
Object Oriented Programming

Introduction to Programming

Dr. Paul Vrbik

November 27, 2018

1 / 16



Programming Paradigms

Imperative programming

Programmer says what to do by

1. Procedural – grouping instructions into functions.

2. Object-oriented – grouping instructions into functions with state

memory.

Note: Imperative (adjective) means giving an authoritative command.

2 / 16



Programming Paradigms

Declarative programming

Programmer declares what they want through

1. functional a series of function applications.

2. logic a question about a system of facts and rules.

3. mathematical optimization.

3 / 16



Object Oriented Programming

The fundamental building block of OOP is the class or object. In

Object Oriented Programming (OOP) the design principle is to solve

a problem by creating objects that interact with one another.

Definition (Object)

An object is a collection of data called fields or attributes along with

code grouped into methods. An object can reference and change itself

and has a notion of self.

4 / 16



First Object

>>> class Point():

... def __init__(self):

... self.x = 0

... self.y = 0

>>> p = Point()

>>> p

<__main__.Point object at 0x10a9e0dd8>

>>> type(p)

<class '__main__.Point'>

>>> p.x = 2

>>> p.y = 3

>>> (p.x, p.y)

(2, 3)

5 / 16



Motivating Question

Question

Suppose we had to represent a group of students and store data about

them. How can we store this data in Python?

6 / 16



Nested Lists

>>> data = [[name1, gpa1, utoid1],

[name2, gpa2, utoid2],

...,

[namek, gpak, utoidk]]

Problems

1. Attribute order must be memorized.

2. Finding a student is hard.

3. List elements do not have meaningful names. “data[3]”

4. No easy way to compare students.

5. Cannot support multiple types of students.

7 / 16



Dictionary of Lists

>>> data = { name1: [gpa1, utoid1],

name2: [gpa2, utoid2],

...,

namek: [gpak, utoidk]}

Problems

1. Attribute order must be memorized.

2. No easy way to compare students

3. Cannot support multiple types of students

8 / 16



Dictionary of Lists

>>> data = {name1: {"gpa": {gpa1}, "id": {utoidk}},

name2: {"gpa": {gpa1}, "id": {utoidk}},

...,

namek: {"gpa": {gpak}, "id": {utoidk}}

Problems

1. Gets messy (i.e. Assignment 3).

2. Hard to modify.

9 / 16



First Object

>>> class Point():

... def __init__(self, x:int, y:int):

... self.x = 0

... self.y = 0

>>> p = Point(2, 3)

>>> (p.x, p.y)

(2, 3)

10 / 16



Question

Implement the student class.

11 / 16



Object Methods

>>> class Person:

... def __init__(self, name, age): Initializes the object.

... self.name = name

... self.age = age

... def foo(self):

... print("Hi! My name is {}.".format(self.name) )

... return None

>>> p = Person("Slim Shady")

>>> p.foo()

Hi! My name is Slim Shady.

12 / 16



>>> class Counter:

... def __init__(self) -> None:

... self._value = 0

... def get_value(self) -> int:

... return self._value

... def click(self) -> None:

... self._value = self._value + 1

... def reset(self) -> None:

... self._value = 0

>>> sally = Counter()

13 / 16



Private Variables

The underscore on _value in the previous slide is used to denote this

name as private indicate that programmers should never manipulate

this value outside the object.

14 / 16



Question

Implement the methods add_student, drop_student, and

is_passing in the student class.

15 / 16



Next Time

1. More objects.

16 / 16


