Problem 1 : Steffen and Greg

Since f is continuous on a bounded region we have that it must attain a maximum value
f(c), at ¢, on that range. Using Hélders inequality from page 139 (Rudin) and setting f = f’,
g =1, and p = ¢ = 2 taking the integral from 0 to ¢ we have
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Problem 2 :

fn being differentiable everywhere would imply that it is everywhere continuous. f! < 2
imples that f,, has bounded slope and it is easy to show that f,, is an equicontinuous family
of functions (let § = $). (In fact it can be shown that if any family of continuous functions
has bounded slope that it is necessarily a equicontinuous family).

On any finite compact interval [—A, A] we have that f is uniformly bounded = pointwise
bounded, since f is continuous on a compact region.

We appeal to theorem 7.25 to show that f, must contain a uniformly convergent subsequence
which must converge to g(x). Along with f,(0) = 0 implying pointwise convergence at at
least one point we have that lim, ., f, = ¢g(z) unifomally.

Since f,, is continuous for any n we have that g(x) is also continuous by theorem 7.12. Taking
A — oo we have this convergence along the entire real line.

Problem 3 :

(a) Calculating f by the usual formula we have (integrating by parts) the following:

~ 1 4 ) -1 [ ) 1 4 ) ~
fr= 2—/ f(x)e "™ dx = 2—/ f(z)—ine™""dx = in <2—/ femmd:c) =inf = cyin
T ), - -

Which implies that f'(z) ~ >, 5 caine™
(b) We have that ¢y = 5= [ f(x)e™de = [T f(x)dz = 0. And by Parseval’s thm:

/ P @) Pd =203 feanf? > 20 feal? = /

o0

f(@)fdz

—0o0



(c) We first assume that equality holds, and use Parsevals thm again (in (6))
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We know that equality can not hold for any |n| > 2 so (6) may be re-written as:
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To prove the other direction we set f(z) = ae™® + be~™® and calculate f as usual.
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So we have that
a n=1

f: b n=-1
0 otherwise

Which implies that

/_W |/ (@)Pde =20 " Jean|* = 2m(a® +1%) =27 Y _|ea|” = /_ | f(x)[Pda

as desired.

Problem 4 : Steffen
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Line (11) is given by Problem 3 (a) where the transition from (13) to (14) is made by
calculating f” = —c,n? again by an integration by parts and using the conclusions from

(a).
Problem 5 :

(a) o(z) = % will have max/min values at x € {0, 1} since ¢(z) has only one critical point

at 0. Since ¢(0) = 3 and ¢(1) = 2 we have that ¢ : [0,1] — [0,1].

Since |¢'(z)| = % < 3 we have that

[¢(x) — o(y)| 3 3
D= < 1 10— o)l < flo =]
which implies ¢ is a contraction.

(b) We are guaranteed that ¢ has a fixed pt. N which means in the sequence z,,,1 = ¢(N) =
N. So {z,} limits to the fixed point of % which may be established with a calculator
through fixed point iteration. Namely, calculate ¢(0) let this equal to x and calculate ¢(z)
repeat this process until your calculator starts repeating an answer. N =~ 0.539171261.

Problem 6 :

Lets assume that we have the root a such that P(a) = 0 the Problem dictates we must have

¢(a) = a.
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Now prove ¢ is a contraction as in Problem 5.

Problem 7 :
We have that

u=¢e'+z v=e"—y (18)
fi=u—¢€Y—x fo=v—€e"+y (19)
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(a) We have A(0,0) = [:} _11} and since A(0,0) is invertible, namely A~ = =t E _111

by Inverse Function Theorem we have that f~!(x,y) must exist about a neighborhood
of (0,0). So it is possible to express (z,y) as a differentiable function of (u,v) since this
is exactly f~!(u,v) = (z,y).

(b) We know that

[ax/au 3x/av] = —A71(0,0)B(u(0,0),v(0,0)) = —A~(0,0)B(1,1)

dy/ou  Oy/dv

So the desired derivatives may be extracted from
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Problem 8 :

Similarly in this Problem we have that

u=z*—y? v =2xy (20)
fi=u—a®+y? fo=v—2xy (21)

(a) To prove that the range of f is R we must show for any v and v there exists a corresponding
x and y. Solving the equations in (20) for z and y by setting y = 3> and subbing into
2? = u + y? and remembering that v and v are constants (you will be left with a quartic
equation but just let A = 2% and solve the corresponding quadratic equation). We can

conclude that

w =+ Vu? + v?
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which yields only two real roots

u+ Vu? + v? u+ Vu? + v?

r = + f To = — f (22)
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So for any point (u,v) on the real plane we can find (x,y) such that f(z,y) = (u,v) given
by (20) and (21). This would imply that the range of f is R. Furthermore it is clear
that for any nonzero point (in the case of a zero the equations in (20) would generate
the same point) we have two distinct points, (z1,y;) and (z9,y2) map to (u,v) by f.

(b) To show that the function is locally invertible at (1,1) we must simply show that the
matrix A(1,1) given in Problem 7 is invertible.

Az, y) = [:;g _ng} = A1) = [:3 —22]



which is invertible since det(A(1,1)) = 8.

An explicit formula for the inverse is easy to find. Since if f(x,y) = (u,v) an inverse
would be given as f~(u,v) = (x,y) which is exactly one of the equations given in (a).
As we know that f(1,1) = (0,2) we know that the inverse must carry f~1(0,2) = (1,1)
which is only satisfied by

fHw,0) = (21,)
given above. (One should plug the numbers in to verify that this equation fails for

7w, 0) = (22, 92).)

Problem 9 :

Given more explicity in this question we have that

(a)

(b) We calculate B(w, z) = [

0 =wxyz w4 2t oyt + 2t =18 (24)
fi = wxyz fo=w'+ 2" +y*+ 21— 18 (25)
_|wyz way
A(I7y) - [4%3 4y3:|
at the point (w,z,y,2) = (—1,0, 1,2) becomes
-2 0
=10
Since the det(A) = —8 we have that A is invertible, namely A~ = _B/ 2 13 4] which

implies that it is possible to express (x,y) as a differentiable function of (w, z) near the
given point.

Tyz wry B [0 o0
Aw? 423] = B(-1,2) = {_4 321 so we can calculate the

partial derivatives by

]

So 22(—1,2) =0 and %5(—1,2) =0.

=-A"Y0,1)B(-1,2) = {(1) —08]

(c) To calculate the partial derivatives explicitly we have to proceed as we did in Problem

7 to try to come up w/ explicit formulas for x and y. We have wzyz = 0 implies that
z=0ory=0. We take z = 0 since it satisfies 2£(—1,2) = §%(—1,2) = 0. So solving

for y from (24) we get
y =18 — 24 —w?

and conclude that
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which verifies (b).



