
22: end if

23: until (H is empty) or (t and Hmax are not like terms)
24: if t 6= 0 then

25: Xk ← t;
26: k ← k + 1;
27: end if

28: if k = N then

29: Associate the heap H with X.
30: return Xk;
31: end if

32: end while

33: Associate the (empty) heap H with X.
34: return 0;



CHAPTER 2. LAZY AND FORGETFUL POLYNOMIALS 30

Algorithm 6 Delayed Addition

Input: The delayed polynomials F and G so that F∞ = f and G∞ = g, a positive integer
N (the desired term), and the delayed polynomial X so that X∞ = f + g.

Output: The N -th term of the sum f + g.
1: if N ≤ |X| then

2: {XN has already been calculated.}
3: return XN ;
4: end if

5: if |X|=0 then

6: {X has no information.}
7: (i, j, k) ← (1, 1, 1);
8: else

9: Set i and j to the values associated with X;
10: k ← |X|;
11: end if

12: while Fi 6= 0 or Gj 6= 0 do

13: if Fi and Gj are like terms then

14: if Fi +Gj 6= 0 then

15: Xk ← Fi +Gj ;
16: (i, j, k) ← (i+ 1, j + 1, k + 1);
17: else

18: (i, j)← (i+ 1, j + 1);
19: end if

20: else if Fi 6= 0 and Fi ≻ Gj then

21: Xk ← Fi;
22: (i, k)← (i+ 1, k + 1)
23: else if Gj 6= 0 then

24: Xk ← Gj
25: (j, k)← (j + 1, k + 1)
26: end if

27: if k = N then

28: Associate i and j with X;
29: return Xk;
30: end if

31: end while

32: Associate i and j with X;
33: return 0;



CHAPTER 2. LAZY AND FORGETFUL POLYNOMIALS 31

Algorithm 7 Delayed Heap-Division

Input: The delayed polynomials F and G so that F∞ = f and G∞ = g, a positive integer
N (the desired term), and the delayed polynomials Q and R so that f = g ·Q∞ +R∞.

Output: The N -th term of the quotient from f ÷ g.
1: if F1 = 0 then

2: return 0
3: end if

4: if N ≤ |Q| then

5: {QN has already been calculated.}
6: return QN ;
7: end if

8: if |Q| = 0 then

9: {Q has no information.}
10: Initialize a new heap H and insert F1 into H;
11: s← 2;
12: else

13: Let H be the heap associated with Q;
14: end if

15: while H is not empty do

16: t← 0;
17: repeat

18: Extract x← Hmax from the heap and assign t← t+ x;
19: if x = Fi and Fi+1 6= 0 then

20: Insert Fi+1 into H;
21: else if x = GiQj and Qj+1 is forced then

22: Insert −GiQj+1 into H;
23: else if x = GiQj and Qj+1 is delayed then

24: s ← s + 1; {Sleep −GiQj+1}
25: end if

26: if x = GiQ1 and Gi+1 6= 0 then

27: Insert −Gi+1Q1 into H;
28: end if

29: until (H is empty) or (t and Hmax are not like terms)
30: if t 6= 0 and g1|t then

31: Q|Q|+1 ← t/G1; {Now Q|Q|+1 is a forced term.}
32: for k from 2 to s do

33: Insert −Gk · t/G1 into H; {Insert all terms that are sleeping into H}
34: end for

35: else

36: R|R|+1 ← t; {Now R|R|+1 is a forced term.}
37: end if

38: if |Q| = N then

39: Associate the heap H with Q.
40: return QN ;
41: end if

42: end while

43: Associate the (empty) heap H with Q;
44: return 0;
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Algorithm 8 Forgetful Addition

Input: The forgetful polynomials F and G so that F∞ = f and G∞ = g and the forgetful
polynomial X so that X∞ = f + g.

Output: The ≻-next delayed term of X.
1: if |X|=0 then

2: {X has no information.}
3: (tF , tG)← (next (F ) , next (G));
4: else

5: Set tF and tG to the values associated with X;
6: end if

7: while tF 6= 0 or tG 6= 0 do

8: if tF and tG are like terms then

9: ans← tF + tG;
10: (tF , tG)← (next (F ) , next (G))
11: else if tF 6= 0 and tF ≻ tG then

12: ans← tF ;
13: tF ← next (F )
14: else if tG 6= 0 then

15: ans← tG
16: tG ← next (G)
17: end if

18: if ans 6= 0 then

19: Associate tF and tG with X;
20: return ans;
21: end if

22: end while

23: Associate tF and tG with X;
24: return 0;
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Algorithm 9 Specialized Heap-Division

Input: The forgetful polynomial F and delayed polynomial G so that F∞ = f and G∞ = g.
Output: The delayed polynomials Q and R so that f = g ·Q∞ +R∞.

1: tF ← next (F );
2: if tF = 0 then

3: Set Q and R to zero.
4: return Q and R.
5: end if

6: Initialize a new heap H and insert tF into H;
7: s← 2;
8: while H is not empty do

9: t← 0;
10: repeat

11: Extract x← Hmax from the heap and assign t← t+ x;
12: if x = tF then

13: tF = next (F )
14: if tF 6= 0 then

15: Insert tF into H;
16: end if

17: else if x = GiQj and Qj+1 is forced then

18: Insert −GiQj+1 into H;
19: else if x = GiQj and Qj+1 is delayed then

20: s ← s + 1; {Sleep −GiQj+1}
21: end if

22: if x = GiQ1 and Gi+1 6= 0 then

23: Insert −Gi+1Q1 into H;
24: end if

25: until (H is empty) or (t and Hmax are not like terms)
26: if t 6= 0 and g1|t then

27: Q|Q|+1 ← t/G1; {Now Q|Q|+1 is a forced term.}
28: for k from 2 to s do

29: Insert −Gk · t/G1 into H; {Insert all terms that are sleeping into H}
30: end for

31: else

32: R|R|+1 ← t; {Now R|R|+1 is a forced term.}
33: end if

34: end while

35: return Q and R;
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Applications

3.1 Bareiss’ Algorithm

Finding determinants and solving linear systems is a fundamental problem in computing

with a rich history. Leibnitz was the first to use determinants in 1693, with Cramer pre-

senting a determinant based method for solving linear equations in the late 1700s. Gaussian

elimination, which solves linear systems by doing a succession of elementary matrix opera-

tions, was formally outlined by Gauss in a publication in 1809. In contemporary computing,

solving linear systems poses as much of a problem as it did centuries ago. Practice shows

that there are inherent weaknesses in Gaussian elimination. For instance, when using this

algorithm on matrices with real entries, calculating differences of real numbers required to

do the row reductions becomes problematic because they can lead to numeric instabilities.

Using exact computation as one would do in symbolic computing is also problematic. Al-

though working exactly with fractions eliminates any numerical issues, the use of GCD’s to

reduce these fractions has a substantial cost. This cost becomes especially significant if we

are trying to solve a system with rational function coefficients.

One solution to this problem would be to avoid fractions altogether. This is the basic

idea behind “fraction free” Gaussian elimination. In this method, instead of normalizing the

rows to do row reductions, we multiply each row by some factor so that the leading element

in each row is the same. For example, to eliminate the leading entry in [7, 2, 3] using the

row [5, 3, 2] we would have to multiply the rows by five and seven respectively. This gives

5 · [7, 2, 3] − 7 · [5,−3, 2] = [0, 31, 1] and puts a relatively large term in the diagonal. This

deficiency is a crucial one as it turns out that there can be an exponentially large increase

34
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in the digit length of the diagonal entries. This will cause the fraction-free scheme to be

slower then the ordinary Gaussian elimination scheme [10, p. 392].

There is a “fraction free” approach for calculating determinants that eliminates this

problem. It is given by Algorithm 10 and is due to Bareiss [2] who noted that the method

was first known to Jordan. The algorithm does exact divisions over any integral domain to

avoid fractions and explosions of the matrix entries. For now it is enough to understand

that it takes as input a matrix M, with (i, j)-th entry (M)i,j , and returns M’s determinant.

