Paul Vrbik University of Western Ontario

December 10, 2009

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

<ロ> (四) (四) (注) (注) (注) (三)

L The Fast Fourier Transform (FFT)

THE FAST FOURIER TRANSFORM

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Let:

 R be an *effective ring* (meaning that there are effective procedures for computing the sum, difference and product of two elements of R[x]),

•
$$\omega \in \mathcal{R}[x]$$
 be a primitive $n = 2^p$ -th root of unity (i.e. $\omega^{n/2} = -1$).

Definition (FFT - technical)

The discrete Fast Fourier Transform (FFT) maps

$$(a_0,\ldots,a_{n-1})\in\mathcal{R}^n\stackrel{\mathsf{FFT}}{\longrightarrow}(\hat{a}_0,\ldots,\hat{a}_{n-1})\in\mathcal{R}^n$$

with

$$\hat{a}_i = \sum_{j=0}^{n-1} a_j \omega^{ij}.$$

Paul Vrbik University of Western Ontario

The Truncated Fourier Transform

L The Fast Fourier Transform (FFT)

Definition (FFT - useful)

Let
$$A = a_0 + a_x x + \dots + a_{n-1} x^{n-1} \in \mathcal{R}[x]$$
 then FFT maps

$$A(x) \xrightarrow{\text{FFT}} (A(\omega^0), A(\omega^1), \dots, A(\omega^{n-1}))$$
or $\hat{a}_i = A(\omega^i)$.

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

L The Fast Fourier Transform (FFT)

The FFTcan be computed efficiently using binary splitting: Write

$$(a_0,\ldots,a_{n-1})=\left(b_0,c_0,\ldots,b_{\frac{n}{2}-1},c_{\frac{n}{2}-1}\right)$$

and do

$$\mathsf{FFT}_{\omega^2}(b_0, \dots, b_{n/2-1}) = (\hat{b}_0, \dots, \hat{b}_{n/2} - 1)$$
$$\mathsf{FFT}_{\omega^2}(c_0, \dots, c_{n/2-1}) = (\hat{c}_0, \dots, \hat{c}_{n/2} - 1).$$

Then we have

$$\mathsf{FFT}_{\omega}(a_0, \dots, a_{n-1}) = (\hat{b}_0 + \hat{c}_0, \dots, \hat{b}_{n/2-1} + \hat{c}_{n/2-1}\omega^{n/2-1} \\ \hat{b}_0 - \hat{c}_0, \dots, \hat{b}_{n/2-1} - \hat{c}_{n/2-1}\omega^{n/2-1}).$$

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

The Fast Fourier Transform (FFT)

In practice it is more efficient to implement an *in-place* algorithm rather than a recursive one.

First we define the bitwise mirror of *i* at length *p*, denoted $[i]_p$.

Example

$$[3]_5 = 24$$
 because $3 = 00011_2$ whose reverse is $11000_2 = 24$.

 $[11]_5 = 26$ because $11 = 01011_2$ whose reverse is $11010_2 = 26$.

(ロ) (同) (E) (E) (E)

L The Fast Fourier Transform (FFT)

At step
$$s \in \{1, \ldots, p\}$$
 with $m_s = 2^{p-s}$ we set

$$\begin{bmatrix} x_{s,im_s+j} \\ x_{s,(i+1)m_s+j} \end{bmatrix} = \begin{bmatrix} 1 & \omega^{[i]_sm_s} \\ 1 & -\omega^{[i]_sm_s} \end{bmatrix} \begin{bmatrix} x_{s-1,im_s+j} \\ x_{s-1,(i+1)m_s+j} \end{bmatrix}.$$

Figure: Butterflies. The black dots correspond to the $x_{s,i}$. The top row corresponding to s = 0. In this case $n = 16 = 2^4$.

L The Fast Fourier Transform (FFT)

Figure: Butterflies. The black dots correspond to the $x_{s,i}$. The top row corresponding to s = 0. In this case $n = 16 = 2^4$.

The Fast Fourier Transform (FFT)

For every step *s* we calculate $x_s = (x_{0,0}, ..., x_{0,n-1})$ from x_{s-1} (note $x_0 = (a_0, ..., a_{n-1})$).

