
Computer Science 1MD3
Lab 3 – Complexity and Algorithm Efficiency

Regardless of how fast computers will get, computer scientists will always be concerned with the efficiency
of the algorithms they design. In order to determine what algorithms are better, we will need to know how
to compare them. This lab will demonstrate how to determine and compare an algorithms complexity.

COMPLEXITY

Since computers have different processing capabilities, it is more meaningful to represent the speed of an
algorithm by the number of times a command is executed rather then the time it takes to complete the
algorithm. This representation is called complexity. The complexity of an algorithm is a function which
relates the number of executions in a procedure to things like loops or file size which govern these
executions.

Consider the code:

void proc1(int n) {
 int i;
 for (i=0; i<n; i++){
 command();
 }
 return;
 }

The number of times command is executed is directly related to the
size of n. A function modeling this relation would bef(n) n= , where
f(n)represents the number of times command is evoked. If a machine
took two minutes to execute command it would take (2
minutes)*f(n) to run the procedure.

In complexity we say that proc1 isO(n), (big-oh of n), or that the
running time is governed by a linear relation.

AN EXACT DEFINITION OF BIG-OH

When we say that the running time T(n) of a program is O(f(n)), we mean that there is a positive integer
c such that T(n) cf(n)≤ .

There is an important consequence that follows from this definition. If an algorithm has 2O(6n n 1)+ + it
suffices to say that the function has 2O(n) since 2 27n 6n n 1≥ + + for large n. More generally we have
that 1 2 x x

0 1 2 xO(a a n a n ... a n) O(n)+ + + + = .

For example:

5 2 51
n 3n 2 O(n)

4
+ + = 2 2n 1000000n 10 O(n)+ + =

DETERMING COMPLEXITY OF MORE COMPLICATED PROGRAMS

The following examples will further demonstrate an algorithms complexity.

Example: 1

 void proc2(int n) {
 int i,j;

 for(i=0; i<n; i++) {
 for(j=0; i<n; i++) {
 command();
 }
 }

 for(i=0; i<10000000; i++) {
 command();
 command();
 }

 }

2 2f(n 10000000) O(n)+ =

Example 2:

 void proc3(int n) {
 int i,j;

 for(i=0; i<n; i++) {
 command();
 command();
 for(j=0; i<n; i++) {
 command();
 }
 }

 proc2(n);

 }

2 2f(2n 2n) O(n)+ =

COMPARING ALGORITHM COMPLEXITY

Now that we can determine an algorithms complexity it would be nice to be
able to compare them. Consider the two procedure P1 and P2 whose
corresponding complexities areO(n), and 2O(n). Plotting these complexities
on a graph we get Graph 1.1.

Investigating this graph we find that P2 is faster than P1 up till a given
point, 0a , where P1 becomes faster.

2n

10000000

22n n+
2n

2n

2n

So when deciding to use algorithm P1 or P2 we must first determine their complexities and then decide
which one is better for the problem being applied to it. This is very typical in sorting algorithms where
algorithms that have O(n2) complexity such as bubble sort, would be better than O(nlogn) complexity sorts
such as quicksort, in the case that the amount of items to be sorted is very small.

PROVING COMPLEXITIES

Our definition of big-oh says that in order for f1(n) to be big-oh of f2(n), f1(n) must exceed f2(n)
from a point till infinity. This implies that if we were to divide values of f2(n) by f1(n) for large n we
should get a finite number.

For instance, if we would like to show that it is satisfactory to show

that . In this case which proves

that is ultimately always larger than , which proves our initial statement true.

In general if we would like to prove that it suffices to show that .

SELF TEST PROBLEMS

1. Are the following statements true or false:
•
•
•
•

2. In your own words what does it mean for ?

3. Determine the complexity of the following programs:

void proc1 (int n,int *A) {

 int i;

 for (i=0; i<n/2; n++) {
 A[i]=A[i]*A[i];
 }

 for (i=0; i<n*n; n++) {
 A[i]=A[i}*A[i]/4;
 }

 return;

}

void proc2(int n) {
 int i,j;

 for(i=0; i<100000; i++) {
 for(j=0; j<log(n); j++) {
 command();
 }

 for(j=0; j<n*n; j++) {
 command();

}
 }

 for(i=0; i<n*n*n; i++) {
 for(j=0; j<n/2; j++) {
 command();
 }
 }
}

hard

int factorial(int n) {

 if n==0 return 1;
 return n*factorial(n-1)

}

