
The Truncated Fourier Transform
Course Project

CS 9566A

Paul Vrbik

250389673

December 11, 2009

1

The Truncated Fourier Transform 1

Abstract

I summarize (and correct some mistakes from) Joris van der Hoeven’s papers [2] and [3].
These papers introduce the Truncated Fourier Transform (TFT) which is a variation of the
Fast Fourier Transform (FFT) that allows one to work with input vectors that are not a power
of two.

I also expand upon the development of the inverse TFT in order to impose some clarity on
van der Hoeven’s descriptions.

1 Introduction

Let R be an effective ring of constants (i.e. there are effective procedures for computing +, − and
× of two elements in R[x]). If R has a primitive nth root of unity ω with n = 2p (i.e. ωn/2 = −1)
then we can use the Fast Fourier Transform (FFT) to compute the product of two polynomials
P, Q ∈ R[x] with deg(PQ) < n in O(n logn). However, when deg(PQ) is sufficiently far from a
power of two we can show that many computations are done to establish evaluations points that
we ultimately do not need.

I outline the FFT, including a method for its a non-recursive implementation, and then develop
a variant called the Truncated Fourier Transform (TFT). Finally I show how the TFT can be
inverted.

2 The Fast Fourier Transform

Let R, n, and ω be given as in the introduction. The discrete Fast Fourier Transform (FFT) —
with respect to ω — of an n-tuple a = (a0, . . . , an−1) ∈ Rn is the n-tuple â = (â0, . . . , ân−1) ∈ Rn

with

âi =

n−1
∑

j=0

ajω
ij.

Alternatively we can interpret these n-tuples as coefficients of polynomials in R[x] and define the
FFT as the mapping which takes A = a0 +a1x+ · · ·+an−1x

n−1 to the n-tuple (A(ω0), . . . , A(ωn−1)).
The FFT can be computed efficiently using binary splitting. By doing this we only evaluate at

ω2i

for i ∈ {0, . . . , p − 1}, rather than at all ω0, . . . , ωn−1. To compute the FFT of a with respect
to ω we write

a0, . . . , an−1 = (b0, c0, . . . , bn/2−1, cn/2−1)

and recursively compute the Fourier transform of (b0, . . . , bn/2−1) and (c0, . . . , cn/2−1) at ω2:

FFTω2(b0, . . . , bn/2−1) = (b̂0, . . . , b̂n/2−1);

FFTω2(c0, . . . , cn/2−1) = (ĉ0, . . . , ĉn/2−1).

Finally we construct â according to

FFTω(a0, . . . , an−1) = (b̂0 + ĉ0, . . . , b̂n/2−1 + ĉn/2−1ω
n/2−1

b̂0 − ĉ0, . . . , b̂n/2−1 − ĉn/2−1ω
n/2−1).

The Truncated Fourier Transform 2

The polynomial interpretation of this procedure instead splits A into its even and odd parts, evalu-
ates these parts at ω2 and then reconstructs to retrieve Â. Of course the two methods are equivalent.

Clearly this description has a natural implementation as a recursive algorithm; but, in practice
it is more efficient to implement an in-place algorithm that eliminates the overhead of creating
recursive stacks.

Definition 1. We denote by [i]p the bitwise reverse1 of i at length p. Suppose i = i02
0 + · · ·+ ip2

p

and j = j02
0 + · · ·+ jp2

p then

[i]p = j ⇐⇒ ik = jp−k for k ∈ {0, . . . , p}.

Example 1. -
[3]5 = 24 because 3 = 000112 whose reverse is 110002 = 24.

-
[11]5 = 26 because 11 = 010112 whose reverse is 110102 = 26.

The non-recursive (in-place) algorithm only requires one vector of length n. Initially, at step
zero we start with the vector

x0 = (x0,0, . . . , x0,n−1) = (a0, . . . , an−1)

and update this vector at step s ∈ {1, . . . , p} by the rule

[

xs,ims+j

xs,(i+1)ms+j

]

=

[

1 ω[i]sms

1 −ω[i]sms

][

xs−1,ims+j

xs−1,(i+1)ms+j

]

(1)

for all i ∈ {0, 2, . . . , n/ms − 2} and j ∈ {0, . . . , ms − 1}, where ms = 2p−s.
Equation (1), being a relation among four values at two steps s and s − 1, can be illustrated

as in Figure 2. We call this relation a “butterfly” after the shape it forms. We may say that ms

controls the width of this butterfly — the value of which decreases as s increases. Note that two

Figure 1: Butterflies. Schematic representation of Equation (1). The black dots correspond to the
xs,i. The top row corresponding to s = 0. In this case n = 16 = 24.

