
Computer Science 1MD3 
Lab 9 – Nondeterministic Finite State Machines 
 
The finite state machines discussed last week are deterministic, since for each state and input value there is 
a unique next state given by the transition. There is another important type of finite-state machine in which 
there may be several possible next states for each pair of input value and state. That is, state A may go to 
state B or C on input 1. Such machines are called nondeterministic finite state machines. 
 
A SIMPLE EXAMPLE 
 
NDFSM 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
Given that we are starting at S, is {111} a word, i.e. does {111} end in the F state? 
 
We immediately get stuck at S because a decision has to made to go to either A or F. To deal with this 
ambiguity we simple go to both A and F, getting the transitions S-A-F-A and S-F-A-F. Since the later of 
these transitions ends in F we say that {1,1,1} is word in the language. 
 
LANGUAGE OF A NDFSM 
 
What does it mean for a nondeterministic finite-state machine to recognize a sequence 

1 2 n{x x ...x }Φ =  given the states 0 ns...s . 
 
The first input 1x takes us from 0s to a set 1S of states. The next input 2x takes each of the sets in 1S to a 

new set of states. Let 2S be the union of these sets. We continue this process till we exhaust all elements in 

the sequence leaving us with nS . 1 2 n{x x ...x }Φ =  is a word in the language if any of the transitions 

end in one the final states. That is if A {final states}= , nA S∩ is nonempty.  

 
To solidify this idea consider the following finite state machine and note that it is sometimes convenient to 
represent a FSM or NDFSM as a chart. This often clarifies an otherwise confusing digraph. 
 
We will test the sequence x {0,1,1,0,1}=  using the technique describe previously and see if it is a 
valid word. We also let n ns(x ) be the set of all transitions reached from state ns given input nx . 
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NDFSM 2 
 
Table 

Input State 
0 1 

0s  

1s  

2s  

3s  

0 1s ,s  

0s  

  

0 1 2s ,s ,s  

3s  

1 3s ,s  

0 2s ,s  

1s  

0start s=  

{ }2 3end F s ,s= =  
 

 

 

{ } { }0 1 0 1 0 1x 0 S s(0) S s ,s= → = → =  
 

{ } { } { }1 2 0 1 2 3 1 3 1 3x 1 S s(1),s(1) S s , s ,s s ,s= → = → = =� � �  

 

{ } { } { }= → = → = =2 3 1 3 3 1 3 1 1 3x 1 S s(1),s(1) S s ,s s s ,s� � �  

 

{ }
{ } { }

= → =

→ = =
3 4 1 3

4 0 0 1 2 0 1 2

x 0 S s(0),s(0)

S s s ,s ,s s ,s ,s� � �
 

 

{ }
{ } { }

4 5 0 1 2

5 3 1 3 0 2 0 1 2 3

x 1 S s(1),s(1),s(1)

S s , s ,s , s ,s s ,s ,s ,s

= → =

→ = =� � � �
 

 
Where { }∩ =5 2 3S F s ,s , which is non-empty so x is in the language. 

 
NDFSM vs FSM 
 
 
If the language L is recognized by a nondeterministic finite-state machine M0, then L is also recognized by a 
deterministic finite-state machine M1. 
 
 
There is a proof to this which would be easy to understand, but it is beyond the scope of this lab. We 
encourage the student to formulate the proof as an exercise.  
 
So given NDFSM 3, find a deterministic finite-state machine that recognizes the same language as the 
nondeterministic finite-state machine. 
 
Answer: 
The states of the FSM are the subsets of the set of all states of the NDFSM. For instance, on input of 0, 

0{s} goes to 0 2{s ,s}. On input one, the corresponding set 0 2{s ,s} goes to 

{ } { }0 2 1 4s(1),s(1) s ,s= . Through similar process we can generate all such relations arriving at FSM 
describe on the next page. 

1,0 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

s1 

s2 

s3 s0 



NDFSM 3 
Table 

Input State 
0 1 

s0 
s1 
s2 
s3 
s4 

s0, s2 
s3 
 

s3 
s3 

s1 
s4 
s4 
 

s3 
Start = s0 

{ }0 4end s ,s=  
 

 

 
FSM 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Self test Problem 
 
1. Draw the NDFSM for the following table and determine its language.  
 
 
Table 

Input State 
0 1 

0s  

1s  

2s  

3s  

0 1s ,s  

0s  

1 3s ,s   

0 1 2s ,s ,s  

2s  

1 3s ,s  

 

1s  

0start s=  

{ }0 3end F s ,s= =  

 
2. Draw the corresponding deterministic finite-state for this. 
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