The details of the algorithm and a proof of its correctness will be given in the following

sections.

Algorithm 10 Bareiss Algorithm

Input: M an n-square matrix with entries over an integral domain D with x
(k)
k,k all non-zero.

Output: The determinant of M. In general, for i > k, we have

(M)i,k = x
(k)
i,k , and (M)k,i = x

(k)
k,i .

1: (M)0,0 ← 1;
2: for k = 1 to n− 1 do

3: for i = k + 1 to n do

4: for j = k + 1 to n do

5: (M)i,j ←
(M)k,k(M)i,j−(M)i,k(M)k,j

(M)k−1,k−1
{Exact division.}

6: end for

7: end for

8: end for

9: return (M)n,n

3.1.1 The Problem With Bareiss’ Algorithm

We restrict to matrices with entries from the polynomial ring Z[x1, x2, . . . , xn]. Although

line (5) (an exact division which defines the Bareiss algorithm) can be credited for keeping

the diagonal entires a reasonable size, the intermediate calculations it must do can often

get out of hand. It is quite possible (in fact typical) that this calculation (of the form
A·B−C·D
E

) produces a numerator that is much larger than the corresponding quotient and

denominator.

Example 3.1.1. Consider the so-called symmetric Toeplitz matrix with entries from the
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polynomial ring Z[x1, x2, . . . , x9] generated by [x1, . . . , x9],














x1 x2 x3 · · · x9

x2 x1 x2 · · · x8

x3 x2 x1 · · · x7

...
. . .

. . .
. . .

...

x9 · · · x3 x2 x1














.

When calculating the determinant of this matrix using Bareiss’ algorithm the last division

(in line (5) of Algorithm 10) will have a dividend of 128,530 terms, whereas the divisor and

quotient will only have 427 and 6,090 terms respectively.

So, in practice one often finds that an inordinate amount of memory is used to compute

what can be a relatively small determinant. This deficiency is the reason that Bareiss’

algorithm does not experience more widespread use (for example it is implemented in Maple

but not used).

To overcome this problem recall that we introduced forgetful operations in Chapter 2.

In doing so we managed to minimize the amount of memory used to expand a polynomial

expression. The upshot of this is that now we can construct the quotient of A·B−C·D
E

without

having to store A · B − C ·D in its entirety (in fact the forgetful algorithms were designed

to do precisely this calculation).

Theorem 3.1.2. Calculating Q = A·B−C·D
E

(an exact division) with forgetful operations

requires at most O(max(#A,#B) + max(#C,#D) + 1 + #E + #Q) storage.

Proof. We have from Theorem 2.3.4 that the products A ·B and C ·D will require at most

max(#A,#B) and max(#C,#D) space, where the difference of these products requires

O(1) space by Theorem 2.3.3. Since there is no remainder because the division is exact,

the division algorithm will use O(#E + #Q) storage by Theorem 1.3.25. Summing these

complexities gives the desired result.

Remark 3.1.3. The implications of this theorem and can be observed in the package that

implements the Bareiss Algorithm with forgetful polynomials. If we measure the amount

of memory used by the exact division on line (5) we would expect this to have a linear

relationship with the size of its inputs. We can observe this relationship in Figures 3.1,

3.2, and 3.3. Each figure is a log-log plot where the horizontal axis represents the value
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max(#A,#B) + max(#C,#D) + 1 + #E + #Q from some arbritrary iteration, and the

vertical access measures maximum memory usage (in bits) of the associated division.

Figure 3.1: Maximum memory usage for the exact division of the ‘forgetful’ Bareiss’ Algo-
rithm when given the matrix A corresponding to the Maple code:

A := LinearAlgebra[ToeplitzMatrix](var, nops(var), symmetric);

where var:=[seq(y[i],i=1..7)].

3.1.2 Sylvester’s Identity

Our goal in this section is to prove that the division in the Bareiss algorithm is exact [3].

To begin we introduce the notation and definitions necessary for this section. Denote the

set of m×n matrices with entries in the domain D by Dm×n. Also, let the (i, j)-th entry of

a matrix M ∈ Dm×n be denoted as (M)i,j .

Definition 3.1.4. The determinant of a matrix M ∈ Dn×n, denoted det(M), is recursively

defined as follows:

1. det
([

x1,1

])

= x1,1 for any x1,1 ∈ D.
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Figure 3.2: Maximum memory usage for the exact division of the ‘forgetful’ Bareiss’ Algo-
rithm when given the matrix A corresponding to the Maple code:

A := LinearAlgebra[ToeplitzMatrix]([op(var), op(var)], 2 ∗ nops(var), symmetric);

where var:=[seq(y[i],i=1..6)].
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Figure 3.3: Maximum memory usage for the exact division of the ‘forgetful’ Bareiss’ Algo-
rithm when given the matrix A corresponding to the Maple code:

A := LinearAlgebra : −VandermondeMatrix([op(var), op(var)]);

where var:=[seq(y[i],i=1..5)].
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2. det (M) =
∑m
j=1(M)i,j · [M]i,j for any 1 ≤ i ≤ n.

where [M]i,j denotes the (i, j)-cofactor of M given as

[M]i,j ≡ (−1)i+j det (M[i; j])

and M[i; j] is the matrix obtained by removing the i-th row and j-th column from M.

We briefly note, without proof, some useful properties of the determinant. For A,B,C ∈

Dn×n, r some constant in D, and 0 the zero matrix of dimension n× n we have:

1. det (A ·B) = det (A) · det (B)

2. det (rA) = rn det (A)

3. det








A B

0 C







 = det








A 0

B C







 = det A · det C

Definition 3.1.5. The adjoint of a matrix M ∈ Dn×n is the matrix adj(M) whose (i, j)-th

entry is the (j, i)-cofactor of M. Namely

(adj (M))i,j = [M]j,i

(note the transposed subscripts).

For the remainder of this section let M ∈ Dn×n with (M)i,j = xi,j. It is easy to see that

xi,1 [M]j,1 + xi,2 [M]j,2 + · · ·+ xi,n [M]j,n =







0, if i 6= j

det(M), if i = j
. (3.1)

When i = j this is precisely the definition of the determinant M. When i 6= j this sum

can be regarded as the determinant of the matrix obtained by replacing M’s j-th row with

M’s i-th row. Now we can subtract M’s j-th row from M’s i-th row to obtain a row of

zeros. This enables us to choose an i for part 2 of Definition 3.1.4, where every (M)i,j = 0,

resulting in a zero determinant. Using (3.1), we can show that

M · adj (M) = det (M) · I (3.2)
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since any entry (M · adj (M))i,j =
∑n
k=1 xi,k [M]j,k which is only non-zero when i = j, for

which it is the determinant of M. Taking the determinant of both sides of (3.2) we derive

det (M · adj (M)) = det (det (M) · I) (3.3)

det (M) · det (adj (M)) = det (M)n (3.4)

det (adj (M)) = det (M)n−1 (3.5)

and if we assume that that det (M) is an invertible element of D we get

(M)−1 = (det (M))−1 adj (M) . (3.6)

Bareiss algorithm is based on Sylvester’s identity;

Lemma 3.1.6. Sylvester’s identity

(

x
(k−1)
k−1,k−1

)n−k
det (M) = det























x
(k)
k,k x

(k)
k,k+1 · · · x

(n)
k,k

x
(k)
k+1,k x

(k)
k+1,k+1 · · · x

(k)
k+1,n

...
. . .

...

x
(k)
n,k x

(k)
n,k+1 · · · x

(k)
n,n























.

In order to develop this lemma we state and prove two additional lemmas. We begin by

expressing M in the form

M =




A B

C X





where A is (k − 1)-square and X is (n− (k − 1))-square. Let us also assume that δ =

det (A) 6= 0.

Lemma 3.1.7.