1In [2] the word “mirror” instead of reverse is used which I feel can lead to some ambiguity.

The Truncated Fourier Transform 3

additions and one multiplication are done in Equation (1) as one product is merely the negation of
the other.

Using induction over s, it can be easily shown [2] that

xs,ims+j = (FFTωms (aj, ams+j, . . . , an−ms+j))[i]s
,

for all i ∈ {0, . . . , n/ms − 1} and j ∈ {0, . . . , ms − 1}. In particular, when s = p and j = 0 we have

xp,i = â[i]p

âi = xp,[i]p

for all i ∈ {0, . . . , n − 1}. That is, â is a permutation of xp as illustrated in Figure 2

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

â[0]4
â[1]4

â[2]4
â[3]4

â[4]4
â[5]4

â[6]4
â[7]4

â[8]4
â[9]4

â[10]4
â[11]4

â[12]4
â[13]4

â[14]4
â[15]4

Figure 2: The Fast Fourier Transform for n = 16. The top row, corresponding to s = 0, represents
the values of x0. The bottom row, corresponding to s = 4 is some permutation of â (the result of
the FFT on a).

One nice feature of the FFT is that it is straightforward to recover a from â

FFTω−1(â)i = FFTω−1(FFTω(a))i =
n−1
∑

k=0

n−1
∑

j=0

aiω
(i−k)j = nai (2)

since
n−1
∑

j=0

ω(i−k)j = 0

whenever i 6= k. This yields a polynomial multiplication algorithm of time complexity O(n log n)
in R[x]. For the sake of brevity I will refer the reader to [1] for the outline of this algorithm.

I give a simple Maple implementation of the in-place FFT and inverse FFT algorithms. First
is sample output (the procedure listings follow).

[>F:=randpoly(x,coeffs=rand(1..1));
1 + x5 + x4 + x3 + x2 + x

[>as:=myFFT(F,3):

[>invFFT(as,3);

1 + x5 + x4 + x3 + x2 + x

The Truncated Fourier Transform 4

In-place Fast Fourier Transform and Inverse Transform

1 h myFFT : : l i s t (complex):=proc (xs : : Array (complex) ,w : : complex , p : : nonnegint)
2 #in t pu t : : xs [0 . . n−1]
3 # : : w − complex number such t ha t wˆ(2ˆp) = 1
4 #output : : the FFT
5 local x , xp , s , indx ,wn, n ,ms , i , j ;
6 global NumOps, SaveA ;
7

8 n:=ArrayNumElems(xs) ; #:=2ˆp
9 i f n <> 2ˆp then error ‘ ‘ something wrong ” ; end i f ;

10

11 x:=Array (0 . . n−1, datatype=complex) ; xp:=Array (0 . . n−1, datatype=complex) ;
12 x:=xs ;
13

14 for s from 1 to p do

15 ms:=2ˆ(p−s) ;
16 for i from 0 to n/ms−2 by 2 do

17 wn:=wˆ(BinFl ip (i , s)∗ms) ;
18 for j from 0 to ms−1 do

19 indx := i ∗ms+j ;
20 xp [indx] := eva l c (x [indx]+wn∗x [indx+ms]) ;
21 xp [indx+ms] := eva l c (x [indx]−wn∗x [indx+ms]) ;
22 end do ;
23 end do ;
24 (x , xp):=(xp , x) ; #t h i s swaps po in t e r s
25 end do ;
26

27 for i from 0 to n−1 do

28 xp [i] := eva l c (s imp l i f y (x [BinFl ip (i , p)])) ;
29 end do ;
30

31 return conver t (xp , l i s t) ;
32 end :
33

34 myFFT: : l i s t (complex):=proc (F , p : : nonnegint)
35 local x , n , a ;
36 x:= inde t s (F) [1] ;
37 n:=2ˆp ;
38 a:=Array (0 . . n−1, [seq (c o e f f (F , x , i) , i =0. . degree (F)) , 0$ (n−degree (F))]) ;
39 return h myFFT(a , eva l c (exp (2∗ I ∗Pi/n)) ,p) ;
40 end proc :
41

