
Strings, Indexing, and Slicing

Introduction to Computer Programming

Dr. Paul Vrbik

September 21, 2018

1 / 23



Definition (String)

Anything (with some excpetions) enclosed by single-quotes ‘ ’ or

double-quotes “ ” is considered a string by Python.

A string is an ordered collection of the characters (e.g. unicode

and ascii) allowed by the computer.

2 / 23



>>> "hello world"

‘hello world’

>>> type("hello world")

<class ‘str’>

>>> hello world note the lack of quotes

SyntaxError: invalid syntax

>>> hello note the lack of quotes

NameError: name ‘hello’ is not defined

3 / 23



Adding Strings

>>> "hello" + "world"

‘helloworld’

>>> type(" ")

<class ‘str’>

>>> empty_string = " "

>>> "hello" + empty_string + "world"

‘hello world’

Note when strings are added a new string is created.

4 / 23



String Equality

>>> "hello" == "hello"

True

>>> "hello " == "hello"

False

>>> "h e l l o" == "hello"

False

>>> "Hello" == "hello"

False strings are case sensitive: "H" != "h"
5 / 23



Comparing Strings

>>> "a" < "b"

True

>>> "A" < "a"

True

>>> "Z" < "a"

True

6 / 23



>>> "a" < "aa"

True

>>> "b" < "aa"

False

>>> "aba" < "ab"

False

>>> "aZ" < "aa"

True

7 / 23



New Line

A new line or carriage return is a special escape character that

can be used in strings to print what is subsequent on a new line.

The new line escape character is \n.

>>> "hello\nworld"

‘hello\nworld’

>>> print("hello\nworld")

hello

world

8 / 23



Tab

A tab is a fixed amount of horizontal space. How a tab is

displayed depends on the program displaying it.

(This is why tabs are the worst :)

>>> "hello\tworld"

‘hello\tworld’

>>> print("hello\tworld")

‘hello world’

Note what happens when this is pasted to my IDE.

9 / 23



Escaping escape characters

Question

How can we print ‘‘\n\t\’’’ ?

“\\” prints a backslash “\”; “\‘” prints a single quote “ ’ ”; “\””

prints double quotes.

>>> x = ‘‘\\n\\’’’

>>> print(x)

\n\’

10 / 23



Numbers versus Strings

>>> 3 + 7

10

>>> "3" + "7"

37

>>> 3 + "7"

TypeError: unsupported operand type(s) for +: ’int’

and ’str’

>>> str(3) + "7"

37

>>> 3 + int("7")

10
11 / 23



>>> 3 + int("7")

10

>>> float("123.456")

123.456

This is only true for numbers!

>>> int("hello")

ValueError: invalid literal for int() with base 10:

‘hello’

12 / 23



Substitution

There is a mechanism for printing string variables in sentences

through substitution.

>>> x = "hello"

>>> y = "world"

>>> z = "{}ooo {}ddd".format(x,y)

>>> print(z)

helloooo worldddd

13 / 23



Length

A strings length is the number of characters that comprise it.

>>> len("h")

1

>>> len("hello")

5

>>> x = "world"

>>> len(x)

5

>>> len(x+"world") == len(x) + len("world")

True

14 / 23



Inclusion

As a string can be regarded as an ordered set we can use the

element of.

>>> "h" in "hello world"

True

>>> "hello" in "hello world"

True

>>> x = "world"

>>> x in "hello world"

True

>>> "ow" in "hello world"

False 15 / 23



String Indexing

Because a string is ordered we can number its characters starting

from zero and access them by using square brackets.

>>> x = "hello world"

>>> x[0]

‘h’

>>> x[1]

‘e’

>>> x[2]

‘l’

>>> x[len(x)]

IndexError: string index out of range 16 / 23



We can also index from the end.

>>> x = "hello world"

>>> x[-1]

‘d’

>>> x[-2]

‘l’

>>> x[-3]

‘r’

17 / 23



String Slicing

Because the string’s characters are numbered we can slice the

string to obtain only a part of it.

>>> x = "0123456789" So index matches character.

>>> x[1:4] grab 1st inclusive through 4th exclusive characters

‘123’

>>> x[0:9]

‘012345678’

>>> x[0:10]

‘0123456789’

18 / 23



>>> x = "0123456789"

>>> x[-1] == x[len(x)-1]

True

>>> x[3:-1]

‘345678’

>>> x[3:]

‘3456789’

>>> x[:]

‘0123456789’

>>> x[-7:]

‘3456789’

19 / 23



>>> x = "0123456789"

>>> x[0:-1:2] grab every every 2nd character from 0th position

‘02468’

>>> x[1:-3:3]

‘14’

>>> x[::3]

‘0369’

>>> x[::-1]

‘9876543210’ We reversed the list!

>>> x[::-4]

‘951’

20 / 23



Immutability of Stings

Something is immutable when it cannot be changed. Strings are

immutable.

>>> "hello"[0] = "H"

TypeError: ‘str’ object does not support item assignment

>>> x = "hello"

>>> x[0] = "H"

TypeError: ‘str’ object does not support item assignment

21 / 23



Question

Write a program that takes two strings and returns the average

length of those strings.

22 / 23



Next Time

Question

1. If-statements. Finally!

23 / 23


