
Algorithmic Complexity

Introduction to Computer Programming

Dr. Paul Vrbik

November 21, 2018

1 / 12

Definition (Complexity)

We measure the complexity of an algorithm by counting the number

of operations performed as a function of the length of the input

(usually denoted n).

2 / 12

Linear

def linear(L: List[int]):

n = len(L) # 1

index = 0 # 1

while index < len(L): # n

index += 1 # n

2n + 1 = O(n)

3 / 12

Definition (Big-Oh Notation)

We say that “f(n) is big-oh of g(n)” and write f(n) = O(g(n)) when

∃ c, k ∈ R>0 : ∀n ≥ k; 0 ≤ f(n) ≤ cg(n).

Example

1. 2x2 + x+ 1 = O(n2) because for x > 2

2x2 + x+ 1 < 3x2.

2. x3 − sin(x) = O(n3) because for x > 1

x3 − sin(x) ≤ x3 + 1 < 2x3.

4 / 12

Question

What is the complexity of foo?

def foo(L: List[int]):

n = len(L)

index = 0

while index < len(L):

index2 = 0

while index2 < len(L):

index2 += 1

index += 1

5 / 12

Quadratic

def quadratic(L: List[int]):

n = len(L)

index = 0 # 1

while index < len(L): # n

index2 = 0 # n

while index2 < len(L): # n * n

index2 += 1 # n * n

index += 1 # n

2n**2 + 3n + 1 = O(n**2)

6 / 12

Question

What is the complexity of foo?

def foo(L: List[int]):

n = len(L)

index = 0

while i < 10**10:

index += 1

7 / 12

Constant

def foo(L: List[int]):

n = len(L) # 1

index = 0 # 1

while i < 10**10: # 10**10

index += 1 # 10**10

2*10**10 + 2 = O(1)

8 / 12

Question

What is the complexity of foo?

def foo(L: List[int]):

n = len(L)

index = 0

while 2 ** index < len(L):

index += 1

9 / 12

Logarithmic

def log(L: List[int]):

n = len(L) # 1

index = 0 # 1

while 2 ** index < len(L): # log[2](n)

index += 1 # log[2](n)

2log[2](n) + 2 = O(ln(n))

10 / 12

Question

What is the algorithmic of the following algorithms as measured by

the length of the input list?

1. Selection,

2. Insertion, and

3. Bubble.

Answer

O(n2).

11 / 12

Question

Suppose the only operation we could perform on lists was merging

two sorted lists into one sorted list. Could use this to sort a list?

Merge Sort

Break the list in half and sort the halves (using merge sort) then

combine these pieces into a single sorted list being the answer.

12 / 12

13 / 12

14 / 12