δn−k det (M) = det(δX−C · adj(A) ·B)

Proof. If we express

M =




A 0

C I








I (A)−1

B

0 X−C (A)−1
B




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then, by taking the determinant of both sides, we get

det (M) = det








A 0

C I







 · det








I (A)−1

B

0 X−C (A)−1
B









= det (A) · det (I) · det (I) · det
(

X−C (A)−1
B
)

= δ · det
(

X−C (A)−1
B
)

⇒ δn−k det M = δn−(k−1) det
(

X−C (A)−1
B
)

= det
(

δX−C
(

δ (A)−1
)

B
)

By determinant property 2.

= det (δX−C · adj (A) ·B) By (3.6).

To study the structure of X−C (A)−1
B, we introduce:

Definition 3.1.8. The “(r, s)-bordered matrix of order k” of a matrix M where (M)i,j = xi,j

is defined to be

M(k)
r,s ≡














x1,1 x1,2 · · · x1,k−1 x1,s

x2,1 x2,2 · · · x2,k−1 x2,s

...
...

...
...

xk−1,1 xk−1,2 · · · xk−1,k−1 xk−1,s

xr,1 xr,2 · · · xr,k−1 xr,s














for k ≤ min(r, s). For the case where k = 1 we let M
(1)
r,s =

[

xr,s

]

. We also define

x(k)
r,s = det

(

M(k)
r,s

)

(3.7)

and note that M = M
(n)
n,n and det (M) = x

(n)
n,n.

Example 3.1.9. The matrix

M =













x1,1 x1,2 x1,3 x1,4 x1,5

x2,1 x2,2 x2,3 x2,4 x2,5

x3,1 x3,2 x3,3 x3,4 x3,5

x4,1 x4,2 x4,3 x4,4 x4,5

x5,1 x5,2 x5,3 x5,4 x5,5












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has

M
(2)
3,5 =




x1,1 x1,5

x3,1 x3,5



 M
(3)
4,3 =








x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x4,1 x4,2 x4,3








M
(3)
4,5 =








x1,1 x1,2 x1,5

x2,1 x2,2 x2,5

x4,1 x4,2 x4,5







.

In order to state our next lemma, we first consider an arbitrary entry of δX−C·adj (A) B.

For r ≥ k and s ≥ k we have

(δX−C · adj (A) B)r−(k−1),s−(k−1) = δxr,s − (C · adj (A) B)r−(k−1),s−(k−1) (3.8)

= δxr,s −
k−1∑

i=1

(C)r−(k+1),i · (adj (A) B)i,s−(k+1) (3.9)

= δxr,s −
k−1∑

i=1

(C)r−(k+1),i ·
k−1∑

j=1

(adj (A))i,j · (B)j,s−(k+1)

(3.10)

= δxr,s −
k−1∑

i=1

xr,i ·
k−1∑

j=1

[A]j,i xj,s (3.11)

where

det
(

M(k)
r,s

)

= det











x1,s

A
...

xk−1,s

xr,1 · · · xr,k−1 xr,s











= det (A) · xr,s −
k−1∑

i=1

xr,i ·
k−1∑

j=1

[A]j,i xj,s

which is precisely the expression given in (3.11). This immediately yields:

Lemma 3.1.10. For r ≥ k and s ≥ k

(δX−C · adj (A) B)r,s = x(k)
r,s .

Now, combining the last two lemmas, and noting that δ = x
(k−1)
k−1,k−1, proves Sylvester’s

identity: Lemma 3.1.6.

3.1.3 Correctness of Bareiss’ Algorithm

We now present a proof of the correctness of Bareiss’ algorithm for fraction-free determinant

computation. With the notations of the previous section, Lemma 3.1.6 with n−k = 1 (called
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the “first order” Sylvester identity) reads

x
(k−1)
k−1,k−1 det

(

M
(k+1)
i,j

)

= det











x
(k)
k,k x

(k)
k,j

x
(k)
i,j x

(k)
i,j











which further implies

x
(k+1)
i,j =

x
(k)
k,kx

(k)
i,j − x

(k)
i,k x

(k)
k,j

x
(k−1)
k−1,k−1

. (3.12)

We see that (3.12) is another way of expressing a determinant. That is, one can compute

a determinant by this ‘update’ formula, as a combination of determinants of sub matrices.

The crucial feature of (3.12) is that the division is exact, thus avoiding fractions and pre-

venting explosion of numbers in the diagonal. This is the defining step of Bareiss’ algorithm;

Algorithm 10.

The correctness of this algorithm is easily proved by induction on k, and by an appeal

to equation (3.12). We can also show the division in line (5) is exact because (M)k−1,k−1 =

x
(k−1)
k−1,k−1, or by another appeal to (3.12). Hence, all the computed values remain inside the

domain D.

Proof of Bareiss Algorithm Correctness. The base case for k = 1, where i, j > k gives

(M)i,j =
(M)i,j(M)1,1 − (M)i,1(M)1,j

(M)0,0

=
x

(1)
i,j x

(1)
1,1 − x

(1)
i,1x

(1)
1,j

x
(0)
0,0

= x
(2)
i,j by (3.12)

For the induction, assume that at iteration k − 1 it is true that (M)i,j = x
(k)
i,j for i, j ≥ k.

Now, for the k-th iteration, we have i = k+ 1, · · · , n and j = k+ 1, · · · , n, meaning i, j ≥ k.

Therefore, by our assumption, we have

(M)i,j =
(M)i,j(M)k,k − (M)i,k(M)k,j

(M)k−1,k−1

=
x

(k)
i,j x

(k)
k,k − x

(k)
i,k x

(k)
k,j

x
(k−1)
k−1,k−1

= x
(k+1)
i,j by (3.12).

The induction terminates when k = n − 1, i = n, j = n; we then have (M)n,n = x
(n)
n,n =

det (M) as desired.
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3.2 The Subresultant Algorithm

The resultant is a fundamental operation in computer algebra that plays a central role in

many algorithms. A resultant can be constructed as the determinant of a “Sylvester matrix”,

a matrix formed by repeating the coefficients of two polynomials in a particular way. As we

have seen, calculating a determinant is not necessarily a simple task, especially when the

entries of the matrix are polynomials (as is the case here).

For this reason the resultant is typically computed by using a polynomial remainder

sequence (or PRS), which allows us to bypass explicit determinant calculation. We will

review a succession of PRSs that will each address weaknesses in its predecessor. These

problems are similar to those of determinant calculation in that one will have to develop a

fraction-free method that avoids explosions of intermediate terms.

However, as observed with the previously developed fraction-free method, we may still

encounter problems in the arithmetic. We saw that the Bareiss algorithm, despite utilizing

a system that overcomes many initial obstacles, may still be impractical in application.

The subresultant algorithm for calculating a resultant has a similar flaw, and fortunately a

similar solution.

The subresultant algorithm [4],[8] is given by Algorithm 11. The operations degx, prem

and lcoeffx, stand for the degree in x, pseudo-remainder, and leading coefficient in x

(respectively). All of these will be defined later. The problematic calculation occurs when

finding the pseudo-remainder on line (4). It can be easily demonstrated, especially when u

and v are sparse polynomials in many variables, that r̃ is very large relative to the dividend

and quotient given by the division on line (6). In fact r̃ can be much larger than the resultant

Res(u, v, x). To resolve this we will have the pseudo-remainder return a forgetful polynomial

so that the numerator on line (6) will not have to be explicitly stored. This is precisely the

same strategy used in the Bareiss calculation.

3.2.1 The Subresultant PRS

In the following sections we will develop the mathematics for working with resultants. The

ultimate goal is to construct a polynomial remainder sequence (abbreviated PRS) that will

compute resultants.

Sylvester’s resultant is defined for univariate polynomials, but this will not restrict us

from taking the resultant of polynomials in many variables as well. This is because we can
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Algorithm 11 Subresultant Algorithm

Input: The polynomials u, v ∈ D[x] where degx(u) > degx(v).
Output: r = Res(u, v, x).

