
Problem 1 : Steffen and Greg

Since f is continuous on a bounded region we have that it must attain a maximum value
f(c), at c, on that range. Using Hölders inequality from page 139 (Rudin) and setting f = f ′,
g = 1, and p = q = 2 taking the integral from 0 to c we have

⇒
∣∣∣∣∫ c

0

f ′dα

∣∣∣∣ ≤ {∫ c

0

|f ′|2dα

}1/2{∫ c

0

|1|1dα

}1/2

(1)

⇒ |f(c)|2 ≤
∫ c

0

|f ′|2dα× c (2)

⇒ |f(c)|2 = ||f ||2∞ ≤
∫ c

0

|f ′|2dα× c ≤
∫ 1

0

|f ′(x)|2dα (3)

⇒ ||f ||2∞ ≤
∫ 1

0

|f ′(x)|2dα (4)

Problem 2 :

fn being differentiable everywhere would imply that it is everywhere continuous. f ′n ≤ 2
imples that fn has bounded slope and it is easy to show that fn is an equicontinuous family
of functions (let δ = ε

2
). (In fact it can be shown that if any family of continuous functions

has bounded slope that it is necessarily a equicontinuous family).

On any finite compact interval [−A, A] we have that f is uniformly bounded ⇒ pointwise
bounded, since f is continuous on a compact region.

We appeal to theorem 7.25 to show that fn must contain a uniformly convergent subsequence
which must converge to g(x). Along with fn(0) = 0 implying pointwise convergence at at
least one point we have that limn→∞ fn = g(x) unifomally.

Since fn is continuous for any n we have that g(x) is also continuous by theorem 7.12. Taking
A →∞ we have this convergence along the entire real line.

Problem 3 :

(a) Calculating f̂ by the usual formula we have (integrating by parts) the following:

f̂ ′ =
1

2π

∫ π

−π

f ′(x)e−inxdx =
−1

2π

∫ π

−π

f(x)−ine−inxdx = in

(
1

2π

∫ π

−π

fe−inxdx

)
= inf̂ = cnin

Which implies that f ′(x) ∼
∑

n∈Z cnineinx

(b) We have that c0 = 1
2π

∫ π

−π
f(x)ei0xdx =

∫ π

−π
f(x)dx = 0. And by Parseval’s thm:∫ π

−π

|f ′(x)|2dx = 2π
∞∑
−∞

|cnn|2 ≥ 2π
∞∑
−∞

|cn|2 =

∫ ∞

−∞
|f(x)|2dx



(c) We first assume that equality holds, and use Parsevals thm again (in (6))∫ π

−π

|f ′(x)|2dx =

∫ π

−π

|f(x)|2dx (5)

∞∑
−∞

|cnn|2 =
∞∑
−∞

|cn|2 (6)

We know that equality can not hold for any |n| > 2 so (6) may be re-written as:

c−1e
−i(−1)x + c0 + c1e

−inx = c−1e
inx + 0 + c1e

−inx (7)

c−1e
inx + c1e

−inx = aeinx + be−inx (8)

To prove the other direction we set f(x) = aeinx + be−inx and calculate f̂ as usual.

f̂ =
1

2π

∫ π

π

aeixe−inxdx +
1

2π

∫ π

π

be−ixe−inxdx (9)

=
1

2π

∫ π

π

aeix(1−n)dx +
1

2π

∫ π

π

aeix(−1−n)dx (10)

So we have that

f̂ =


a n = 1
b n = −1
0 otherwise


Which implies that∫ π

−π

|f ′(x)|2dx = 2π
∞∑
−∞

|cnn|2 = 2π(a2 + b2) = 2π
∞∑
−∞

|cn|2 =

∫ π

−π

|f(x)|2dx

as desired.

Problem 4 : Steffen

(b) ∫ π

−π

|f ′(x)|2dx =
∞∑
−∞

|cnin|2 (11)

=
∞∑
−∞

cn(c̄nn
2) (12)

=

(
∞∑
−∞

|cn|2
) 1

2
(

∞∑
−∞

|cnn
2|2
) 1

2

(13)

≤
(∫

|f(x)|2dx

) 1
2
(∫

|f ′′(x)|2dx

) 1
2

(14)



Line (11) is given by Problem 3 (a) where the transition from (13) to (14) is made by
calculating f̂ ′′ = −cnn

2 again by an integration by parts and using the conclusions from
(a).

Problem 5 :

(a) φ(x) = x2+2
4

will have max/min values at x ∈ {0, 1} since φ(x) has only one critical point
at 0. Since φ(0) = 1

2
and φ(1) = 3

4
we have that φ : [0, 1] → [0, 1].

Since |φ′(x)| = 3x2

4
< 3

4
we have that

|φ(x)− φ(y)|
|x− y|

<
3

4
⇒ |φ(x)− φ(y)| < 3

4
|x− y|

which implies φ is a contraction.

(b) We are guaranteed that φ has a fixed pt. N which means in the sequence xn+1 = φ(N) =
N . So {xn} limits to the fixed point of x3+2

4
which may be established with a calculator

through fixed point iteration. Namely, calculate φ(0) let this equal to x and calculate φ(x)
repeat this process until your calculator starts repeating an answer. N ≈ 0.539171261.

