
Scope

Introduction to Computer Programming

Dr. Paul Vrbik

September 18, 2018

1 / 27

From last time — this is totally wrong

Question

Trace the following.

>>> 3>=3 and 7>7 or 1>0

True

>>> (3>=3 and 7>7) or 1>0

True

>>> 3>=3 and (7>7 or 1>0)

True

This means that and and or are associative operations.

That is, you can bracket in any order.
2 / 27

>>> 3>3 and 7>7 or 1>0

True according to Python

>>> 3>3 and (7>7 or 1>0)

False

>>> (3>3 and 7>7) or 1>0

True

3 / 27

Example

Consider that

True or False and False == True

is ambiguous because

(True or False) and False == False

True or (False and False) == True.

and thus an order of operations is necessary to resolve

ambiguities.

4 / 27

Definition (Oder of operations)

In the case of ambiguity and is evaluated before or .

The or and and operations are individually associative but are

not associative when mixed.

Back to regular scheduled programming... HA!

5 / 27

Warmup

>>> def foo():

... return 9

>>> foo()

9

>>> def bar(x):

... x = 8

... return x

>>> bar(1)

8

>>> bar(2)

8
6 / 27

>>> def square(x):

... print(x**2)

>>> a = square(2)

4

>>> a == 4

False

>>> a == None

True

Do not print your answer — return it. We are asking you to

design functions and not a user interface.

7 / 27

>>> def foo(x):

... return x + 2

... return x + 3

>>> foo(10)

12

>>> ans = foo(10)

>>> ans

12

Everything after the first return statement is ignored.

8 / 27

>>> def foo(x):

... print(x + 2)

... print(x + 3)

>>> foo(10)

12

13

>>> ans = foo(10)

12

13

>>> ans

None

9 / 27

Definition (Scope)

Suppose a computer program creates a variable.

The scope of that variable is the collection of places (e.g.

functions, procedures, control structures) that can access its

value.

10 / 27

>>> x = 2

>>> y = 3

>>> def foo():

... return x

>>> def bar():

... return foo()*y

>>> foo()

2

>>> bar()

6

(x and y are global variables available to all functions.)
11 / 27

Definition (Global Variable)

A global variable (or simply ‘global’) is one that can be accessed

by all functions.

Anything declared outside a function will be globally accessible.

A function declared globally is said to have global scope.

12 / 27

Constants

By convention constants are defined in caps

PI = 3.14159

NUMBER_OF_DAYS_IN_WEEK = 7

13 / 27

>>> x = 2

>>> def foo():

... x = 7

... return

>>> foo()

>>> x

2

Despite having the same name, the x of foo() is assumed local

— its scope is foo().

14 / 27

>>> x = 2

>>> def foo():

... global x

... x = 7

... return

>>> foo()

>>> x

7

We can specify that foo should be using x as a global. It is good

practice to declare your globals when you use one.

15 / 27

>>> def foo():

... x = 2

... return x

>>> foo()

2

>>> x

NameError: name ‘x’ is not defined

Outside of foo the variable x does not exist; x is a local variable.

16 / 27

>>> x = 2

>>> def foo():

... x = x + 2

... return

>>> foo()

UnboundLocalError: local variable x’

referenced before assignment.

When foo creates x it becomes local and thereby has no value at

the time of assignment.

17 / 27

>>> x = 2

>>> def foo():

... global x

... x = x + 2

... return

>>> foo()

>>> x

4

>>> foo()

>>> x

6

18 / 27

>>> x = 5

>>> def foo(x):

... return x

>>> foo(7)

7

>>> x

5

Despite having the same name there are two x’s: one with a

global scope and another with local.

19 / 27

>>> x = 5

>>> def foo(y):

... return x*y

>>> foo(7)

35

>>> foo(x)

25

Globals and locals can be used in mixed computation.

20 / 27

>>> x = 5

>>> def foo(x):

... global x

... return

SyntaxError: name ‘x’ is parameter and global

21 / 27

Design Recipe

Step 1

Pick a short, descriptive, name for the function. A good name

answers the question “What does your function do?”

22 / 27

Design Recipe

Step 2

Write your function header with a docstring. Assume your

function works already and give examples of how to use it.

def is_prime(x: int) -> bool:

"""

>>> is_prime(7)

True

>>> is_prime(8)

False

"""
23 / 27

Design Recipe

Step 3

Write a short and concise description of your function.

def is_prime(x: int) -> bool:

""" Return True only when x is a prime

>>> is_prime(7)

True

>>> is_prime(8)

False

"""

24 / 27

Step 4

Write your function. Return your answer.

def is_prime(x: int) -> bool:

""" Return True only when x is a prime

>>> is_prime(7)

True

>>> is_prime(8)

False

"""

.

.

return answer
25 / 27

Step 5

Test your function. Be sure to include corner cases.

26 / 27

Next Time

1. Writing functions.

27 / 27

