Assignment 3

October 20, 2009

- 1. Give the steps of the extended Euclidean algorithm with inputs $A_0 = 3 + x x^2 + x^3$ and $A_1 = 1 - x + x^2$.
- 2. The golden ratio is $\varphi = (1 + \sqrt{5})/2$.
 - Find a polynomial P of degree 2 such that $P(\varphi) = 2$
 - Use Euclidean division and XGCD computation to express $(\varphi-1)/(\varphi+2)$ in the form

$$a_0 + a_1\varphi$$
,

with a_0, a_1 rational numbers.

- Could you do the same for more general fractions in φ ? How?
- 3. Consider the sequence (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...). Using the extended Euclidean algorithm, find a linear recurrence of order 2, with constant coefficients, that is satisfied by this sequence.
- 4. Given points a_1, \ldots, a_n and values v_1, \ldots, v_n , with $a_i \neq a_j$ for $i \neq j$, we want to find a rational function P = N/D, with $\deg(N) < n/2$ and $\deg(D) = n/2$ such that $P(a_i) = v_i$ for all i.

Suppose that we know a polynomial Q(x) of degree less than n such that $Q(a_i) = v_i$ for all i. Let also $M = (x - a_1) \cdots (x - a_n)$. Using the same idea as for the rational function reconstruction seen in class, explain how you could solve your problem by applying the XGCD algorithm to Q and M.

I'm not asking for a detailed proof, but for the idea of the algorithm, and an informal justification of why it will work.

5. How much time did you spend on the assignment?