1: (g, h) ← (1,−1);
2: while degx(v) 6= 0 do

3: d← degx(u)− degx(v);
4: r̃ ← prem(u, v, x); {r̃ is big.}
5: u← v;
6: v ← r̃ ÷ (−g · hd); {Exact division with v much smaller than r̃.}
7: g ← lcoeffx (u);
8: h← (−g)d ÷ hd−1; {Exact division.}
9: end while

10: r ← v;
11: return r;

regard any multivariate polynomial f ∈ k[x1, . . . , xn] as a univariate polynomial in x1 with

coefficients from the ring k[x2, . . . , xn].

Example 3.2.1. f = xy + xyz2 + y3z + x2z3 + xy3z + yz4 ∈ Z[x, y, z] can be re-written as

f = (z3)x2 + (y + y3z + yz2)x+ (yz4 + y3z) ∈ Z[y, z][x].

To emphasize that our coefficients may be polynomials we will use the ring D[x] (for

some UFD D). Now, when referring to the degree of a polynomial, we will use degx(f) to

indicate the polynomial’s degree in only the variable x. We also define lcoeffx (f) (leading

coefficient of f) to be the coefficient from the terms fi with largest degx(fi). For example,

degx(f) = 2 and lcoeffx (f) = z3 when f is taken from Example 3.2.1.

Definition 3.2.2. For polynomials f, g ∈ D[x], with positive degree, write

f = a0x
m + . . .+ am

g = b0x
n + . . . + bn

where a0 6= 0, b0 6= 0 and m > 0, n > 0. We define the Sylvester matrix of f and g with
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respect to x, denoted Syl(f, g, x), as the (m+ n)-square matrix

Syl(f, g, x) =
























a0

a1 a0

a2 a1
. . .

... a2
. . . a0

am
...

. . . a1

am a2
. . .

...

am
︸ ︷︷ ︸

n columns

b0

b1 b0

b2 b1
. . .

... b2
. . . b0

bn
...

. . . b1

bn b2
. . .

...

bn
























︸ ︷︷ ︸

m columns

(where the blanks are understood to be zeros).

Definition 3.2.3. The resultant of f and g ∈ D[x] with respect to x, denoted by Res(f, g, x),

is given by

Res(f, g, x) = det (Syl(f, g, x)) .

Example 3.2.4. For the polynomials f = xy − 1 and g = x2 + y2 − 4, regarding f and g

as polynomials in x with coefficients over Z[y], we have

Res(f, g, x) = det















y 0 1

−1 y 0

0 −1 y2 − 4















= y4 − 4y2 + 1.

As previously stated we would like to avoid the explicit use of determinants. To do this

we will use a PRS, which (as its name implies) is a sequence of polynomial remainders.

A simple and well known PRS is the sequence constructed by Euclid’s algorithm for gcd

calculation. Given f, g ∈ D[x] with degx(f) ≥ degx(g) this algorithm constructs a sequence

of univariate polynomials R0 = f,R1 = g, · · · , Rk ∈ D[x] where

R0 = R1 ·Q1 +R2 with degx(R2) < degx(R1)

R1 = R2 ·Q2 +R3 with degx(R3) < degx(R2)

...

Rk−2 = Rk−1 ·Q2 +Rk with degx(Rk) < degx(Rk−1)

Rk−1 = Rk ·Qk.



CHAPTER 3. APPLICATIONS 48

The names Q and R were deliberately chosen to reflect that Qi and Ri+1 are the quotient

and remainder from the division Ri ÷Ri−1. The essential property of the sequence is that

gcd (Ri−1, Ri) = gcd (Ri, Ri+1) which implies that Rk is an associate of the gcd (f, g) in

D[x].

In general, polynomial remainder sequences enable us to calculate a variety of values in

different ways. For instance there are variations of the PRS for Euclid’s algorithm that are

fraction-free and others that do exact divisions to keep coefficients small. This is usually

done by using pseudo-division to create a sequence of polynomial pseudo-remainders.

Definition 3.2.5. Let D be a UFD and f, g ∈ D[x] with f 6= 0, g 6= 0. Let α =

lcoeffx (g)δ+1 where δ = degx(f)−degx(g). Then the pseudo-remainder r̃ of f divided by

g is defined as the remainder of αf divided by g. The pseudo-quotient q̃ is similarly defined

as the quotient of the same division. Thus αf = gq̃ + r̃ with r̃ = 0 or degx(r̃) < degx(g) by

Theorem 1.3.23.

Theorem 3.2.6. Let D be a UFD and let g be a nonzero polynomial in D[x]. Then for

every nonzero f ∈ D[x] the pseudo-quotient q̃ and pseudo-remainer r̃ of f, g are in the ring

D[x]. Furthermore, q̃ and r̃ are unique.

Proof. The proof is similar to that of Theorem 1.3.23 for regular division. It can be shown

that the modified division algorithm yields exact coefficient arithmetic; thereby generating

q̃, r̃ ∈ D[x] (instead of potentially in D/D[x]).

Example 3.2.7. For f = 3x3 + x2 + x+ 5, g = 5x2 − 3x+ 1 ∈ Z[x], dividing f by g would

produce the quotient and remainder

q =
3

5
x+

14

25
and r =

52

25
x+

111

25
.

Whereas, if we premultiplied f by 52 and divided 52f by g we would get a pseudo-quotient

and pseudo-remainder

q̃ = 15x+ 14 and r̃ = 52x+ 111.

Moreover, no fractions appear while executing the division algorithm thereby avoiding cal-

culations in Q.

Remark 3.2.8. The previously developed division algorithms can be used to do pseudo-

division. To do this we multiply the dividend by the appropriate α and the division algorithm
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will return the correct pseudo-remainder and pseudo-quotient while avoiding fractions. We

will assume this algorithm has been implemented as prem(f, g, x), which returns the pseudo-

remainder r̃ of f÷g when the polynomials are considered univariate in x. We will also assume

the existence pquo(f, g, x) which returns the pseudo-quotient q̃.

Remark 3.2.9. Since we are regarding the polynomials as univariate, we must modify the

monomial ordering to produce the correct leading terms. The new monomial ordering must

calculate the leading term of x+ y2z3 to be x and not yz3 as >grlex would imply. One such

ordering is a product ordering [10] defined by fi >ord fj when degx(fi) > degx(fj) or when

degx(fi) = degx(fj) and fi >grlex fj.

Definition 3.2.10 (PRS). For D a UFD, let f and g be polynomials in D[x] with degx(f) >

degx(g). A polynomial remainder sequence (PRS) for f and g is a sequence of polynomials

R0, · · · , Rk ∈ D[x] satisfying the following conditions.

1. R0 = f , R1 = g

2. αi · Ri−1 = Qi ·Ri + βi · Ri+1 with αi, βi ∈ D for i = 1, 2, . . . , k − 1.

3. prem(Rk−1, Rk, x) = 0.

The subresultant PRS is the culmination of improvements that were incrementally made

to the basic Euclidean PRS. To best understand these improvements we will review a collec-

tion of examples used by Geddes et al. [10] and Knuth [13], starting with Euclid’s algorithm.

Example 3.2.11 (Euclid’s Algorithm). Let f, g ∈ Z[x] be given by

f = x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5

g = 3x6 + 5x4 − 4x2 − 9x+ 21

Since Z is not a field it will be necessary to carry out divisions in Q[x]. The sequence of

remainders given by Euclid’s algorithm (which is the PRS with αi = βi = 1) are

R2 = −
5

9
x4 +

1

9
x2 −

1

3
,

R3 = −
117

25
x2 − 9x+

411

25
,

R4 =
233150

19773
x−

102500

6591
,

R5 = −
1288744821

543589225
.
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Which implies that f and g are relatively prime since their greatest common divisor is a

unit in Q[x].

Example 3.2.11 exhibits the same problem as calculating determinants. The use of gcds

to simplify fractions becomes significant (especially when the coefficient ring is a polynomial

ring). One resolution to this problem would be to avoid fractions altogether by using pseudo-

remainders in lieu of the usual remainders.

