
Computer Science 1MD3
Lab 2 – Recursion and Its Implementation In C

Recursion allows us to make very simple and natural definitions of functions that would otherwise have
very complicated explicit formula. It is the purpose of this lab to demonstrate through example the
procedure of converting from explicit to recursive.

A CLASSIC EXAMPLE

We are all familiar with factorial which is explicitly defined as:

with corresponding C code:

procedure fact (int n) {
 int count, answer=1;

 for (count=n; count>0; count--) {
 answer=answer*(answer-count);
 }

 return answer;

}

However, it would be desirable to have a simpler definition. Through some analysis we can discover that:

Now, realizing that we can implement a C function:

int fact (int n) {

 if (n==0) return 1;
 return n*fact(n-1);

 }

Now lets try tracing this function to see how it works.

Paul Vrbik
Comment: this is an example of change
revision

Please note that every time the function is called a new stack frame is built. When n=0, 1 is returned and
the stack is resolved from top to bottom. So, the computer actually calculates not

.

Your stack frame (informally) may look like this:

Top

f
a
c
t
(
0
)

n
=
0

r
e
t
u
r
n

1

f
a
c
t
(
1
)

n
=
1

r
e
t
u
r
n

1
*
f
a
c
t
(
1
)

f
a
c
t
(
2
)

n
=
2

r
e
t
u
r
n

2
*
f
a
c
t
(
1
)

f
a
c
t
(
3
)

n
=
3

r
e
t
u
r
n

3
*
f
a
c
t
(
2
)

f
a
c
t
(
4
)

n
=
4

r
e
t
u
r
n

4
*
f
a
c
t
(
3
)

Bottom

QUALITIES OF A RESCURSIVE FUNCTION

Looking back to our factorial function we can determine that a recursive function requires two things: a
terminating condition (if n==0 return 1) and a recursive step (return n*fact(n-1)). Without
a terminating condition the recursive procedure would act like an infinite loop, this is similar to forgetting
to increment a while loop.

So how do we properly choose a terminating condition?

The terminating condition is usually the base case, or the smallest value we could ever possibly calculate.
In our factorial function, since we cannot take the factorial of a negative number our base case is
fact(0)=1.

The recursive step is harder to determine. It is wise to investigate the algorithm you are modeling and see if
one part of the equation is expressible using your current value and the function at the step before.

RECURSIVE POWER

In mathematics there are a lot of recursive definitions that we take for granted, or maybe don’t even realize
are recursive. However using the fundamental operation addition, it is possible to describe recursive
definitions for many rudimentary operations.

For instance, subtraction is inverse-addition, multiplication is recursive addition, modulus may be
recursively defined from subtraction, and using modulus it is possible to recursively define ceiling and
floor division.

From a practical standpoint these functions would not be worth deriving for computational purposes, since
they are already defined in the compiler. But one function we haven’t mentioned would be. Exponentiation,
or power, is something that we often use, and it would be nice if we could come up with a simple recursive
definition for it.

We must first come up with a terminating step, or the most basic calculation we can do with power. Well
assuming we are only working with the integers, the base case would be x to the power of 0 (x0), which
will always be 1. So we should use:

if (exponent==0) return 1;
as our base case.

Investigating the nature of exponentiation, we can see that 0xy=x*xy-1.

Our recursive step will follow from this, giving us the function:

 int pow (int x; int y) [

 if (y==0) return 1;
 return x*pow(x,y-1);

}

LESS OBVIOUS EXAMPLES

Lets consider the function

Without using multiplication is it possible to define a recursive formula for this?

The base case is easy, the smallest value of x we can consider is 0 so we have f(0)=0, or the C code,
if (n==0) return 0.

To find the recursive step lets try investigating this formula for f(n+1) and see if it expressible through
f(n). Well we do know that so we can say .
But we would like a function of n, not n+1. So, if , we have :

So we have the mathematical recursive procedure for squaring .
The corresponding C function would be:

 int f(int n) {
 if (n==0) return 0;
 return f(n-1)+n+n-1;
 }

RECURSIVE DOT PRODUCT

A dot product is a vector operation defined as follows

For example,

Examining this definition we can conclude that the smallest thing we can calculate is the dot product of two
vectors with one component, so our base case will follow from this.

As for the recursive step, after much pondering, we discover that

that is you can take the last element out of each vector and add the product to the dot product of the new
reduced vectors.

Now lets implement a C function which accepts vectors as arrays. Our header will look like this

int dot_product (int *A, int *B, int n);
where n is the length of the respective vectors.

Recalling the conditions of the base case we have

if (n==1) return A[1]*B[1];
as our base case.

Our recursive step follows from our discovery

return A[n]*B[n]+dot_product(A,B,n-1);

Our completed code will look like this

 int dot_product (int *A, int *B, int n) [

 if (n==1) return A[1]*B[1];
 return A[n]*B[n]+dot_product(A,B,n-1);

 }

