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Determine whether the statement is true or false. Provide a

counter-example if true.
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Functions

Question

If f is a function then f(s+ t) = f(s) + f(t).
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Question

If f(s) = f(t) then s = t.
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Question

If f is a function, then f(3x) = 3f(x).
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Question

If x0 < x1 and f is decreasing function, then f(x0) > f(x1)
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Question

A vertical line intersects the graph of a function at most once.
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Question

If f and g are functions then f ◦ g = g ◦ f .
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Question

If f is one-to-one then f−1(x) = 1
f(x) .
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Question

You can always divide by ex.
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Question

If 0 < a < b then ln a < ln b.
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Question

If x > 0 and a > 1 then
lnx

ln a
= ln

x

a
.
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Question

arctan(−1) =
3π

4
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Question

arctanx =
arcsinx

arccosx
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Limits and Derivatives

Question

If limx→5 f(x) = 2 and limx→5 g(x) = 0 then limx→5
f(x)
g(x) does not

exist.
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Question

If limx→6[f(x)g(x)] exists then limx→6[f(6)g(6)].
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Question

If p is a polynomial then limx→b p(x) = p(b).
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Question

If limx→0 f(x) =∞ and limx→0 g(x) =∞ then

limx→0[f(x)− g(x)] = 0.
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Question

A function can have two different horizontal asymptotes.
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Question

If dom f = [0,∞) and has no horizontal asymptotes then

limx→∞ f(x) =∞ or limx→∞ f(x) = −∞.
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Question

If x = 1 is a vertical asymptote of y = f(x) then 1 6∈ dom f .
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Question

If f(1) > 0 and f(3) < 0 then there exists a number c ∈ [1, 3] such

that f(c) = 0.
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Question

If f is continuous at 5 and f(5) = 2 and f(4) = 3 then

limx→2 f(4x2 − 11) = 2.
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Question

If f is continuous on [−1, 1 and f(−1) = 4 and f(1) = 3, then there

exists a number r such that |r| < 1 and f(r) = π.
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Question

If f(x) > 1 for all x and limx→0 f(x) exists, then limx→0 f(x) > 1.
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Question

If f is continuous at a then f is differentiable at a.
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Question

If f ′(r) exists then limx→r f(x) = f(r).
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Question

x10 − 10x2 + 5 = 0 has a root in (0, 2).
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Chapter 3

Question

If f and g are differentiable then

d

dx
[f(x) + g(x)] = f ′(x) + g′(x).
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Question

If f and g are differentiable then

d

dx
[f(x)g(x)] = f ′(x) g′(x).
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Question

If f and g are differentiable then

d

dx
[f(g(x))] = f ′(g(x)) g′(x).
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Question

If f is differentiable then

d
√
f(x)

dx
=

f ′(x)

2
√
f(x)

.
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Question

If y = e2 then y′ = 2e.
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Question

d

dx
(ln 10) =

1

10
.
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Question

If f and g are differentiable then

d tan2 x

dx
=

d

dx
(sec2 x).
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Question

d

dx
|x2 + x| = |2x+ 1|.
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Question

If g(x) = x5 then lim
x→2

g(x)− g(2)

x− 2
= 80.
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Question

An equation of the tangent line to the parabola y = x2 at (−2, 4) is

y − 4 = 2x(x+ 2).
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Applications of Differentiation

Question

If f ′(c) = 0 then f has a local extrema at c.
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Question

If f has an absolute minimum at x = c then f ′(c) = 0.
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Question

If f is continuous on (a, b) then f attains an absolute maximum value

f(c) and an absolute minimum value f(d) at some numbers c and d in

(a, b).
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Question

If f is differentiable and f(−1) = f(1) then there is a number c such

that |c| < 1 and f ′(c) = 0.
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Question

If f ′(x) < 0 for 1 < x < 6 then f is decreasing on (1, 6).
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Question

If f ′′(2) = 0 then (2, f(2)) is an inflection point of the curve y = f(x).
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Question

If f ′(x) = g′(x) for x ∈ (0, 1) then f(x) = g(x) for x ∈ (0, 1).
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Question

There exists a function f such that f(1) = −2, f(3) = 0 and

f ′(x) > 1 for all x.
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Question

There exists a function f that f(x) < 0, f ′(x) < 0, and f ′′(x) > 0 for

all x.
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Question

If f and g are increasing on an interval I then f + g is increasing on I.
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Question

If f and g are increasing on an interval I then f · g is increasing on I.

49 / 49