Example 3.2.12 (WWGCD). Let f and g be as in Example 3.2.11. The PRS with βi = 1

and αi = lcoeffx (Ri)
δi+1 where δi = degx(Ri−1) − degx(Ri) is the sequence of pseudo-

remainders formed by direct pseudo-division at each step and is given by

R2 = − 15x4 + 3x2 − 9,

R3 = 15795x2 + 30375x − 59535,

R4 = 1254542875143750x − 1654608338437500,

R5 = 125933387795500743100931141992187500.

Although the method employed in the previous example succeeds in obtaining a gcd

while working entirely within Z[x], it fails (utterly) to keep the coefficients a workable size.

In fact the coefficient growth is so explosive that this algorithm has aptly been described as

the “world’s worst” gcd algorithm (WWGCD).

Ideally we would like an algorithm that can control coefficient explosion while avoiding

unnecessary gcd calculations. One may recall that a similar problem was (theoretically)

resolved in the previous section by using Sylvester’s identity. Bareiss used this identity to

develop a scheme that did exact divisions at each step, simultaneously controlling explosions

of intermediate pivots and avoiding gcds. In much the same spirit, Collins [8] and Brown [5]

independently developed the subresultant PRS algorithm that accomplishes the same feat.

Definition 3.2.13. The subresultant PRS [4] is defined by

αi = rδi+1
i , β1 = (−1)δ1+1, βi = −ri−1 ·Ψ

δi
i for 2 6 i 6 k

where ri = lcoeffx (Ri), δi = degx(Ri−1)− degx(Ri) and Ψi is defined by

Ψ1 = −1, Ψi = (−ri−1)δi−1 ·Ψ
1−δi−1

i−1 for 2 6 i 6 k.

(Note βi, ri and Ψi do no involve x).
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Example 3.2.14. When applied to the polynomials f and g from Example 3.2.11, the

subresultant PRS gives

R2 = 15x4 − 3x2 + 9,

R3 = 65x2 + 125x− 245,

R4 = 9326x + 12300,

R5 = 260708 = Res(f, g, x).

The subresultant algorithm produces Rk = Res(R0, R1, x), by the update formula

Ri+1 =
prem(Ri−1, Ri, x)

βi
(i = 1, . . . , k − 1) (3.13)

where βi is given by Definition 3.2.13. Unfortunately it is not easy to see why the sequence

of βi’s work. Superficially, equation (3.13) would impy that Ri+1 lies in D/D[x] (D/D is the

quotient field of D) rather than in D[x]. Moreover, it is not clear from Definition 3.2.13

that Ψi (and therefore βi) belong to D. In fact, both Collins and Brown noted they were

unable to show that Ψi was in D and proceeded in their proofs with βi,Ψi ∈ D/D. Not until

two decades later was a proof given by Ho and Ken Yap [11] who used subresultant chains

to show that the Ψi’s could be regarded as subdeterminants of matrices consisting of the

coefficients of R0 and R1.

To show that Ri lies in D[x] is also highly non-trivial. In a follow up to Brown’s original

paper [4], Brown and Traub [6] developed the Fundamental Theory of Subresultants which

reduces the j-th subresultant (the determinant of a submatrix of Syl(f, g, x)) to an explicit

product. By proving that each Ri given by the subresultant PRS was a particular j-th sub-

resultant (the 0-th subresultant being the classical one), Collins and Brown simultaneously

proved that every Ri ∈ D[x] and that the subresultant PRS was correct.

Combining the results of Ho, Yap, Brown and Collins gives Ri+1 ∈ D[x] and βi ∈ D

for i = 2, . . . , k − 1. Since the pseudo-remainder must lie in D[x] we conclude that the

division given by equation (3.13) is exact. That is, the division will generate no remainder

or fractions and will produce a quotient in D[x]. We will take this for granted and state

(without proof) the following theorem.

Theorem 3.2.15 (Ho, Yap 1996). For D a UFD the subresultant PRS produces R0,

R1,. . .,Rk ∈ D[x], a finite sequence of polynomials, with βi,Ψi ∈ D for i = 1 . . . k − 1,

such that Rk = Res(R0, R1, x).
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3.2.2 Correctness of the Subresultant Algorithm

We now give a proof of the correctness of Algorithm 11 (the Subresultant algorithm). We

show that the variables of this algorithm satisfy the relations of Definition 3.2.13.

Proof of Subresultant Algorithm Correcntess. We show (by induction on i) that the vari-

ables of Algorithm 11 satisfy

d = δi r̃ = βiRi+1 u = Ri (3.14)

v = Ri+1 g = lcoeffx (Ri) = ri h = Ψi+1 (3.15)

at the end of iteration i. Collectively these equations serve as our loop invariant.

For the base case let us determine the values of (3.14) and (3.15) at the end of iteration

one. Recall that initially, before the loop is entered (what can be considered iteration zero),

we have u = R0, v = R1, g = 1 and h = −1. Noting the difference between r̃ (the

pseudo-remainder) and ri (the leading coefficient of Ri), the first iteration of Algorithm 11

does

d← degx(u)− degx(v) = degx(R0)− degx(R1) = δ1

r̃ ← prem(u, v, x) = prem(R0, R1, x) = β1R2

u← v = R1

v ← r̃ ÷ (−g · hd) = β1 · R2 ÷ ((−1) · (−1)δ1
︸ ︷︷ ︸

β1

) = R2

g ← lcoeffx (u) = lcoeffx (R1) = r1

h← (−g)d ÷ hd−1 = (−r1)δ1 ÷ (−1)δ1−1 = (−ri)
δ1 ·Ψ1−δ1

1 = Ψ2

and thereby satisfies the loop invariant.

For the inductive step we will assume that the loop invariant holds at iteration i and

infer from this that it holds at iteration i+ 1 as well. At iteration i+ 1 (using the induction
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hypothesis) we have

d← degx(u)− degx(v) = degx(Ri)− degx(Ri+1) = δi+1 (3.16)

r̃ ← prem(u, v, x) = prem(Ri, Ri+1, x) = βi+1 · Ri+2 (3.17)

u← v = Ri+1 (3.18)

v ← r̃ ÷ (−g · hd) = (βi+1 ·Ri+2)÷ (−ri ·Ψ
δi+1

i+1
︸ ︷︷ ︸

βi+1

) = Ri+2 (3.19)

g ← lcoeffx (u) = lcoeffx (Ri+1) = ri+1 (3.20)

h← (−g)d ÷ hd−1 = (−ri+1)δi+1 ÷Ψ
δi+1−1
i+1 = (−ri+1)δi+1 ·Ψ

1−δi+1

i+1 = Ψi+2 (3.21)

showing that the loop invariant holds for any arbitrary iteration i. Namely it holds at i =

k−1 when v = Rk and degx(v) = 0. We have from Theorem 3.2.15 that Rk = Res(R0, R1, x)

which implies that the subresultant algorithm returns v = Res(R0, R1, x) as desired.

3.2.3 The Extended Subresultant Algorithm

Given a UFD D and non-constant polynomial m ∈ D[x], we can form the quotient ring

D[x]/ 〈m〉. When m is an irreducible element of D[x] (that is, there is no non-constant

t ∈ D[x] such that t 6= m and t divides m), this quotient ring will be a field. Of course,

when working in fields it is natural to ask if there is a systematic way of finding inverses.

By modifying the the subresultant algorithm we will be able to do this by finding s, t ∈ D[x]

such that s · u + t ·m = Res(u,m, x). In this case degx(s) < degx(m) and the inverse of

u ∈ D[x]/ 〈m〉 is s/Res(u,m, x).

Definition 3.2.16. Let R0, . . . , Rk be the PRS given by the subresultant PRS. Let Qi =

pquo(Ri, Ri−1) and αi and βi be defined as they were in Definition 3.2.13. The following

relations give the extended subresultant PRS implemented by Algorithm 12.