At step $s \in \{1, \dots, p\}$, we set

$$\begin{bmatrix} x_{s,im_s+j} \\ x_{s,(i+1)m_s+j} \end{bmatrix} = \begin{bmatrix} 1 & \omega^{[i]_sm_s} \\ 1 & -\omega^{[i]_sm_s} \end{bmatrix} \begin{bmatrix} x_{s-1,im_s+j} \\ x_{s-1,(i+1)m_s+j} \end{bmatrix}$$

for all $i \in \{0, 2, ..., n/m_s - 2\}$ and $j \in \{0, ..., m_s - 1\}$, where $m_s = 2^{p-s}$.

Theorem

For $i \in \{0, \dots, n/m_s - 1\}$ $x_{p,i} = \hat{a}_{[i]_p}$ $\hat{a}_i = x_{p,[i]_p}$

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

L The Fast Fourier Transform (FFT)

Figure: The "Regular" Fast Fourier Transform.

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

L The Fast Fourier Transform (FFT)

It is also straightforward to recover \boldsymbol{a} from $\hat{\boldsymbol{a}}$

$$\mathsf{FFT}_{\omega^{-1}}(\hat{\mathbf{a}})_i = \mathsf{FFT}_{\omega^{-1}}(\mathsf{FFT}_{\omega}(\mathbf{a}))_i = \sum_{k=0}^{n-1} \sum_{j=0}^{n-1} a_j \omega^{(i-k)j} = na_i$$

since

$$\sum_{j=0}^{n-1} \omega^{(i-k)j} = 0$$

whenever $i \neq k$. This yields a polynomial multiplication algorithm of time complexity $O(n \log n)$ in $\mathcal{R}[x]$.

L The Truncated Fourier Transform (TFT)

THE TRUNCATED FAST FOURIER TRANSFORM

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

L The Truncated Fourier Transform (TFT)

The algorithm for FFT requires that *n* is a power of two. If we want to multiply two polynomials $A, B \in \mathcal{R}[x]$ such that $\deg(AB) + 1 = n + \delta$ we would need to carry out the FFT at precision 2n.

L The Truncated Fourier Transform (TFT)

•	•	•	٠	٠	٠	٠	•	٠	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	ο	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

<□> <□> <□> <=> <=> <=> <=> <=> <=> <<</p>

L The Truncated Fourier Transform (TFT)

•	٠	•	٠	٠	٠	٠	٠	٠	•	•	۰	•	0	0	•
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

L The Truncated Fourier Transform (TFT)

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

-The Truncated Fourier Transform (TFT)

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

L The Truncated Fourier Transform (TFT)

The idea behind the TFT is to only do the work required to get the desired output (eliminating a factor of 2).

Let $n = 2^p$, $\ell < n$ (usually $\ell \ge n/2$) and let ω be a primitive *n*-th root of unity.

$$\mathsf{TFT}_{\omega}\left(A=a_{0}+\cdots+a_{\ell}x^{\ell-1}
ight)\xrightarrow{\mathsf{TFT}}\left(A(\omega^{[0]_{p}}),\ldots,A(\omega^{[\ell-1]_{p}})
ight).$$

<ロ> (四) (四) (三) (三) (三)

We use the in-place algorithm from the previous section in order to compute the TFT. The claim is that this means many of the $x_{s,i}$ can be skipped. Indeed, at stage s, it suffices to compute the vector $(x_{s,0}, \ldots, x_{s,\lfloor (\ell-1)/m_s \rfloor + 1)m_s - 1})$

Theorem

The TFT of an ℓ -tuple w.r.t. ω can be computed using at most $\ell p + n$ additions and $\lfloor (lp + n)/2 \rfloor$ multiplications with powers of ω .

<ロ> (四) (四) (三) (三) (三) 三

L The Truncated Fourier Transform (TFT)

THE INVERSE TRUNCATED FOURIER TRANSFORM

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Unfortunately (quite unfortunately), the inverse TFTcannot be computed using a similar formula. Simply put, we are missing information and have to account for this.

We will use the fact that whenever one value among

and one value among

$$X_{s,(i+1)m_s+j}, X_{s-1,(i+1)m_s+j}$$

are known then we can deduce the other values.