42 invFFT:=proc (xs : : l i s t (complex) , p : : nonnegint)
43 local n ,w, as ;
44

45 n:=2ˆp ;
46 w:=exp (2∗ I ∗Pi/n) ;
47

48 as :=h myFFT(Array (0 . . n−1, xs) , eva l c (1/w) , p) ;
49

50 add (1/n∗ as [i +1]∗xˆ i , i =0. .n−1) ;
51 end proc :

The Truncated Fourier Transform 5

3 The Truncated Fourier Transform

The motivation behind the Truncated Fourier Transform is the observation that many computations
are wasted when the length of a (the input) is not a power of two. This is entirely the fault of
the strategy where one “completes” the ℓ-tuple a = (a0, . . . , aℓ−1) by setting ai = 0 when i ≥ ℓ to
artificially extend the length of a to the nearest power of two. Now the FFT can be executed as
usual.

However, despite the fact that we may only want ℓ components of â, the FFT will calculate all
of them. Thus computation is wasted. I illustrate this in Figures 3 and 4. This type of wasted
calculation is relevant when using the FFT to multiply polynomials — their products are rarely of
degree a power of two.

Figure 3: The FFT with “artificial” zero points (green).

Figure 4: Removing all unnecessary computations from Figure 3 gives the schematic representation
of the TFT.

The definition of the TFT is similar to that of the FFT with the exception that the input and
output vector (a resp. â) are not necessarily of length some power of two. More precisely the TFT
of an ℓ-tuple (a0, . . . , aℓ−1) ∈ Rℓ is the ℓ-tuple

(

A(ω[0]
p ,) . . . , A(ω[ℓ−1]p)

)

∈ Rℓ.

where n = 2p, ℓ < n (usually ℓ ≥ n/2) and ω a n-th root of unity.

The Truncated Fourier Transform 6

Remark 1. van der Hoeven gives a more general description of the TFT where one can chose an
initial vector (x0,i0 , . . . , x0,in) and target vector (xp,j0, . . . , xp,jn

). Provided that the ik’s are distinct
one can (supposedly) carry out the TFT by considering the full FFT and removing all computations
not required for the desired output. As I am ignorant to some sufficiently fast way of determining
this subgraph, I restrict my discussion to that of the scenario in Figure 4 (where the input and
output are the same initial segments).

It is actually straightforward to modify the in-place algorithm from the previous section to
instead execute the TFT. At stage s it suffices to compute

(xs,0, . . . , xs,j) with j = (⌊(ℓ − 1)/ms⌋ + 1)ms − 1

where ms = 2p−s.2

Theorem 1. Let n = 2p, ℓ < n and ω ∈ R be a primitive n-th root of unity in R. Then the TFT of
an ℓ-tuple (a0, . . . , aℓ−1) w.r.t. ω can be computed using at most ℓp + n additions and ⌊(ℓp + n)/2⌋
multiplications with powers of ω.

Proof. Let j = (⌊(ℓ − 1)/ms⌋ + 1)ms − 1, at stage s we compute (xs,0, . . . , xs,j). So, in addition to
xs,0, . . . , xs,ℓ−1 we compute

(⌊(ℓ − 1)/ms⌋ + 1)ms − ℓ ≤ 1 + ms − ℓ ≤ ms

more values. Therefore, in total we compute at most

pℓ + 2p−1 + 2p−2 + · · · + 1 < pℓ + n

values xs,i. The result follows from this.

We can make a trivial change to the FFT implementation to get another for the TFT. This is
given on the following page.

4 Inverting The Truncated Fourier Transform

Unfortunately, the inverse TFT cannot be inverted by merely doing another TFT with 1/ω and
adjusting the output by some constant factor (like the FFT). Simply put: we are missing information
and have to account for this.

