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Question 1

1 RED:=proc(A,B,x)

2 local m,n,Ap;

3

4 printf("Call RED(%a,%a,x)\n",A,B);

5 m,n:=degree(A,x),degree(B,x);

6 if m<n then

7 return A;

8 else

9 Ap:=expand(A - coeff(A,x,m)*x^(m-n)*B);

10 return RED(Ap,B,x);

11 end if;

12

13 end proc;

> f:=3+x-x^2+x^3:

> g:=x-1:

> rem(f,g,x);

4

> RED(f,g,x);

Call RED(3+x-x^2+x^3,x-1,x)

Call RED(3+x,x-1,x)

Call RED(4,x-1,x)

4

Question 2

1 fastRED:=proc(A,B,x)

2 local m,n,Bs,S,As,Qs,q,r;

3

4 m,n:=degree(A,x),degree(B,x);

5

6 if m<n then

7 return A;

8 end if;

9

10 Bs:=add( coeff(B,x,i)*y^(n-i), i=0..n);

11 As:=add( coeff(A,x,i)*y^(m-i), i=0..m);

12

13 gcdex(Bs,y^(m-n+1),y,’S’,’t’);

14 # => S*Bs + t*y^(m-n+1) = 1 => S*Bs = 1 mod y^(m-n+1)
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15

16 Qs:=rem( expand(As*S), y^(m-n+1), y);

17

18 q:=add( x^(m-n-i)*coeff(Qs,y,i), i=0..m-n );

19 r:=expand(A-B*q);

20

21 return (q,r);

22 end proc:

> f:=3+x-x^2+x^3;

> g:=x-1;

> trace(fastRED):

> fastRED(f,g,x);

{--> enter fastRED, args = 3+x-x^2+x^3, x-1, x

m, n := 3, 1

Bs := 1 - y

3 2

As := 1 + 3 y + y - y

1

2

Qs := y + 1

2

q := 1 + x

r := 4

<-- exit fastRED (now at top level) = 1+x^2, 4}

2

1 + x , 4
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Question 3 - Power Series Root

Let F = 1 + f1x + f2x
2 + · · · and G = 1 + g1x + g2x

2, to find G such that G2 = F we do

G2 = g2
0

+ (g0g1 + g1g0)x

+ (g0g2 + g1g1 + g2g0)x
2

+ (g0g3 + g1g2 + g2g1 + g3g0)x
3

+ · · ·

+

(

n
∑

k=0

gkgn−k

)

xn.

Using this general pattern to do coefficient matching we find

g2
0 = 1 ⇒ g0 = 1

2g0g1 = f1 ⇒ g1 = f1/2

2g0g2 + g2
1 = f2 ⇒ g2 =

1

2
(f2 − f 2

1 )

...

fn =

n
∑

k=0

gkgn−k ⇒ g0gn = gn =
1

2

(

fn −
n−1
∑

k=1

gkgn−k

)

(for n > 1).

For a simple induction argument notice that the reduction above shows that the first three
terms of g are uniquely determined by f (up to a sign change). If we assume that gk−1 is uniquely
determined by terms of f then gk is uniquely determined by f as well because

2g0gn +

n−1
∑

k=1

gkgn−k = fn (1)

gn =
1

2

(

fn −
n−1
∑

k=1

gkgn−k

)

(2)

(left hand side of (2) is uniquely determined since each term of the difference is uniquely determined).
For the complexity we first observe that

n
∑

k=0

gkgn−k = 2

n/2−1
∑

k=0

gkgn−k + g2
n/2 n even

n
∑

k=0

gkgn−k = 2

n/2−1
∑

k=0

gkgn−k n odd.
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In either case we require O(n/2) ×’s and +’s for gn. Therefore to get n terms of g requires

n
∑

i=0

O(i/2) =
(n/2)(n/2 + 1)

2
= O(n2)

×’s and +’s.