S0 = 1 S1 = 0 Si+1 = (αi · Si−1 −Qi · Si) /βi

T0 = 0 T1 = 1 Ti+1 = (αi · Ti−1 −Qi · Ti) /βi.

We now give a proof that Algorithm 12 generates s and t with the desired property:

s · u+ t · v = Res(u, v, x).

Proof of Correctness of Extended Subresultant Algorithm. We can adapt the proof from the
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Algorithm 12 Extended Subresultant Algorithm

Input: The polynomials u, v ∈ D[x] where degx(u) ≥ degx(v) and v 6= 0.
Output: r = Res(u, v, x) and s, t ∈ D[x] satisfying s · u+ t · v = Res(u, v, x).

1: (g, h) ← (1,−1);
2: (s0, s1, t0, t1)← (1, 0, 0, 1);
3: while degx(v) 6= 0 do

4: d← degx(u)− degx(v);
5: r̃ ← prem(u, v, x);
6: q̃ ← pquo(u, v, x); {r̃ and q̃ are computed simultaneously.}
7: u← v;
8: α← lcoeffx (v)d+1;
9: s← α · s0 − s1 · q̃;

10: t← α · t0 − t1 · q̃;
11: (s0, t0)← (s1, t1);
12: v ← r̃ ÷ (−g · hd);
13: s1 ← s÷ (−g · hd)
14: t1 ← t÷ (−g · hd)
15: g ← lcoeffx (u);
16: h← (−g)d ÷ hd−1;
17: end while

18: (r, s, t)← (v, s1, t1);
19: return r, s, t;
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previous section by adding the equations

q̃ = Qi s0 = Si s1 = Si+1 (3.22)

α = αi t0 = Ti t1 = Ti+1 (3.23)

to the loop invariant. We will omit the details of this proof so as to avoid repetition, and

assume that the equations (3.14), (3.15), (3.22) and (3.23) hold at the end of iteration i for

Algorithm 12.

What remains to be shown is that Algorithm 12 produces values s and t such that

s · u+ t · v = Res(u, v, x). We prove (by induction on i) that

Si · R0 + Ti ·R1 = Ri (3.24)

for i ≥ 0 and then use (3.22) and (3.23) to relate this back to the algorithm. Specifically,

we will show that the variables s1 and t1 satisfy

s1 ·R0 + t1 · R1 = Res(R0, R1, x) (3.25)

on termination of Algorithm 12.

For the base case recall that S0 = T1 = 1 and S1 = T0 = 0 by Definition 3.2.16 which

trivially satisfies (3.24) for both i = 0 and i = 1.

For the induction hypothesis assume that (3.24) is satisfied for i = n − 1 and i = n.

Setting i = n− 1 and i = n in (3.24) gives the relations

Sn−1 · R0 + Tn−1 ·R1 = Rn−1 and Sn · R0 + Tn ·R1 = Rn.

To conclude the induction we see that setting i = n + 1 in the left hand side of (3.24)

and using Definition 3.2.16 gives,

Sn+1 ·R0 + Tn+1 · R1 =
αn · Sn−1 −Qn · Sn

βn
· R0 +

αn · Tn−1 −Qn · Tn
βn

· R1

=
αn · (Sn−1 · R0 + Tn−1 ·R1)−Qn · (Sn ·R0 + Tn · R1)

βn

=
αn · Rn−1 −Qn · Rn

βn
by induction.

=
βn ·Rn+1

βn
by Definition 3.2.10.

= Rn+1
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showing that (3.24) is held for arbitrary i. Namely (3.24) will hold at i = k − 1 when

Rk = Res(R0, R1, x) as guaranteed by Theorem 3.2.15.

Now, using the equations of (3.22) and (3.23) we have that at the end of iteration k− 1

of Algorithm 12 that the variables s1 and t1 satisfy

s1 · R0 + t1 ·R1 = Sk · R0 + Tk · R1 = Rk = Res(R0, R1, x).

Thus Algorithm 12 returns s and t with the desired property.



Chapter 4

Implementation

Here we present the main ideas behind the implementation (in C) of the algorithms discussed

in this thesis. We will not give any complete listings since they are long and optimized to

a point where they do not much resemble the pseudo-code. Instead we will discuss the

data structures and key ideas necessary to carry out the implementation. We will also show

how the compiled code behaves in the Maple environment. Since speed and space are

primary concerns, this implementation has not been generalized to handle polynomials with

coefficients from an arbitrary ring. We will only allow coefficients from the set of integers

given by the C data type int (the so-called ‘machine integers’). It would be a straightforward

modification to use arbitrary integers or real numbers (floats) as coefficients, but this would

require the use of the GMP library for arbitrary precision arithmetic.

4.1 Packed Monomial Represenation

There are many ways to represent polynomials in a computer language [17]. We can classify

a representation as being recursive or distributed, sorted or not sorted, sparse or dense,

variables in or variables out, which already gives us at least sixteen representations. Since

the timings given in Section 4.4 are compared with Maple, and also to contrast our repre-

sentation against something, let us discuss Maple’s representation.

At its core Maple can represent sums, products, and names. In this environment a

polynomial has the natural representation as a sum of products (product actually refers to

exponentiation). Figure 4.1 demonstrates the maple representation of a simple polynomial.

57
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SUM7 3 • 5 • -7 •

PROD5 NAME x 2 NAME y 1

PROD3 NAME x 3 PROD3 NAME y 4

3x2y 5x3
−7y4

Figure 4.1: 3x2y + 5x3 − 7y4 as represented by Maple.

This representation is distributed (a recursive representation regards every polynomial

being in a single variable, where coefficients may be polynomials as well), not sorted (the

terms are in no particular ≻-order), sparse (0 terms are not represented), and the variables

are in the structure. The motivation for creating polynomials like this was to satisfy the

initial Maple ambition of doing calculus. Being able to quickly identify something as a sum

or product makes taking derivatives very natural.

However, this representation is not very well suited for doing polynomial arithmetic on a

large scale. For one it is not compact, each term requires the creation of a product structure,

and these structures are strewn across memory which is generally undesirable. Additionally,

the terms are not given in ≻-order and are therefore not in standard form, a requisite for

each one of our algorithms.

But the most pronounced deficiency with this representation is the problem of monomial

comparison and multiplication. As we have seen our algorithms are governed mainly by the

speed at which we can do these operations. With Maple’s representation, in order to compare

or multiply monomials we must first locate the name (variable) in the product structure

and then identify its exponent. Repeating this task for each variable, since the variables can

be given in any order, requires at least linear time to accomplish and does a linear amount

of integer arithmetic (linear time in the number of variables.)

The packed structure given and analyzed by Monagan and Pearce [14] is based on Bach-

mann and Schönemann’s scheme [1], which overcomes these problems. Instead of using a

special product structure, Bachmann and Schöenmann’s scheme (used by Singular) stores
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a total degree and a vector of exponents. For example the monomial x2y3z5, with the or-

dering x ≻ y ≻ z, would be represented by < 10, 2, 3, 5 > (in general xα is represented

by 〈|α|, α1, . . . , αn〉). Now we get constant time access to the exponents since the vector is

ordered.

Monagan and Pearce also discussed how to reduce the amount of arithmetic needed to

test ≻-order to one machine instruction. To understand why this is a huge improvement

recall that xα >lex x
β when (α− β)’s leftmost non-zero entry is positive. In order to test

this we search for i such that αi − βi < 0. In the case where xα >lex x
β we will never find

such an i and end up checking every difference. This means we usually do a linear (in the

number of variables) amount of arithmetic to test ≻-order.

The trick is not to represent the exponent vector < 10, 2, 3, 5 > as a list, but rather

as a single integer so that monomial comparisons and multiplications become single integer

comparisons and additions. To accomplish this consider the (now) typical 64-bit word.1

The register, literally a sequence of 64 switches, is where the processor stores numbers.

