Total and Partial Orderings Introduction to Computer Programming

Dr. Paul Vrbik

November 27, 2018

Rationals Continued

Question

When should two rationals be equal? Use your definition to implement __eq__(self, other) to Rational.

Magic Methods

Comparison	Magic Method	
<	gt	
<=	le	
==	eq	
!=	ne	
>	gt	
>=	ge	

Question

Suppose you have a set (of objects) and want to sort them. What properties (precisely) does the comparison operator \prec (read: "precedes or is") need to satisfy for such an ordering to be possible and unique.

Question

Add the total ordering to the Rational class and then sort a list of Rational objects.

Not testable material follows.

Definition (Partial Order)

A relation \prec on a collection of objects A defines a partial order when Reflexive $\forall a \in A$

 $a \prec a$

Antisymmetric $\forall a, b \in A$ $a \prec b \text{ and } b \prec a \implies a = b$ Transitive $\forall a, b, c \in A$ $a \prec b \text{ and } b \prec c \implies a \prec c$

Definition (Total Order)

A partial ordering \prec is a total ordering if it has the the additional property that

 $\forall a, b \in A; a \prec b \text{ or } b \leqslant a.$

Question

Show that $\leq_{\mathbb{Q}}$ (the ordering on rationals) given by

$$\frac{a}{b} \leqslant_{\mathbb{Q}} \frac{c}{d} \iff ad \leqslant_{\mathbb{Z}} cb$$

(where $\leq_{\mathbb{Z}}$ is the usual total ordering over the integers) is a total ordering.

Answer (Antisymmetry)

For any $\frac{a}{b} \in \mathbb{Q}$ $a \leq_{\mathbb{Z}} a \implies ab \leq_{\mathbb{Z}} ab \implies \frac{a}{b} \leq_{\mathbb{Q}} \frac{a}{b}$ and thus \geq is antisymmetric. \Box

10/15

Answer (Antisymmetry)

For any $\frac{a}{b} \in \mathbb{Q}$ $a \leqslant_{\mathbb{Z}} a \implies ab \leqslant_{\mathbb{Z}} ab \implies \frac{a}{b} \leqslant_{\mathbb{Q}} \frac{a}{b}$

and thus \geq is antisymmetric.

Answer (Reflexive)

For any $a, b \in \mathbb{Z}$ we have

$$ab \leqslant_{\mathbb{Z}} ab \implies \frac{a}{b} \leqslant_{\mathbb{Q}} \frac{a}{b}$$

by definition. \Box

Assume a, b, c, d, e, f are positive integers then: (note we let $\leq \leq \leq_{\mathbb{Z}}$ for readability)

$$rac{a}{b} \leqslant_{\mathbb{Q}} rac{c}{d} \; \; ext{and} \; \; rac{c}{d} \leqslant_{\mathbb{Q}} rac{e}{f}$$

Assume a, b, c, d, e, f are positive integers then: (note we let $\leq \leq \leq_{\mathbb{Z}}$ for readability)

$$\frac{a}{b} \leq_{\mathbb{Q}} \frac{c}{d} \text{ and } \frac{c}{d} \leq_{\mathbb{Q}} \frac{e}{f}$$

$$\implies ad \leq bc \text{ and } cf \leq de \qquad by def$$

Assume a, b, c, d, e, f are positive integers then: (note we let $\leq \leq \leq_{\mathbb{Z}}$ for readability)

$$\frac{a}{b} \leq_{\mathbb{Q}} \frac{c}{d} \text{ and } \frac{c}{d} \leq_{\mathbb{Q}} \frac{e}{f}$$

$$\implies ad \leq bc \text{ and } cf \leq de \qquad \text{by def}$$

$$\implies adf \leq bcf \text{ and } cf \leq de \qquad \times f$$

Assume a, b, c, d, e, f are positive integers then: (note we let $\leq \leq \leq_{\mathbb{Z}}$ for readability)

Assume a, b, c, d, e, f are positive integers then: (note we let $\leq \leq \leq_{\mathbb{Z}}$ for readability)

$$\begin{array}{ll} \frac{a}{b} \leqslant_{\mathbb{Q}} \frac{c}{d} & \text{and} & \frac{c}{d} \leqslant_{\mathbb{Q}} \frac{e}{f} \\ \implies ad \leqslant bc & \text{and} & cf \leqslant de & & \text{by def} \\ \implies adf \leqslant bcf & \text{and} & cf \leqslant de & & \times f \\ \implies adf \leqslant bde & & \text{trans of } \leqslant \\ \implies af \leqslant be & & \div d \end{array}$$

Assume a, b, c, d, e, f are positive integers then: (note we let $\leq \leq \leq_{\mathbb{Z}}$ for readability)

$$\begin{array}{l} \frac{a}{b} \leqslant_{\mathbb{Q}} \frac{c}{d} \quad \text{and} \quad \frac{c}{d} \leqslant_{\mathbb{Q}} \frac{e}{f} \\ \implies ad \leqslant bc \quad \text{and} \quad cf \leqslant de \qquad \qquad \text{by def} \\ \implies adf \leqslant bcf \quad \text{and} \quad cf \leqslant de \qquad \qquad \times f \\ \implies adf \leqslant bde \qquad \qquad \qquad \text{trans of} \leqslant \\ \implies af \leqslant be \qquad \qquad \qquad \div d \\ \implies \frac{a}{b} \leqslant_{\mathbb{Q}} \frac{e}{f} \qquad \qquad \qquad \text{by def.} \ \Box \end{array}$$

Answer (Total)
Take
$$\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$$
. Since $\leq_{\mathbb{Z}}$ is totally ordered we have

$$ad \leq_{\mathbb{Z}} bc$$
 or $bc \leq_{\mathbb{Z}} ad$

and thus by definition

$$rac{a}{b} \leqslant_{\mathbb{Q}} rac{c}{d}$$
 or $rac{c}{d} \leqslant_{\mathbb{Q}} rac{a}{b}.$ \Box

Filler

Question

Suppose we have defined a Matrix class for handling matrixes. In order to implement all the arithmetic magic functions we would need to know the following:

- 1. What is the negation of a matrix? (What is the additive zero?)
- 2. What is the inversion of a matrix? (What is the multiplicative one?)

Not testable material ends.

Next Time

1. Review.

- 1.1 Past exams.
- 1.2 Your questions.