
Lists

Introduction to Computer Programming

Dr. Paul Vrbik

October 17, 2018

1 / 24

Definition (Tuple)

A tuple is an ordered sequence of elements. An n-tuple is a tuple

with exactly n elements.

Round brackets () are used to create tuples in Python.

We sometimes call tuples like (1, 2) and (1, 2, 3) couples and

triples.

2 / 24

The simplest data structure in Python is the tuple.

>>> xs = (1,2)

>>> type(xs)

<class ‘tuple’>

Tuples (like strings) are immutable

>>> xs[0]

1

>>> xs[0] = 2

TypeError: ‘tuple’ object does not support item

assignment

3 / 24

Definition

A list is a mutable tuple.

Square brackets [] are used to create lists in Python.

>>> xs = [1, 2]

>>> type(xs)

<class ‘list’>

>>> xs[0]

1

>>> xs[0] = 2*xs[1]

>>> xs[0]

4
4 / 24

List Built-Ins
>>> dir(list)

[‘__add__’, ‘__class__’, ‘__contains__’, ‘__delattr__’,

‘__delitem__’, ‘__dir__’, ‘__doc__’, ‘__eq__’, ‘__format__’,

‘__ge__’, ‘__getattribute__’, ‘__getitem__’, ‘__gt__’,

‘__hash__’, ‘__iadd__’, ‘__imul__’, ‘__init__’,

‘__init_subclass__’, ‘__iter__’, ‘__le__’, ‘__len__’,

‘__lt__’, ‘__mul__’, ‘__ne__’, ‘__new__’, ‘__reduce__’,

‘__reduce_ex__’, ‘__repr__’, ‘__reversed__’, ‘__rmul__’,

‘__setattr__’, ‘__setitem__’, ‘__sizeof__’, ‘__str__’,

‘__subclasshook__’, ‘append’, ‘clear’, ‘copy’, ‘count’,

‘extend’, ‘index’, ‘insert’, ‘pop’, ‘remove’, ‘reverse’,

‘sort’]
5 / 24

Append

>>> xs = [0, 1, 2]

>>> xs.append(3)

>>> xs

[0, 1, 2, 3]

code equivalent to. . .

>>> xs = [0, 1, 2]

>>> xs = xs + [3]

>>> xs

[0, 1, 2, 3]

6 / 24

Clear

>>> xs = [0, 1, 2]

>>> xs.clear()

>>> xs

[]

code equivalent to. . .

>>> xs = [0, 1, 2]

>>> xs = []

7 / 24

Copy

>>> xs = [1, 2, 3]

>>> ys = xs

>>> ys[-1] = 9

>>> xs

[1, 2, 9]

8 / 24

Copy

>>> xs = [1, 2, 3]

>>> ys = xs.copy()

>>> ys[-1] = 9

>>> xs

[1, 2, 3]

>>> ys

[1, 2, 9]

9 / 24

Count

>>> xs = [1, 2, 2, 3, 3, 3]

>>> xs.count(2)

2

>>> xs.count(4)

0

>>> xs = [[1,2,2], [3,3,3]]

>>> xs.count(2)

0

>>> xs.count([3,3,3])

1
10 / 24

Extend

>>> xs = [1, 2, 3]

>>> xs.append([4,5])

>>> xs

[1, 2, 3, [4,5]]

11 / 24

Extend

>>> xs = [1, 2, 3]

>>> xs.extend([4,5])

>>> xs

[1, 2, 3, 4, 5]

code equivalent to. . .

>>> xs = xs + [4, 5]

12 / 24

Index

>>> xs = [‘a’, ‘b’, ‘c’]

>>> xs.index(‘c’)

2

>>> xs[xs.index(‘c’)]

‘b’

>>> xs = [‘a’, ‘b’, ‘c’, ‘b’, ‘b’, ‘d’]

>>> xs.index(‘b’)

1

>>> xs.index(‘e’)

ValueError: ‘e’ is not in list

13 / 24

Insert

>>> xs = [0, 1, 2, 3, 4, 5]

>>> len(xs) Length of x

6

>>> xs.insert(-2, 9)

>>> xs

[0, 1, 2, 3, 9, 4, 5]

>>> len(xs)

7

>>> xs.insert(100, 9)

>>> xs

[0, 1, 2, 3, 9, 4, 5, 9] note index does not exist
14 / 24

Pop

>>> xs = [0, 1, 2, 3]

>>> x = xs.pop()

>>> x

3

>>> xs

[0, 1, 2]

15 / 24

Pop

>>> xs = [0, 1, 2, 3, 4]

>>> while xs:

... print(xs.pop())

>>> len(xs)

0

16 / 24

Remove

>>> xs = [0, 1, 5, 2, 3, 5]

>>> xs.remove(5)

>>> xs

[0, 1, 2, 3, 5]

>>> xs.remove(5)

>>> xs

[0, 1, 2, 3]

>>> xs.remove(5)

ValueError: list.remove(x): x not in list

17 / 24

Question

Write a function that removes all instances of x:int from

xs:List[int].

Answer

def remove_all(xs:List[int], x:int) -> List[int]

Note, in order to say xs:List[int] as a type-check we must do

from typing import List

18 / 24

Reverse

>>> xs = [0, 1, 2, 3]

>>> xs.reverse()

>>> xs

[3, 2, 1, 0]

code equivalent to. . .

>>> xs = xs[::-1]

19 / 24

Sort

>>> xs = [1, 0, 8, 3, -2]

>>> xs.sort()

[-2, 0, 1, 3, 8] Note increasing order.

>>> xs = [1, 0, 8, 3, -2]

>>> xs.sort(reverse=True)

[8, 3, 1, 0, -2] Note decreasing order.

20 / 24

Comparison

>>> [1,2,3] < [4,5,6]

True

>>> [7,2,3] < [4,5,6]

False Point-wise comparisons from position zero.

>>> [] < [1]

True

21 / 24

Slicing

>>> xs = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> xs[3:6]

[3, 4, 5]

>>> xs[::2]

[0, 2, 4, 6, 8]

>>> xs[7:2:-2]

[7, 5, 3]

22 / 24

Passing Lists to Functions

It is possible to “unbracket” a list when passing to functions

>>> def f(x, y, z):

... return x + y + z

>>> x = [1, 2, 3]

>>> f(x)

TypeError: f() missing 2 required positional arguments:

‘y’ and ‘z’

>>> f(*x)

6

23 / 24

Next Time

1. Looping over lists,

2. range,

3. Loop nesting,

4. Nested lists, and

5. List Comprehension.

24 / 24