A 64-bit register can represent numbers in the range of 0 to 18446744073709551615 or

264−1. When numbers are in this range, computations involving them can be done directly

in the processor. These computations are called machine instructions and are the fastest

computations a processor can do.

To demonstrate how we pack a monomial into an integer let us pack a specific monomial

first, then generalize after. We can place the exponent vector < 10, 2, 3, 5 > into a 32-bit

register by doing the following: partition the register into 4 equal pieces, give each number in

the exponent vector a 32
4 = 8 bit representation, and then concatenate these binary numbers

into one large bit sequence, the result is a 32-bit integer. This process is depicted in Figure

4.2.

The generalization of this process is not hard to see. All that is needed to pack more

variables is more partitions of the register. In the case where this division is not exact we

give all extra bits to the first partition that represents the total degree. This is because the

total degree will always be the largest number being packed.

The clear drawback of this representation is that not all monomials can be packed. We

are unable to represent monomials with exponents so large that they can not fit into a par-

tition. To exacerbate this problem these partitions shrink as more variables are introduced.

1Although 64-bit processors didn’t become common in personal computers till 2003 they have existed in
supercomputers since the 1960s.
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0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1

〈

10 , 2 , 3 , 5
〉

x2y3z5

100795141

10 2 3 5

Binary Packing

Regular Monomial

Exponent Vector

Integer Packing

Figure 4.2: The packing of the term x2y3z5 is demonstrated. The exponent vector is packed
by converting its elements into bit strings and concatenating the result. The whole box in
the Binary Packing represents a 32-bit register and the subdivisions are the 8-bit partitions.
The integer that represents this 32-bit long sequence is 100795141.

Fortunately, in practice (especially when doing gcd’s and Gröbner basis calculations), it

is rarely the case that monomials have exponents that are very large. Table 4.1 lists the

maximum degrees for a given number of variables for both 64-bit and 32-bit processors.

The packing we have just described is best suited for use with the graded lexicographic

ordering (for just lexical ordering we could simply leave out the total degree and pack in

the exact same way).

Theorem 4.1.1. Suppose xα and xβ pack to the integers A and B respectively and let b be

the number of bits allocated for a given partition, then:

1. xα >grlex x
β when A > B.

2. xα × xβ packs to A+B when deg(xα) + deg(xβ) < 2b.

3. xα ÷ xβ packs to A−B when xβ|xα.

Proof. Let xα and xβ be monomials that correspond to the exponent vectors 〈|α|, α1, . . . , αn〉

and 〈|β|, β1, . . . , βn〉. Suppose when we pack these vectors we get the bit sequences A =

a0 ◦a1 ◦ . . . ◦an and B = b0 ◦ b1 ◦ . . . ◦ bn, where ◦ denotes concatenation and ai is the binary

representation of αi when i > 0 and |α| when i = 0 (and similarly so for B with β).
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Table 4.1: Degree limitations when packing monomials in a 64-bit or 32-bit register. The
heading #bits refers to the number of bits alloted for packing a single exponent.

64-bit 32-bit

#variables #bits max deg #bits max deg

2 21 2,097,151 10 1023
3 16 65,535 8 255
4 12 2047 6 6
5 10 1023 5 31
6 9 511 4 15
7 8 255 4 15
8 7 127 3 7
9 6 63 3 7
10 5 31 2 3
11 5 31 2 3
15 4 15 2 3
21 3 7 1 1
31 2 3 1 1
63 1 1 - -

1. Suppose A > B then we have a0 ◦ . . . ◦ an > b0 ◦ . . . ◦ bn which means there is an

i > 0 such that ai > bi where aj = bj for 0 6 j < i. If i = 0 then we have

α0 > β0 ⇒ x
α >grlex x

β by Definition 1.2.8. If i 6= 0 then the integer representation

for ai and bi satisfy αi > βi when i > 0 where αj = βj for 0 < j < i. This also means

that xα >grlex x
β by Definition 1.2.8.

2. The exponent vector for xα × xβ is 〈|α+ β|, α1 + β1, . . . , αn + βn〉. We have that

|α| + |β| > (αi + βi) for i > 0. Therefore when |α + β| < 2b it is the case that

(αi + βi) < 2b for i > 0. In other words, when the sum of the total degrees are small

enough to fit into there partition, so must the individual sums of exponents fit as

well. Therefore the bit sequence (a0 + b0) ◦ (a1 + b1) ◦ . . . ◦ (an+ bn) will represent the

exponent vector for xα × xβ, which is the binary number representing A+B.

3. When xβ|xα the exponent vector for xα÷xβ is given by
〈
|α−β|, α1−β1, . . . , αn−βn

〉
.

Since there is no i where αi − βi < 0 each ai − bi yields a positve binary number that

must fit in its partition. The resulting bit sequence would be (a0 − b0) ◦ (a1 − b1) ◦

. . . ◦ (an − bn) represented by the integer A−B.
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Now, in order to check xα >grlex x
β or calculate xα×xβ, all we must do is compare the

monomial’s integer representations with > (regular greater than) or add the representations.

Either of which can be done in one machine instruction. Reducing these tasks, that were

once potentially linear, to one machine instruction is a huge improvement indeed.

To represent a polynomial using the packed representation is easy. A polynomial will

be two arrays, one integer array for the monomials, and another array (of any data type)

for the coefficients. This representation is depicted in Figure 4.3. We order the arrays so

that the monomial at position i in the monomial array has its coefficient at position i in the

coefficient array. If we order the monomial array by > (regular greater than), and reorder

the coefficient array accordingly, then the terms of the polynomial will be in ≻-descending

order, as required by our algorithms.

POLY x y z

COEFF -7 5 3

MONO 67109888 50528256 50462976

Figure 4.3: 3x2y + 5x3 − 7y4 in the packed representation.

4.2 Data Types

We now give the unabridged data structures used in the C-implementation of this library.

The first structure we introduce is that of a single term. A term consists of an integer

that represents a monomial and (in this case) an integer coefficient. The modifier unsigned

allows us to use the leading bit of the register that would otherwise be used to indicate

the sign of the integer. In creating this structure we are deviating slightly from the packed

representation given in the previous section, but not in any meaningful way.

Listing 4.1: The term structure.

1 struct term {

2 unsigned int mono ; //monomials

3 int c o e f f ; // c o e f f i c i e n t s

4 } ;

5 typedef struct term TermType ;
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The second, and most important structure, allows us to declare a delayed polynomial in

the C-language. The creation of this structure was paramount to the development of the

library and its relevance should not be understated. The crucial observation, that prompted

lines (7)-(10) of the listing below, is that a polynomial can be regarded as the application of

some method (addition, multiplication, division) to two other polynomials. In this respect

H should not be regarded as a simple list of terms, but rather a pointer to a method that

can calculate an arbitrary term.

Listing 4.2: The delayed polynomial structure.

1 struct poly {

2 int N; //number o f f orced terms

3 TermType ∗ terms ; // f orced terms , the l a s t o f which must be zero

4 char ∗var ; // v a r i a b l e s

5 int NumVars ; //number o f v a r i a b l e s

6 // This po l y = Method (F,G) where method i s amoung ADD,MULT,DIVIDE//

7 struct poly ∗F1 ;

8 struct poly ∗F2 ;

9

10 TermType (∗Method ) ( int n , struct poly ∗F, struct poly ∗G, struct poly ∗H) ;

11 int s t a t e [ 6 ] ; // l o c a l v a r i a b l e s f o r Method

12 /∗ S p e c i a l s t a t e f o r a Di v i s i on

13 s t a t e [ 0 ] = S l eep

14 s t a t e [ 1 ] = ActiveG

15 s t a t e [ 2 ] = P ( a machine prime )

16 s t a t e [ 3 ] = 0 ( q u o t i e n t ) / 1 ( remainder )

17

18 i f s t a t e [3]=0 then

19 s t a t e [ 4 ] = address o f remainder

20 e l s e

21 s t a t e [ 4 ] = address or q u o t i e n t

22 end i f ∗/

23

24 /∗members o f the Heap l ook l i k e [ mono [ f ( i )∗ g ( j ) ] , i , j ] ∗/

25 HeapType ∗Heap ; // l o c a l heap f o r Method

26 } ;

27

28 typedef struct poly PolyType ;
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The basic methods are addition, multiplication, and subtraction (division is a slight

variant). Based on the delayed algorithms given in Chapter 2 these methods are designed to

“pick up where another calculation left off”. They return the n-th term from the application

of a method to F and G. H stores the result and also maintains information of how the

last computation ended.