Example 2. Let R = Z/17Z, n = 22 = 4, with ω = 4 a n-th primitive root of unity. The TFT of
a = (a0, a1, a2) is

(

A(ω0), A(ω2), A(ω1)
)

= (A(1), A(−1), A(3))

= (a0 + a1 + a2, a0 − a1 + a2, a0 + 3a1 + 9a2).

Now to show that the TFT of this w.r.t. 1/ω is not a define

b = (b0, b1, b2) = (a0 + a1 + a2, a0 − a1 + a2, a0 + 3a1 + 9a2).

2This is a correction to the bound given in [3].

The Truncated Fourier Transform 7

In-place Trucnated Fast Fourier Transform

1 h myTFT : : l i s t (complex):=proc (xs : : Array (complex) ,w : : complex , p : : nonnegint , l : : nonnegint)
2 #in t pu t : : xs [0 . . n−1]
3 # : : w − complex number such t ha t wˆ(2ˆp) = 1
4 #output : : the TFT (with in d i c e s un shu f f l e d)
5 local x , xp , s , indx ,wn, n ,ms , i , j , uBound ;
6 global NumOps ;
7

8 n:=2ˆp ;
9

10 x:=xs ; xp:=Array (0 . . n−1, datatype=complex) ;
11 for s from 1 to p do

12 ms:=2ˆ(p−s) ;
13 uBound:=(trunc ((l)/ms)+1)∗ms − 1 ;
14 for i from 0 to n/ms−2 by 2 do

15 wn:=wˆ(BinFl ip (i , s)∗ms) ;
16 for j from 0 to ms−1 do

17 indx := i ∗ms+j ;
18 i f indx > uBound then break ; end i f ;
19 xp [indx] := eva l c (x [indx]+wn∗x [indx+ms]) ;
20 end do ;
21

22 for j from 0 to ms−1 do

23 indx := i ∗ms+j ;
24 i f indx > uBound then break ; end i f ;
25 xp [indx+ms] := eva l c (x [indx]−wn∗x [indx+ms]) ;
26 end do ;
27 end do ;
28 (x , xp):=(xp , x) ; #t h i s swaps po in t e r s
29 end do ;
30

31 return [seq (eva l c (s imp l i f y (x [i])) , i =0. . l −1)] ;
32 end :
33

34 myTFT: : l i s t (complex):=proc (F , p : : nonnegint)
35 local x , n , a ;
36 x:= inde t s (F) [1] ;
37 n:=2ˆp ;
38 a:=Array (0 . . n−1, [seq (c o e f f (F , x , i) , i =0. . degree (F)) , 0$ (n−degree (F))]) ;
39 return h myTFT(a , eva l c (exp (2∗ I ∗Pi/n)) , p , degree (F , x)+1) ;
40 end proc :

The Truncated Fourier Transform 8

The TFT of b w.r.t 1/ω = −4 is

(

B
(

ω0
)

, B
(

ω−2
)

, B
(

ω−1
))

= (B(1), B(−1), B(−4))

= (b0 + b1 + b2, b0 − b1 + b2, b0 − 4b1 − b2)

= (3a0 + 3a1 + 11a2, a0 + 5a1 + 9a2,−4a0 + 2a1 + 5a2)

which is not some constant multiple of TFTω(a).
This discrepancy is caused by the completion of b to (b0, b1, b2, 0). In fact we should instead be

completing b to (b0, b1, b2, a0 − 3a1 + 9a2) to correspond to the FFT of a w.r.t ω.

Essentially to invert the TFT we follow the paths from xp back to x0. We will use the fact that
whenever one value among

xs,ims+j, xs−1,ims+j

and one value among
xs,(i+1)ms+j, xs−1,(i+1)ms+j

are known then we can deduce the other values. That is, if two values of some butterfly are
known then the other two values can be calculated using Equation (1) as the relevant matrix
is invertible. Moreover, these relations only involve shifting (multiplication and division by two),
additions, subtractions and multiplications by roots of unity — an ideal scenario for implmentation.

The key observation is: given xp,0, . . . , xp,2k
−1 that xp−k,0, . . . , xp−k,2k

−1 can be established. This
is because all the butterfly relations necessary to move up like this never require xs,2k+j for any
s ∈ {p − k, . . . , p}, j > 0. This is illustrated in Figure 5. More generally we have that

xp,2j+2k , . . . , xp,2j+2k
−1

is sufficient information to compute

xp−k,2j , . . . , xp−k,2j+2k
−1

provided that 0 < k ≤ j < p.