Question 4

If we let F = 1 + 2x in Question 3 we can use formula (2) to build the first ten terms of G (where
G =

√
F ). A simple Maple program (omitted) gives:

G = 1 + x −
1

2
x2 +

1

2
x3 −

5

8
x4 +

7

8
x5 −

21

16
x6 +

33

16
x7 −

429

128
x8 +

715

128
x9 −

2431

256
x10

where

G2 = 1 + 2x −
4199

128
x11 + higher order terms.

Question 5

(a) If G is given as in Question 3 then

F = G2 ⇒ F − G2 = 0

and letting H = 1/G we get

F − (1/H)2 = 0 ⇒ F − 1/H2 = 0

as desired.

(b) We apply Newton’s method to P (H) = F − 1/H2 (so P ′(H) = 2/H3) to get the desired result.
Let

H(i) ≡ H mod x2i

= H0 + · · · + H2i
−1x

2i
−1;

as F − 1/H2 ≡ 0 mod x we deduce that H0 = F0 = 1. The rest of the terms are given by the
Newton scheme as follows;

H(i+1) ≡ H(i) −
P (H(i))

P ′(H(i))
mod x2i+1

≡ H(i) −
F − 1/H2

(i)

2/H3
(i)

mod x2i+1

≡ H(i) −
(FH3

(i) − H(i))

2
mod x2i+1

≡
2H(i) − FH3

(i) + H(i)

2
mod x2i+1

≡
H(i)(3 − FH2

(i))

2
mod x2i+1

.
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which is the desired result. Note that informally we have that every iteration of the Newton scheme
doubles the amount of correct terms, that is H(i) = H mod x2i

which is proved in the next question.

(c) Assume that H(i) ≡ H mod x2i

. To prove that H(i+1) ≡ H mod x2i+1

we will prove the equiva-

lent statement F − 1/H2
(i+1) ≡ 0 mod x2i+1

by showing

FH2
(i+1) ≡ 1 mod x2i+1

(3)

Subbing in the identity from (b) into LHS (3) we get

FH2
(i+1) = F

(

H(i)(3 − FH2
(i))

2
mod x2i+1

)2

≡
FH2

(i)

(

9 − 6FH2
(i) + (FH2

(i))
2
)

4
mod x2i+1

.

By our assumption we have that F − 1/H2
(i) ≡ 0 mod x2i which implies that FH2

(i) ≡ 1 mod x2i.

Therefore we can write FH2
(i) as 1 + δH where degx(δH) ≥ 2i. Doing so and noting that (δH)2 ≡

0 mod x2i+1

we get

FH2
(i+1) ≡

(1 + δH)(9 − 6(1 + δH) + (1 + δH)2)

4
mod x2i+1

≡ (1 + δH)

(

1 − δH +

(

δH

2

)2
)

mod x2i+1

≡ (1 + δH)(1 − δH) mod x2i+1

≡ 1 − δH + δH − (δH)2 mod x2i+1

≡ 1 mod x2i+1

proving (3) which shows H(i+1) ≡ H mod x2i+1

.

(d) Let T (n) denote the number of operations required to calculate n terms of H and recall that

H0 + · · · + H2n+1
−1x

2n+1
−1 =

H(n)(3 − FH2
(n))

2
mod x2n+1

.

Therefore in order to calculate the first 2n+1 terms of H requires that we know H(n) and do one
multiplication in degree 2n and three in degree 2n+1. This gives the recurrence:

T (2n+1) = T (2 · 2n) ≤ T (2n) + M(2n) + 3M(2n+1) (4)

≤ T (2n) + 13M(2n) (5)

(three multiplications in degree 2n+1 can be done with twelve multiplications in degree 2n by näıve
divide and conquer). By a Corollary from the lecture slides we have that (5) implies

T (2n) ∈ O(M(2n)) ⇒ T (n) ∈ O(M(n))
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as desired.

(e) We have from the notes that calculating 1/H mod xn costs O(M(n)). As G = 1/H ; inverting
H is equivalent to determining G. We need n terms of H to find the required inverse which also
costs O(M(n)) by (d) totalling 2O(M(n)) or O(M(n)) as required.

Question 6

time to complete ≈ 5 hours