Listing 4.3: Methods.

1 TermType h_ADD ( int n , PolyType ∗F, PolyType ∗G, PolyType ∗H) ;

2 TermType h_SUB ( int n , PolyType ∗F, PolyType ∗G, PolyType ∗H) ;

3 TermType h_MULT ( int n , PolyType ∗F, PolyType ∗G, PolyType ∗H) ;

The procedure Term produces the n-th term of the delayed polynomial F , calculating

it if necessary. This procedure allows us to follow the pseudo-code given in Chapter 2 more

directly as Term(i, F ) = Fi.

Listing 4.4: Term.

1 TermType Term ( int n , PolyType ∗F) {

2 i f (n>F−>N) {

3 return F−>Method(n , F−>F1 , F−>F2 , F ) ;

4 }

5 return F−>terms [ n ] ;

6 } ;

The final loose end we must tie up is how to represent polynomials that are not delayed.

That is, how do we define the initial few polynomials we start from, or what happens when

a polynomial has no more delayed terms. For this we have the special Immediate method.

An Immediate polynomial is one with no delayed terms. Once a polynomial has forced all

of its terms its method is changed to Immediate.

Listing 4.5: Immediate.

1 TermType Immediate ( int n , struct poly ∗F, struct poly ∗G, struct poly ∗H) {

2 i f (n>F−>N) {

3 return F−>terms [ F−>N+1] ; // terms [F−>N+1] = 0

4 } ;

5 return F−>terms [ n ] ;

6 } ;
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4.3 Sample Session

To use this library in a more meaningful way we have imported it into Maple. In order

to do this we compiled the C-code into a shared library and built a custom wrapper. A

wrapper allows external code to be interfaced with Maple to be used in a session. For simple

procedures Maple can automatically generate these wrappers, but when more complex data

structures are required (which is most of the time) these wrappers have to be coded by hand

(hence the name custom wrapper), which is a non-trivial task.

We begin by reading the file DelayedPoly.mpl which contains all the procedures (some

externally linked) to work with delayed polynomials. Our examples will be in Z[x, y, z] and

our monomial ordering is set to graded lexical. The first command invoked is MakePoly

which converts a Maple represented polynomial to an Immediate delayed polynomial.

> read "DelayedPoly.mpl":

> var:=[x,y,z];

var := [x, y, z]

> f:=randpoly(var,coeffs=rand(1..1));

2 3 2 3 3 4

f := x y + x y z + y z + x z + x y z + y z

> g:=randpoly(var,coeffs=rand(1..1));

2 3 3 5 4 2 2

g := x + x y + y z + x + x z + x y z

> F:=MakePoly(f,var);

F := "External/0xe6d60"

> G:=MakePoly(g,var);

G := "External/0x3a030"

External/ indicates the address in memory where F can be found. It is of no relevance to

the Maple session but is useful for debugging.

We can now perform our first operation in the lazy environment. We will see that all

that is received by operating on two delayed polynomials is yet another address in memory

(of another delayed polynomial). Unlike the F and G, which are Immediate polynomials,

H is fully delayed and is pointing to a method to calculate its n-th term.

> H:=ADD(F,G);
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H := "External/0x20f298"

To access single terms of H is easily done with the Term procedure. However this

procedure is doing some additional work converting the packed representation back to Maple

form. As this is the case there is an additional command RawTerm which returns the term

in packed representation doing no unnecessary work.

> RawTerm(3,H);

1, 84017410

> Term(3,H,var);

2 2

x y z

> Term(100,H,var);

0

It is often useful to calculate H∞ and display its terms. This is done by forcing terms

until zero is reached, indicating that all terms have been calculated. For this we have two

procedures flook (force look), which forces and prints every raw term, and alook (algebraic

look) which forces and converts every term back to Maple, summing the results to form a

Maple polynomial.

> flook(H);

[ [1,84213760],[1,84148225],[1,84017410],[1,84017155],[1,83952385],

[1,83886340],[1,67175168],[1,67174658],[1,67109633],[1,67109123],

[1,33685504],[1,33620224],[0,0] ]

> alook(H,var);

5 4 2 2 2 3 3 4 3 2 3

x + x z + x y z + x z + x y z + y z + x y + x y z + y z

3 2

+ y z + x + x y

> expand( alook(H,var) - (f+g) );

0

It should be noted that Maple’s polynomial representation has no implied order for terms.

That is, the terms of the polynomial given by alook are in no particular order, and are
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in no way representing the actual order which is intact for the list of packed monomials

given by flook. Despite this, alook gives us a convenient means of checking correctness as

illustrated above.

Multiplication and subtraction work as one would expect, so we will not give any exposi-

tion of their behavior. Since division is sufficiently different we give a sample session below.

In this case, forcing terms of the quotient Q may force terms of the remainder R. This

prompted the creation of the procedure ForcedTerms which returns the number of forced

terms of a delayed polynomial.

> var:=[x,y,z]:

> f:=randpoly(var)*randpoly(var);

2 2 3 3 4

f := (87 x y - 56 x y z - 62 x z + 97 x y z - 73 y z )

3 2 2 3 3 4 3

(-82 y + 80 x z - 44 y z + 71 y z - 17 x y - 75 x y z)

> g:=randpoly(var);

2 2 2 2 2 3 4

g := 6 y + 74 x y + 72 x z + 37 x y z - 23 x y z + 87 x z

> F:=MakePoly(f,var):

> G:=MakePoly(g,var):

> Q,R:=DIVIDE(F,G,101):

> Term(2,Q,var);

3

-35 x y z

> ForcedTerms(R);

2

> Term(3,R,var);

2 4 4

29 y z x

> ForcedTerms(Q);

2
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> Expand(f-g*alook(Q,var)-alook(R,var)) mod 101;

0

4.4 Timings

To conclude this chapter we time the delayed multiply and divide routines using some mod-

erately large examples. To be more precise first we take f and g in Z503[x, y, z] to ensure that

the coefficients in f × g don’t fall outside the range of a 32-bit processor ([−2−31, . . . , 231]).

That is, we use Expand() mod 503 when defining f and g. Then we use the Maple time()

command to measure the runtime of force(H) and force(Q) when H:=MULT(F,G) and

Q,R:=DIVIDE(H,F,503).

In order to compare our times we also provide timings for Maple’s expand(f*g) and

Divide(h,f) mod 503 where h:=Expand(f*g) mod 503. It should be noted that the dis-

parity in the timings is not an indication that the delayed routines are fundamentally better.

The improvements are largely the result of computing in a compiled C-library (as oppose to

the Maple kernel) and using a packed monomial representation. We only provide the Maple

times to show that computing in a delayed fashion does not result in an overall slowdown

that makes it worse than the usual methods.

f × g (fg)÷ f
#f,#g #(fg) DelayedPoly Maple 11 DelayedPoly Maple 11

f = (1 + x+ y + z)25 3276 23426 4.98s 12.34s 4.94s 18.30s

g = f + 1

f = (1 + x+ y2 + z3)20 1771 78960 1.36s 6.26s 1.45s 12.55s

g = (1 + z + y2 + x3)20

f = (1 + x+ y3 + z5)20 1771 180585 1.40s 8.19s 1.45s 12.55s

g = (1 + z + y3 + x5)20

Table 4.2: The first, second, and third rows correspond to a dense, somewhat sparse, and
very sparse example (respectively). The notation #f indicates the number of terms in the
polynomial f as is the same of #g and #(fg). The time is given in seconds.
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