Logic and Booleans

Introduction to Computer Programming

Dr. Paul Vrbik

September 16, 2018

Logical Operations and Constants

The following are the basic operands of logic.

- 1. True, 4. and,
- 2. False, 5. not.
- 3. or,

When we introduce loops we will also look at

When we say x + y this can also be interpreted as +(x, y) where + is taken to be the function

$$+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$
$$(x, y) \mapsto x \text{ "plus" } y$$

In general, any function which maps two inputs to one like $\oplus: A \times B \to C$

$$(a,b)\mapsto c$$

is called a binary function and can employ the short form $\oplus(a,b)=c=a\oplus b.$

Definition (Boolean doman)

Let \mathbb{B} denote the boolean domain where $\mathbb{B} = \{ \text{True}, \text{False} \}.$

Definition (Predicate)

Any function that maps into \mathbb{B} is called a predicate. (I.e. any function that evaluates to True or False .)

Example

A unary predicate test for prime testing:

$$P: \mathbb{Z} \to \{ \text{ True , False } \}$$
$$x \mapsto \begin{cases} \text{ True } & \text{if } x \text{ is prime} \\ \text{ False } & \text{otherwise} \end{cases}$$

evaluates to true only when x is a prime number:

$$P(7) == \mbox{ True } P(8) == \mbox{ False } P(101) == \mbox{ True }.$$

Note: Primality testing super hard!

If you like, write a Python program that implements this and try it on very large (64-bit) primes like 1 319 736 134 268 565 207. Example

The boolean function greater than

$$>: \mathbb{Z} \times \mathbb{Z} \to \mathbb{B}$$

is a predicate.

Question

Evaluate the following:

1. > (3,7),

2. 7 > 3.

Definition (And)

The binary predicate 'and' is used to express that both of two statements are true and is false if either is false.

and $: \mathbb{B} \times \mathbb{B} \to \mathbb{B}$.

and	True	False
True	True	False
False	False	False

Definition (Or)

The binary predicate 'or' is used to express that at least one of two statements is true and is false only when both are false.

or
$$: \mathbb{B} \times \mathbb{B} \to \mathbb{B}$$

or	True	False
True	True	True
False	True	False

>>> 1 > 0

True

>>> type(True)

bool

>>> True or False

True

>>> False or False

False

Trace the following.

>>> 3>7 or 7>3

True

>>> 3>7 and 7>3

False

>>> 3>=3 and 7>=7

True

>>> 3>=3 and 7>7

False

Example

Consider that

(True or False) and False == True True or (False and False) == False . is ambiguous and thus an order of operations is necessary.

Definition (Oder of operations)

In the case of ambiguity and is evaluated before or.

Example

True or False and False

== True or (False and False)

== True

Definition (Not)

The logical statement 'not ' is the negation of logical statement:

not True == False,

and

not False == True.

Trace the following.

>>> a = 6

>>> b = 7

>>> a == 6

True

>>> a == 6 and b == 7

True

>>> not(a == 7 and b == 6)

True

>>> a != 7 and not b != 7

True

Short Circuits / Lazy Computation

>>> True or 1/0

True

>>> False or 1/0

ZeroDivisionError: division by zero

>>> True or laksdhalshd

True Python does not bothering looking for laksdhalshd

```
>>> True or !
True or !
```

SyntaxError: invalid syntax

~

Short Circuits / Lazy Computation

>>> True and 1/0

ZeroDivisionError: division by zero

>>> False and 1/0

False

>>> a = 3 >>> a 3 >>> a == 3 True >>> a != 3 False >>> b = (a != 3) >>> b

False

>>> True + 1 2 >>> 7*False 0 >>> True == 1 True >>> False == 0

True

Contradiction

A contradiction is anything evaluating to False in all cases.

Example

The statements

1. False,

 $2.\ P$ and not P.

are always ${\tt False}$.

Tautologies

A tautology is anything evaluating to True in all cases.

Example

The statements

1. True,

2. P or not P.

are always $\ensuremath{\mathtt{True}}$.

Distribution of not

not(a and b) == not a or not b
 not(a or b) == not a and not b

Example

not(a and b or c)

To eliminate ambiguity bracket the and which gets evaluated first.

- == not((a and b) or c)
- == not(a and b) and not c
- == not a or not b and not c

Simplify not(b or not a or not b).

not(b or not a or not b)

- == not((b or not a) or (not b))
- == not(b or not a) and not(not b)
- == not b and not(not a) and b
- == not b and a and b
- == a and b and not b
- == a and False

== False

Let us confirm with Python.

Simplify

not((a or b)) and not(b or not a or not b))

not((a or b) and not(b or not a or not b))
== not((a or b) and False)
== not(False)

== True

Let us confirm with Python.

Write a function

1. is_even(x:int) -> bool that returns True when an
integer is even (and False otherwise);

2. is_odd(x:int) -> bool that returns True only when an
integer is odd.

Answer

def is_even(x:int) -> bool:
 return x % 2 == 0

```
def is_odd(x:int) -> bool:
    return not is_even(x)
```

Write a function

divides(x:int, y:int) \rightarrow bool that returns True only when x divides y. That is to say, there is $t \in \mathbb{Z}$ such that y = tx.

Answer

def divides(x:int, y:int) -> bool:
 return y % x == 0

- 1. More on functions.
- 2. Scope.