
Computer Science 1MC3
Lab 7 – Pointers

A pointer is nothing more then a memory location which stores an address to something. This simple
notion is something that characterizes C as a versatile language. Pointers, as we will soon see, have a
tremendous amount of use in c programming.

Declaration

There are two ways to declare a pointer.

 data_Type *var_name; ~or~ data_Type* var;

What we have just done is declare a pointer to a certain type of data type. To demonstrate what we can do
with this pointer let consider the following concrete example.

int *arrow, real_value=12;

Now say we would like to have arrow point to our real_value, we would need to know a few things.

*var_name; refers to the pointer or var_name
&var_name; refers to the address of var_name

All pointers point to addresses, so to have our arrow pint to real_value we must make arrow (a
pointer), equal to the address of real_value. It is done like this:

*arrow=&real_vaule;

We now have a pointer to an address, which is what we want. We can now manipulate *arrow and
real_value in the exact same way, *arrow=5; would be equivalent to real_value=5;.

How things go wrong

Using pointers are very tricky. In fact many people try to avoid pointers unnecessarily complicating their
programs! Here are some typical mistakes made when using pointers.

incorrect
arrow=&real_value;
arrow=14;

This is an attempt to change the value of real_value indirectly using the arrow pointer. However,
arrow is an address. Saying arrow=14 is really setting it to a value at address 14.

correct
arrow=&real_value;
*arrow=14;

This correct code says change whatever arrow is pointing too.

incorrect
*arrow=&real_value;

This code wouldn’t change where arrow is pointing to, but the value to which arrow is pointing.

correct
arrow=&real_value;

Passing Pointers

It is possible to pass a pointer to a function. Passing a pointer gives you the advantage of changing the
value of variables in other procedures without using more memory expensive global variables. For instance
consider the following two pieces of code:

#include <stdio.h>

void proc (int *a);

int prog1(void) {

 int x;

 x=7;

 proc(&x);

 printf("%d \n",x);

 return 0;
}

void proc (int *a) {

 *a=12;

}

#include <stdio.h>

void proc (int a);

int prog2(void) {

 int x;

 x=7;

 proc(x);

 printf("%d \n",x);

 return 0;
}

void proc (int a) {

 a=12;

}

Notice that the prog1 uses pointers and prog2 does not. What will each of these programs print to the
screen? Well prog1 will send a pointer to x to proc so the value of x will be changed by the procedure.
So 12 would be printed to the screen. In prog2 a copy of x is made by the proc and it is manipulated.
However the value of x is not changed in the main program so 7 would be printed to the screen.

What we have done in prog1 is known as pass by reference, since we have passed a pointer to a variable
that we can manipulate. What we have done in prog2 is called pass by value since we have only passed a
value which was copied by the procedure.

Arrays

You may have thought about passing an array to a procedure. Well now we know that this array can be
passed by value or by reference. We generally pass arrays by reference since we don’t want the procedure
to take an array and copy it for its own purposes, this is tremendously wasteful. Also, it is actually not that
easy to pass an array by value anyways!

Lets declare an array.

int x[]={1,2,3,4,5}

What you may not of realized it that arrays are pointers, x is an address. So if you had a variable *a it
would suffice to put *a=x; not *a=&x; (an address of an address does not exist).

#include <stdio.h>

void proc (int *a);

int main(void) {

 int x[]={1,2};

 proc(x);

 printf("%d \n",x[1]);

 return 0;
}

void proc (int *a) {

 a[1]=12;

}

This program sends a pointer to array x to a procedure. The
procedure can now manipulate the values of x in any way you
would like. Notice that we can say a[1] which is equivalent to
x[1] since a and x are both pointing to the same memory
location.

A Final Note

When using pointers always remember that:

1. A pointer must equal a memory location a=&x;
2. When changing the value of what something is pointing to, you must say *a=12;
3. The sizeof(pointer) is always 4 (an integer).
4. An array name, by itself, is an address. pointer=array_name

Homework

1. Edit this program to pass by reference instead of value. (i.e the value that the procedure set
should be printed.)

#include <stdio.h>

void proc (float point);

int main(void) {

 float realval=45.67;

 proc(realval);

 printf("%f \n",realval);

 return 0;
}

void proc (float point) {

 point=12.45;

}

2. Create a procedure to take an array from your main program and double every value in the
array. It will be necessary to pass the length of the array to you procedure.

3. Outline the differences between pass by reference and pass by value.

