
C-Crash Course

What is programming?

Programming is the art of telling
a computer to do a tedious action
that a human would never want to
do.

How do we tell a computer to do
something?

Algorithms: An algorithm is an
ordered set of unambiguous
instructions which must
terminate.

How do we eliminate ambiguity?

Syntax: reducing the amount of
words we can use.

Semantics: giving all our words
very definite meanings.

What is our reduced vocabulary?
The keywords:
for, while, int, float, define,
if, else, include, long. . .

C is “main()”ly easy
main is where everything happens.
Anything that will compile in
your program must happen from
main.

int main(void) {
return 0;

}

A Basic Program
A program to print something to
the screen

#include <stdio.h>

int main(void) {
printf(“Hello World”);
return 0;

}

#include a way to tell the
computer to include a library
like: stdio.h (standard output
and input)

#printf a function included in
stdio.h that prints something to
the screen.

Variables:
Most programs require variables
which represent values that we
can manipulate.

These variables can be of these
types: int (integer), float
(real), char (character)

We may also use the prefixes long
or static infront of any of
these.

What operations are we allowed?
%,/,*,+,- (BraMoD Mulas)

Shorthand Notation
x++; x=x+1;
x--; x=x-1;

There are others but they are
just confusing.

How Do We print out variables?

printf(“%(dataType),var_name);

int (%d) float (%f)
char (%c) string (%s)

int x=7;
printf(“Our int is %d.\n”,x);

\n is a newline.

Output: Our int is 7
_

Types of Variables
local, global, static
Scope and Visibility

#include <stdio.h>

#define name anything
#define PI 4.14
#defein OR ||

dataType name;
int globX;

int main (void) {
data_Type locX;

}

Arrays. Its as easy as 0,1,2. . .

Arrays are a group of variables
of similar attributes that you
would like to keep together.

dataType name[]={data};
int x[]={1,2,3,4};

You can have x[0]..x[3] and you
can treat these like regular
variables.

C Has Tons of “Function”ality
A function, like in math, will
accept some value(s) and return a
single value.

f(x,y)=x^2+y^2 f(2,3)=4+9

Lets model this function in C.

int f(int x, int y) {
return x*x+y*y;

}

In general we have:

data_type name(accept) {
return name of data_type;

}

To invoke (call) a function we do
it from the main program like:

f(2,3); or f(var1,var2);
assuming var 1 and var 2 have
some value

Procedure? Whats A Procedure?
Procedures are functions which
don’t return anything.

void fun_name (accept) {
return void;

}

In C we have void functions, not
procedures.

Notes about functions
You can call a function from any
other function. Yes, including
itself (recursion).

User Defined Data Types
We are not restricted to int,
float, and char.
We can make whatever type we
want.

typedef and enum

enum week {sun, mon, tue, wed,
thu, fri, sat};

typedef will now allow us to take
this enumerated data type and do
something with us.

typedef enum week day_type;

int main() {
day_type day=mon;

}

in general

enum name {el1,el2,...,eln};
typedef enum name nameType;

Now you can use nameType the same
way you would use int or float.
However we are not given a % to
use in printf.

Strucutres
Is a means of making one variable
have many qualities.

struct emp {
int emp_num;
int salary;
int start_date[3];

}

typedef struct emp empType;

empType employee1;

employee1.emp_num = 1000;

We can even have an array of this
if we wanted.

empType allEmp[10];

in which case we could have

allEmp[3].start_date[2]=1998

READ LAB 6

Strings
A string is an array of
characters declared like:

char string[]={“Hello World”};

which gives you an array like
this:

|H|e|l|l|o|_|W|o|r|l|d|\0|

\0 is called the null terminator
and is a single character to the
computer.

ALL CHARACTERS END WITH THE NULL
TERMINATOR!

Remember ‘a’ is how you refer to
a character.

Control Strucutes

A control structure is charact-
erized by a boolean expression.
There are three fundamental
control structures in C.

if for while

A boolean expression is something
that evaluates to true or false.

equality x==y
inequality >, <, <=, >=

(logical conectors)

or || and &&

(x==y)&&(y<5)||(y=0)&&(1)

if
if(boolean statement) {

code
} else (boolean statement) {

code
} else {

code
}

while
while(boolean==true) {

code
}

while(x>7) {
x--;

}

you must make sure to have
something incrementing in your
loops

for
for(i=0;i<n;i++) {

code
}

Will execute n times and is
equivelant to:

i=0;
while(i<n){

i++;
}

You should use a for loop when
you know how many times you would
like to repeat something.

i will have all values between
0..n. Don’t be afraid to use it!

hit the “break”s!!!

The break statement will break
out of any control structure.

while(1==1) {
if (condition) break;

}

Will break you out of the loop.

The ‘p’ Word

A pointer is a variable which
holds the memory location of
another variable.

dataType *varName; ~or~
dataType* varName;

*varName; refers to what var name
is pointing too

&varName; refers to the numerical
adress that varName is pointing
too.

int *arrow, realVal=12;

*arrow=&realVal;

*arrow=6 is the same as realVal=6

Parents say: “Pointing is rude”.
They’re wrong. . .

Pointing is actually the only way
we can pass arrays to functions.

int a[]={1,2};

where a is an address. &a is
incorrect.

i.e. (id est, by example):

int main(void) {
int x[]={1,2,3};
proc(x);
return;

}

void proc(int *a) {
a[1]=12;

}

Passing by Reference or Value

Passing w/out a pointer is pass
by reference. A copy is made in
the function.

Passing w/ a pointer is pass by
value and the value passed will
be manipulated.

int main(void){
int x=7;
proc(&x);

- - - - - - - - - - - - - - - - -

void proc(int *a) {
*a=12;

}

The Heap as your friend

You know those friends that you
ignore till you need them? That’s
what type of friend the heap is.

The heap will give you some
memory during run-time. Usually
you have to tell the compiler
before hand.

data_type *pointer;

pointer=(data_type*)malloc(the
lengthYouWant *sizeof(dataType))

-Concretely-

int *A

A=(int*)malloc(10*sizeof(int));

Will make us an array of 10
spots.

Now we can declare array
dynamically.

Generalizaed Program:

#include <library.h>

#define name anything

dataType globalVars;

dataType funcName(input);
//function protocall

int main(void) {
return 0;

}

dataType funcName(input){
return dataType;

}

