
List Practice

Introduction to Computer Programming

Dr. Paul Vrbik

October 23, 2018

1 / 8



Shallow-Copy

>>> xs = [[1, 0, 1], [2, 1, 0], [3, 2, 1]]

>>> ys = xs.copy()

>>>

xs.append([4,5,6])

[[1, 0, 1], [2, 1, 0], [3, 2, 1], [4, 5, 6]]

>>> ys

[[1, 0, 1], [2, 1, 0], [3, 2, 1]]

>>> ys[0].extend([2, 3, 4])

[[1, 0, 1, 2, 3, 4], [2, 1, 0], [3, 2, 1]]

>>> xs

[[1, 0, 1, 2, 3, 4], [2, 1, 0], [3, 2, 1], [4, 5, 6]]

2 / 8



Shallow-Copy

>>> xs = [[1, 0, 1], [2, 1, 0], [3, 2, 1]]

>>> ys = xs.copy()

>>> xs.append([4,5,6])

[[1, 0, 1], [2, 1, 0], [3, 2, 1], [4, 5, 6]]

>>> ys

[[1, 0, 1], [2, 1, 0], [3, 2, 1]]

>>> ys[0].extend([2, 3, 4])

[[1, 0, 1, 2, 3, 4], [2, 1, 0], [3, 2, 1]]

>>> xs

[[1, 0, 1, 2, 3, 4], [2, 1, 0], [3, 2, 1], [4, 5, 6]]

2 / 8



Shallow-Copy

>>> xs = [[1, 0, 1], [2, 1, 0], [3, 2, 1]]

>>> ys = xs.copy()

>>> xs.append([4,5,6])

[[1, 0, 1], [2, 1, 0], [3, 2, 1], [4, 5, 6]]

>>>

ys

[[1, 0, 1], [2, 1, 0], [3, 2, 1]]

>>> ys[0].extend([2, 3, 4])

[[1, 0, 1, 2, 3, 4], [2, 1, 0], [3, 2, 1]]

>>> xs

[[1, 0, 1, 2, 3, 4], [2, 1, 0], [3, 2, 1], [4, 5, 6]]

2 / 8



Shallow-Copy

>>> xs = [[1, 0, 1], [2, 1, 0], [3, 2, 1]]

>>> ys = xs.copy()

>>> xs.append([4,5,6])

[[1, 0, 1], [2, 1, 0], [3, 2, 1], [4, 5, 6]]

>>> ys

[[1, 0, 1], [2, 1, 0], [3, 2, 1]]

>>> ys[0].extend([2, 3, 4])

[[1, 0, 1, 2, 3, 4], [2, 1, 0], [3, 2, 1]]

>>> xs

[[1, 0, 1, 2, 3, 4], [2, 1, 0], [3, 2, 1], [4, 5, 6]]

2 / 8



Shallow-Copy

>>> xs = [[1, 0, 1], [2, 1, 0], [3, 2, 1]]

>>> ys = xs.copy()

>>> xs.append([4,5,6])

[[1, 0, 1], [2, 1, 0], [3, 2, 1], [4, 5, 6]]

>>> ys

[[1, 0, 1], [2, 1, 0], [3, 2, 1]]

>>>

ys[0].extend([2, 3, 4])

[[1, 0, 1, 2, 3, 4], [2, 1, 0], [3, 2, 1]]

>>> xs

[[1, 0, 1, 2, 3, 4], [2, 1, 0], [3, 2, 1], [4, 5, 6]]

2 / 8



Shallow-Copy

>>> xs = [[1, 0, 1], [2, 1, 0], [3, 2, 1]]

>>> ys = xs.copy()

>>> xs.append([4,5,6])

[[1, 0, 1], [2, 1, 0], [3, 2, 1], [4, 5, 6]]

>>> ys

[[1, 0, 1], [2, 1, 0], [3, 2, 1]]

>>> ys[0].extend([2, 3, 4])

[[1, 0, 1, 2, 3, 4], [2, 1, 0], [3, 2, 1]]