Problem 6 :

Lets assume that we have the root a such that P (a) = 0 the Problem dictates we must have
φ(a) = a.

0 = a3 − 2a2 − 9a + 4 (15)

a =
a3 − 2a2 + 4

9
(16)

φ(a) =
a3 − 2a2 + 4

9
(17)

Now prove φ is a contraction as in Problem 5.

Problem 7 :

We have that

u = ey + x v = ex − y (18)

f1 = u− ey − x f2 = v − ex + y (19)

So

A(x, y) =

[
∂f1/∂x ∂f1/∂y
∂f2/∂x ∂f2/∂y

]
=

[
−1 −ey

−ex 1

]
and

B(u, v) =

[
∂f1/∂u ∂f1/∂v
∂f2/∂u ∂f2/∂v

]
=

[
1 0
0 1

]



(a) We have A(0, 0) =

[
−1 −1
−1 1

]
and since A(0, 0) is invertible, namely A−1 = −1

2

[
1 1
1 −1

]
by Inverse Function Theorem we have that f−1(x, y) must exist about a neighborhood
of (0, 0). So it is possible to express (x, y) as a differentiable function of (u, v) since this
is exactly f−1(u, v) = (x, y).

(b) We know that[
∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

]
= −A−1(0, 0)B(u(0, 0), v(0, 0)) = −A−1(0, 0)B(1, 1)

So the desired derivatives may be extracted from[
∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

]
=

[
1/2 1/2
1/2 −1/2

] [
1 0
0 1

]
=

[
1/2 1/2
1/2 −1/2

]
Problem 8 :

Similarly in this Problem we have that

u = x2 − y2 v = 2xy (20)

f1 = u− x2 + y2 f2 = v − 2xy (21)

(a) To prove that the range of f is R we must show for any u and v there exists a corresponding
x and y. Solving the equations in (20) for x and y by setting y = v

2x
and subbing into

x2 = u + y2 and remembering that u and v are constants (you will be left with a quartic
equation but just let A = x2 and solve the corresponding quadratic equation). We can
conclude that

x = ±

√
u±

√
u2 + v2

2

which yields only two real roots

x1 = +

√
u +

√
u2 + v2

2
x2 = −

√
u +

√
u2 + v2

2
(22)

y1 =
v

2x1

y2 =
v

2x2

(23)

So for any point (u, v) on the real plane we can find (x, y) such that f(x, y) = (u, v) given
by (20) and (21). This would imply that the range of f is R. Furthermore it is clear
that for any nonzero point (in the case of a zero the equations in (20) would generate
the same point) we have two distinct points, (x1, y1) and (x2, y2) map to (u, v) by f .

(b) To show that the function is locally invertible at (1,1) we must simply show that the
matrix A(1, 1) given in Problem 7 is invertible.

A(x, y) =

[
−2x 2y
−2y −2x

]
⇒ A(1, 1) =

[
−2 2
−2 −2

]



which is invertible since det(A(1, 1)) = 8.

An explicit formula for the inverse is easy to find. Since if f(x, y) = (u, v) an inverse
would be given as f−1(u, v) = (x, y) which is exactly one of the equations given in (a).
As we know that f(1, 1) = (0, 2) we know that the inverse must carry f−1(0, 2) = (1, 1)
which is only satisfied by

f−1(u, v) = (x1, y1)

given above. (One should plug the numbers in to verify that this equation fails for
f−1(u, v) = (x2, y2).)

Problem 9 :

Given more explicity in this question we have that

0 = wxyz w4 + x4 + y4 + z4 = 18 (24)

f1 = wxyz f2 = w4 + x4 + y4 + z4 − 18 (25)

(a)

A(x, y) =

[
wyz wxy
4x3 4y3

]
at the point (w, x, y, z) = (−1, 0, 1, 2) becomes

A =

[
−2 0
0 4

]
Since the det(A) = −8 we have that A is invertible, namely A−1 =

[
−1/2 0

0 1/4

]
which

implies that it is possible to express (x, y) as a differentiable function of (w, z) near the
given point.

(b) We calculate B(w, z) =

[
xyz wxy
4w3 4z3

]
⇒ B(−1, 2) =

[
0 0
−4 32

]
so we can calculate the

partial derivatives by[
∂x/∂w ∂x/∂z
∂y/∂w ∂y/∂z

]
= −A−1(0, 1)B(−1, 2) =

[
0 0
1 −8

]
So ∂x

∂w
(−1, 2) = 0 and ∂x

∂z
(−1, 2) = 0.

(c) To calculate the partial derivatives explicitly we have to proceed as we did in Problem
7 to try to come up w/ explicit formulas for x and y. We have wxyz = 0 implies that
x = 0 or y = 0. We take x = 0 since it satisfies ∂x

∂w
(−1, 2) = ∂x

∂w
(−1, 2) = 0. So solving

for y from (24) we get
y =

4
√

18− z4 − w4

and conclude that

∂y

∂w
(w, z) =

−4w3

3(18− w4 − z4)3/4

∂y

∂z
(w, z) =

−4z3

3(18− w4 − z4)3/4
(26)

∂y

∂w
(−1, 2) = 1

∂y

∂w
(−1, 2) = − 8 (27)

which verifies (b).