(ロ) (同) (E) (E) (E)

The Truncated Fourier Transform (TFT)

Figure: You can deduce any part of the butterfly from two known parts.

$$\begin{bmatrix} x_{s,im_s+j} \\ x_{s,(i+1)m_s+j} \end{bmatrix} = \begin{bmatrix} 1 & \omega^{[i]_sm_s} \\ 1 & -\omega^{[i]_sm_s} \end{bmatrix} \begin{bmatrix} x_{s-1,im_s+j} \\ x_{s-1,(i+1)m_s+j} \end{bmatrix}$$

프 🕨 🗉 프

L The Truncated Fourier Transform (TFT)

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	ο	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	ο	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure: The computations in the boxes are self contained.

(ロ) (回) (E) (E) (E) (O)

The Truncated Fourier Transform (TFT)

Figure: The computations in the boxes are self contained.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

The Truncated Fourier Transform (TFT)

< 🗇 >

≪ 臣 ≯

< ≣⇒

æ

L The Truncated Fourier Transform (TFT)

(o c	0	0	0	0	0	0	0	0	0	•	•	•	•	•
(o c	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(o c	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	o c	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•	• •	•	•	•	•	•	٠	•	٠	•	0	0	0	0	0

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

<□> <□> <□> <=> <=> <=> <=> <=> <=> <<</p>

L The Truncated Fourier Transform (TFT)

0	0	0	0	0	0	0	0	0	0	0	٠	۲	۲	۲	۲
•	٠	٠	٠	•	٠	٠	٠	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	•	٠	•	0	0	0	0	0

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

<□> <□> <□> <=> <=> <=> <=> <=> <=> <<</p>

The Truncated Fourier Transform (TFT)

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

The Truncated Fourier Transform (TFT)

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

< 17 >

The Truncated Fourier Transform (TFT)

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

The Truncated Fourier Transform (TFT)

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

The Truncated Fourier Transform (TFT)

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

L The Truncated Fourier Transform (TFT)

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ο
•	٠	٠	٠	٠	٠	٠	٠	0	0	0	۰	•	•	•	•
ο	0	0	0	0	0	0	0	0	0	0	٠	0	0	0	0
ο	0	0	ο	ο	0	0	0	0	0	0	0	0	0	0	0
ο	0	0	0	0	0	0	0	•	٠	•	0	0	0	0	0

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

<□> <□> <□> <=> <=> <=> <=> <=> <=> <<</p>

L The Truncated Fourier Transform (TFT)

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•	٠	٠	٠	٠	٠	٠	٠	0	0	0	۰	•	•	۰	۰
ο	0	0	0	0	0	0	0	•	٠	٠	٠	0	0	0	0
ο	0	0	0	ο	0	0	0	0	0	0	0	0	0	0	0
ο	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

<□> <□> <□> <=> <=> <=> <=> <=> <=> <<</p>

The Truncated Fourier Transform (TFT)

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

< 🗇 >

L The Truncated Fourier Transform (TFT)

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ο
•	٠	٠	٠	٠	٠	٠	٠	•	٠	•	•	٠	٠	•	٠
ο	0	0	0	ο	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	ο	0	0	0	0	0	0	0	0	0	0	0
ο	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

<□> <□> <□> <=> <=> <=> <=> <=> <=> <<</p>

L The Truncated Fourier Transform (TFT)

•	•	•	٠	٠	٠	٠	٠	٠	٠	•	•	٠	٠	٠	•
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Theorem

The ℓ -tuple $(a_0, \ldots, a_{\ell-1})$ can be recovered from its TFTwith respect to ω using at most $\ell p + n$ shifted additions (or subtractions) and $\lfloor (\ell p + n)/2 \rfloor$ multiplications with powers of ω .

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

(ロ) (同) (E) (E) (E)

L The Truncated Fourier Transform (TFT)

"Future Work"

- Paper for Eric.
- Finish my MAPLE implementation (almost there).

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

イロト イポト イヨト イヨト 三日

L The Truncated Fourier Transform (TFT)

Done.

Paul Vrbik University of Western Ontario The Truncated Fourier Transform

(ロ) (回) (E) (E) (E) (O)