
Docstring Testing

Introduction to Computer Programming

Dr. Paul Vrbik

November 6, 2018

1 / 12

Docstring Testing

We have been diligently including Docstring tests in our code like the

following.

>>> def factorial(k:int) -> int:

... """Returns k! where k! = k*(k-1)! and 0! = 1.

... Assumes k > 0

... >>> fact(3)

... 6

... >>> fact(0)

... 1

... """

Today we will learn to use doctest.testmod() to run our tests.

2 / 12

def factorial(k:int) -> int:

"""

>>> fact(3)

6

>>> fact(0)

1

"""

ans = 1

for ell in range(k):

ans *= ell

return ans

Note the error! Docstrings can help you catch your own coding

mistakes.

3 / 12

def factorial(k:int) -> int:

"""

>>> fact(3)

6

>>> fact(0)

1

"""

ans = 1

for ell in range(k):

ans *= ell

return ans

Note the error! Docstrings can help you catch your own coding

mistakes.
3 / 12

>>> import doctest

>>> doctest.testmod(verbose=True)

**

File "__main__", line 5, in __main__.factorial

Failed example:

factorial(3)

Expected:

6

Got:

0

**

1 items had failures:

1 of 2 in __main__.factorial

Test Failed 1 failures.

TestResults(failed=1, attempted=2)

4 / 12

>>> import doctest

>>> doctest.testmod(verbose=True)

**

File "__main__", line 5, in __main__.factorial

Failed example:

factorial(3)

Expected:

6

Got:

0

**

1 items had failures:

1 of 2 in __main__.factorial

Test Failed 1 failures.

TestResults(failed=1, attempted=2)

4 / 12

Factorial: Corrected Version

def factorial(k:int) -> int:

ans = 1

for ell in range(k):

ans *= k-ell

return ans

5 / 12

Writing Good Doctests

A comprehensive Doctest would

1. Test typical cases and edge cases.

2. Test the “zero” of the data-type.

3. Test the singleton of the data-type.

4. Triggers every if statement in the function.

5. Tests for correctness and not violations of contract.

6. No redundant tests.

6 / 12

Black-Box Approach

Suppose we are given the following function. How could we gain

confidence in its correctness through black-box testing. That is, we

can evaluate the function as much as we like but the code is hidden?

def pow(x:int, y:int) -> float:

"""Returns x**y

"""

7 / 12

White Space

Be careful with spacing! The following tests will fail.

def identity(x):

"""

>>> identity([])

[]

>>> identity([1,2,3])

[1,2,3]

"""

We are doing string testing and not unit testing.

8 / 12

Sets

Notice some sets are sorted by Python.

>>> {3,2,1}

{1, 2, 3}

>>> {2,1,3}

{1, 2, 3}

>>> {"drake", "is", "so", "dope"}

{‘so’, ‘dope’, ‘is’, ‘drake’}

>>> {"so", "dope", "is", "drake"}

{‘is’, ‘so’, ‘dope’, drake’}

>>> {‘is’, ‘so’, ‘dope’, ‘drake’}

{‘so’, ‘is’, ‘dope’, ‘drake’}

9 / 12

Sets

Notice some sets are sorted by Python.

>>> {3,2,1}

{1, 2, 3}

>>> {2,1,3}

{1, 2, 3}

>>> {"drake", "is", "so", "dope"}

{‘so’, ‘dope’, ‘is’, ‘drake’}

>>> {"so", "dope", "is", "drake"}

{‘is’, ‘so’, ‘dope’, drake’}

>>> {‘is’, ‘so’, ‘dope’, ‘drake’}

{‘so’, ‘is’, ‘dope’, ‘drake’}

9 / 12

White Space

Question

Write doctests for the following function. Then implement the

function.

def poly_min(coefficients:List[int], interval:List[int]) -> int:

""" Given coefficients a, b, and c returns the minimum

of the function f(x) = a*x**2 + b*x + c for x in the

interval.

"""

10 / 12

Multiline Docstring

The following is allowed.

def identity(x:int) -> int:

"""

>>> a = 2

>>> b = 1

>>> identity(a + b)

3

"""

11 / 12

Next Time

1. Docstring testing on more sophisticated types and random games.

12 / 12