>>> xs

[[1, 0, 1, 2, 3, 4], [2, 1, 0], [3, 2, 1], [4, 5, 6]]

2 / 8



Shallow-Copy

>>> xs = [[1, 0, 1], [2, 1, 0], [3, 2, 1]]

>>> ys = xs.copy()

>>> xs.append([4,5,6])

[[1, 0, 1], [2, 1, 0], [3, 2, 1], [4, 5, 6]]

>>> ys

[[1, 0, 1], [2, 1, 0], [3, 2, 1]]

>>> ys[0].extend([2, 3, 4])

[[1, 0, 1, 2, 3, 4], [2, 1, 0], [3, 2, 1]]

>>>

xs

[[1, 0, 1, 2, 3, 4], [2, 1, 0], [3, 2, 1], [4, 5, 6]]

2 / 8



Shallow-Copy

>>> xs = [[1, 0, 1], [2, 1, 0], [3, 2, 1]]

>>> ys = xs.copy()

>>> xs.append([4,5,6])

[[1, 0, 1], [2, 1, 0], [3, 2, 1], [4, 5, 6]]

>>> ys

[[1, 0, 1], [2, 1, 0], [3, 2, 1]]

>>> ys[0].extend([2, 3, 4])

[[1, 0, 1, 2, 3, 4], [2, 1, 0], [3, 2, 1]]

>>> xs

[[1, 0, 1, 2, 3, 4], [2, 1, 0], [3, 2, 1], [4, 5, 6]]

2 / 8



Shallow-Copy

>>> xs = [[1, 0, 1], [2, 1, 0], [3, 2, 1]]

>>> ys = xs.copy()

>>> xs.append([4,5,6])

[[1, 0, 1], [2, 1, 0], [3, 2, 1], [4, 5, 6]]

>>> ys

[[1, 0, 1], [2, 1, 0], [3, 2, 1]]

>>> ys[0].extend([2, 3, 4])

[[1, 0, 1, 2, 3, 4], [2, 1, 0], [3, 2, 1]]

>>> xs

[[1, 0, 1, 2, 3, 4], [2, 1, 0], [3, 2, 1], [4, 5, 6]]
2 / 8



Question

Students must be broken into teams so that no person is on two

teams.

Assume students are uniquely identified by integers and write a

function that checks if a list of teams satisfies the above condition.

def valid_teams(teams:List[List(int)]) -> bool:

3 / 8



List Nesting

In mathematics the Cartesian Product is used to generate pairs of

points taken from two sets:

A×B = {(a, b) : a ∈ A and b ∈ B}.

For example R2 is the real-plane and

{0, 1, 2} × {a, b} = {(0, a), (1, a), (2, a), (0, b), (1, b), (2, b)}.

Question

Implement def cart_prod(A:list, B:list) -> list:

4 / 8



Question

Write a function that constructs a list by “zig-zagging” two other lists:

def zig_zag(A:list, B:list) -> list:

"""

>>> zig_zag([1, 2], [3, 4])

[1, 3, 2, 4]

>>> zig_zag([1, 2, 3], [4, 5])

[1, 4, 2, 5, 3]

>>> zig_zag([1, 2], [3, 4, 5])

[1, 3, 2, 4, 5]

"""

5 / 8



Question

Suppose a positive integer is represented by a list of its digits as in:

234 ≡ [2, 3, 4]

Write a function that takes two such integers and return their sum

using the list representation.

def list_add(A:List(int), B:List(int)) -> List(int):

"""

>>> list_add([1, 2], [3, 4])

[4, 6]

>>> list_add([1, 8, 9], [4, 5])

[2, 3, 4]

"""

6 / 8



Question (Advanced)

Write a function that “flattens” a list of lists.

def flatten(expression:list) -> list:

"""

>>> flatten([])

[]

>>> flatten([[1], [[2, 3], 4], [5]])

[1, 2, 3, 4, 5]

"""

7 / 8



Next Class

1. Files,

2. Input, and

3. Output.

8 / 8