Figure 5: The computations in the boxes are self contained.

The Truncated Fourier Transform 9

The algorithm for the inverse TFT will initially take as input the segment xp,0, . . . , xp,ms−1 with
ms > n/2. We will assume that this vector is the result of the TFT with x0,ms+j = 0 for j > 0.
The output will be x0,0, . . . , x0,ms−1 (the original points a).

More precisely, denote ks = ⌊ℓ/ms⌋ and ls = ks + ms at each stage s. The recursive algorithm
will take the values

xp,ks
, . . . , xp,ℓ−1 and (possibly empty) xs,l, . . . , xs,ℓs

on input, and return xs,ks
, . . . , xs,ℓ−1. If s = p then there is nothing to be done. Otherwise,

if ℓs = ℓs+1 then -

1. compute xs+1,ks
, . . . , xs+1,ks+1−1 from xp,ks

, . . . , xp,ks+1−1 using repeated crossings (i.e.
“push up”).

2. compute xs,i and xs+1,i+ms/2 from xs+1,i and xs,i+ms/2 for i ∈ {ℓ − ms/2, . . . , ks+1 − 1}.

3. by recursive call obtain xs+1,ks+1
, . . . , xs+1,ℓ−1.

4. compute xs,i and xs,i+ms/2 from xs+1,i and xs+1,i+ms/2 for i ∈ {ks, . . . , ℓ − ms/2 − 1};

if ℓs > ℓs+1 then -

1. compute xs+1,i from xs,i and xs,i+ms/2 for i ∈ {ℓ, . . . , ℓs+1 − 1} (i.e. “push down”).

2. by recursive call obtain xs+1,ks+1, . . . , xs+1,ℓ−1.

3. compute xs,i from xs+1,i and xs,i+ms/2 for i ∈ {ks, . . . , ℓ − 1}.

A visual depiction of this algorithm is given in Figure 4.

As the algorithm may be designed in such a way to remain in place it follows that the next
theorem is proved [2].

Theorem 2. The ℓ-tuple (a0, . . . , aℓ−1) can be recovered from its TFT with respect to ω using at
most ℓp + n shifted additions (or subtractions) and ⌊(ℓp + n)/2⌋ multiplications with powers of ω.

That is, the cost of doing the inverse TFT is no more expensive than doing the TFT — in fact in
most cases it’s less expensive.

5 Conclusions

The Truncated Fourier Transform is a novel and elegant way to reduce the number of computations
of an FFT-based computation by a possible factor of two (which may be significant). The hidden
“cost” of working with the TFT is the increased difficulty of determining the inverse TFT. Although
in most cases this is still less costly than the inverse FFT the algorithm is no doubt is much difficult
to implement.

I feel that this implementation, done at very low level, by van der Hoeven is a significant
contribution. I would certainly not like to be the one to duplicate this for Maple.

The Truncated Fourier Transform 10

(a) Initial state of the algorithm. Red dots are the result
of the forward TFT; green dots are zeros.

(b) Find “biggest” box where computations are self con-
tained.

(c) “Push up”; calculate x1,0, . . . , x1,7 from x4,0, . . . , x4,7. (d) Make a recursive call on the red box.

(e) “Push down” using cross relations. (f) Make a recursive call on the red box.

(g) “Push down” as much as possible. (h) Make a recursive call on the red box.

(i) The result of the previous recursive call. (j) Use cross relations to “push up.”

(k) “Push up” as much as possible. (l) Done.

Figure 6: Schematic representation of the recursive computation of the inverse TFT for n = 16 and
ℓ = 11.

The Truncated Fourier Transform 11

References

[1] K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for Computer Algebra. Kluwer Aca-
demic Publishers, 1992.

[2] J. van der Hoeven. Notes on the Truncated Fourier Transform. Technical report, Université
Paris-Sud, Orsay, France, 2008.

[3] Joris van der Hoeven. The truncated fourier transform and applications. In ISSAC ’04: Pro-
ceedings of the 2004 international symposium on Symbolic and algebraic computation, pages
290–296, New York, NY, USA, 2004. ACM.

