
File IO

Introduction to Computer Programming

Dr. Paul Vrbik

October 24, 2018

1 / 18

Memory Hierarchy

Type Order This Computer

CPU Cache L2 KB 256KB

CPU Cache L3 MB 8MB

Random Access Memory GB 16GB

Disk GB/TB 256GB

Cloud PB Functionally Infinite.

2 / 18

Why Files?

When Python launches it gets allocated space in RAM and it is

possible to fill it up. This is a problem if we want to solve memory

intensive problems (e.g. analyzing tweets, payroll, or scientific

computing).

It will be necessary to instruct Python to use the disk memory one

level up.

3 / 18

Example

The following is the contents of the file hello.txt.

What a\n

wonderful\n

hello world.\n

Here \n denotes a new-line character which normally is not displayed.

4 / 18

Open a file

To open a file assumed to be in the same directory as where your

running Python (see: >>> os.getcwd()) do

file = open("file.dat", "<mode>")

Mode Description

r read

w write

a append

Note: append means write at end of file.

5 / 18

Read a file

>>> file = open("hello.txt", "r") open for read.

>>> file.readline()

‘What a\n’

>>> file.readline()

‘wonderful\n’

>>> file.readline()

‘hello world.\n’

>>> file.readline()

‘’

>>> file.readline()

‘’

6 / 18

Read a file

>>> file = open("hello.txt", "r") open for read.

>>> for line in file:

... print(line)

What a\n

\n

wonderful\n

\n

hello world.\n

\n

The \n are inserted by Python’s print.

7 / 18

Observe what happens if we repeat the loop from the last slide.

>>> for line in file:

... print(line)

>>>

This is because the file-pointer file has already reached the end of

the file the last loop.

We need to reset the file pointer to the beginning.

8 / 18

>>> file = open("hello.txt", "r")

>>> for line in file:

... line

‘What a\n’

‘wonderful\n’

‘hello world.\n’

9 / 18

Closing files

If you do not close your files they remain open and vulnerable to

side-effects.

That is, you may find some of your file is missing or extra bits in your

file when you neglect to close after use.

>>> file = open("hello.txt", "r")

>>> for line in file:

... line

‘What a’\n

‘wonderful’\n

‘hello world.’\n

>>> file.close()
10 / 18

Alternative to close

Using the with construct has the advantage of closing your file for you

— even if the program crashes while it is executing its code block.

with open("hello.txt", "r") as file:

for line in file:

print(line)

11 / 18

Question

Write a function that counts the number of empty lines in a file.

Answer

from typing import TextIO

def num_empty_lines(file:TextIO) -> int:

12 / 18

When reading from a file we are always reading strings.

Do not forget to cast your strings to a more appropriate types when

necessary.

>>> with open("numbers.dat", "<mode>") as file:

>>> ans = []

>>> for line in file:

... ans.append(int(line))

>>> ans

[1, 2, 3]

13 / 18

Question

Write a function that finds the most popular band in a file that

contains lines that look like:

band:str, rating:int, plays:int

Answer

from typing import TextIO

def highest_rated_band(file:TextIO) -> int:

14 / 18

Question

Extend the previous answer to take an arbitrary file with a header of

attributes like

name,grade,age

and write a function that finds the maximum of that attribute.

Answer

from typing import TextIO

def most(file:TextIO, attribute:str):

15 / 18

Writing to Files

>>> with open("numbers.dat", "w") as file:

... file.write("Hello World.\n")

Write single string.

... file.writelines(["Hello\n", "World\n"])

Write a list of strings.

Careful!

Opening a file for write will create the numbers.dat file or overwrite

the old one if it exists.

16 / 18

Appending to Files

Appending will open a file without over-writing, instead appending to

the end of the file.

A file is created if one does not exist.

>>> with open("numbers.dat", "a") as file:

... file.append("Hello World.\n")

17 / 18

What you should be doing.

Prepare for your exam!

18 / 18

