
Assignment 1

CS 9566A

Paul Vrbik
250389673

September 29, 2009

Question 1 - Karatsuba’s algorithm

1 karatsuba:=proc(f,g)

2 local df,dg,n,x,m,F0,G0,F1,G1,b,c,a;

3

4 printf("Call karatsuba(%a , %a)\n",f,g);

5

6 if nops(indets(f) union indets(g)) > 1 then error "univariates only"; end if;

7

8 df,dg:=degree(f),degree(g);

9

10 n:=max(df,dg);

11

12 if n<1 then

13 return f*g;

14 end if;

15

16 n:=2^(trunc(log[2](n))+1);

17

18 x:=indets(f) union indets(g); #assuming = indet(g)

19 x:=x[1];

20 m:=n/2;

21

22 F0:=rem(f,x^m,x,’F1’);

23 G0:=rem(g,x^m,x,’G1’);

24

25 a:=procname(F0,G0);

26 b:=procname(F1,G1);

27 c:=procname(F0+F1,G0+G1);

28

29 return b*x^n+(c-a-b)*x^m+a;

30 end proc:

> f:=1-2*x^3+3*x^3;

3

f := 1 + x

> g:=1-x-2*x^2-x^3;

2 3

g := 1 - x - 2 x - x

> h:=karatsuba(f,g);

Call karatsuba(1+x^3 , 1-x-2*x^2-x^3)

Call karatsuba(1 , 1-x)

1

Call karatsuba(1 , 1)

Call karatsuba(0 , -1)

Call karatsuba(1 , 0)

Call karatsuba(x , -x-2)

Call karatsuba(0 , -2)

Call karatsuba(1 , -1)

Call karatsuba(1 , -3)

Call karatsuba(1+x , -1-2*x)

Call karatsuba(1 , -1)

Call karatsuba(1 , -2)

Call karatsuba(2 , -3)

2 4 2 2

h := (-x - 2 x) x + (-x - 2) x + 1 - x

> expand(h - f*g);

0

Question 2 - Fourier Transform

FFT

1 FFT:=proc(f,n)

2 local w;

3 w:=exp(2*I*Pi/n);

4 return h_FFT(f,n,w,indets(f)[1]);

5 end proc;

6

7 h_FFT:=proc(f,n,w,x) #naive implemenation

8 local df,Feven,Fodd,V,Vp;

9 printf("Call FFT(%a , %a) with w=%a\n",f,n,w);

10

11 if n=1 then return [f]; end if;

12

13 df:=degree(f,x);

14 Feven:=add(x^i*coeff(f,x,2*i),i=0..trunc(df/2));

15 Fodd:=add(x^i*coeff(f,x,2*i+1),i=0..trunc(df/2));

16

17 V:=procname(Feven,n/2,w^2,x);

18 Vp:=procname(Fodd,n/2,w^2,x);

19

20 # return [f(w^0),...,f(w^(n-1))];

21 return [seq(V[i mod n/2 + 1] + w^i*Vp[i mod n/2 + 1], i=0..n-1)];

22 end proc:

2

> P:=1-x-2*x^2-3*x^3;

2 3

P := 1 - x - 2 x - 3 x

> n:=4:

> A:=FFT(P,n);

Call FFT(1-x-2*x^2-3*x^3 , 4) with w=I

Call FFT(1-2*x , 2) with w=-1

Call FFT(1 , 1) with w=1

Call FFT(-2 , 1) with w=1

Call FFT(-1-3*x , 2) with w=-1

Call FFT(-1 , 1) with w=1

Call FFT(-3 , 1) with w=1

A := [-5, 3 + 2 I, 3, 3 - 2 I]

#check

> w:=exp(2*I*Pi/n):

> B:=[seq(eval(P,x=w^i), i=0..n-1)]:

> map(evalc, A-B);

[0, 0, 0, 0]

Inverse FFT

1 InvFFT:=proc(A,n)

2 local w,f,B;

3 w:=exp(2*I*Pi/n);

4

5 f:=add(A[i+1]*x^(i), i=0..nops(A)-1);

6

7 B:=FFT(f,n,1/w,x);

8 B:=B/n;

9

10 return evalc(add(B[i+1]*x^i, i=0..nops(B)-1));

11

12 end proc:

> InvFFT(B,n);

Call FFT(-5+(3+2*I)*x+3*x^2+(3-2*I)*x^3 , 4) with w=I

Call FFT(-5+3*x , 2) with w=-1

Call FFT(-5 , 1) with w=1

Call FFT(3 , 1) with w=1

3

Call FFT(3+2*I+(3-2*I)*x , 2) with w=-1

Call FFT(3+2*I , 1) with w=1

Call FFT(3-2*I , 1) with w=1

2 3

1 - 3 x - 2 x - x

Question 3

1. S(n) = 3S(n/2) + n1.2. For the master theorem a = 3, b = 2, c = 1, k = 1.2 where log2 3 =
1.58 > 1.2 = k. Therefore S(n) = O(nlog

2
3) as given by the master theorem.

2. S(n) = 4S(n/2) + n1.75. For the master theorem a = 4, b = 2, c = 1, k = 1.75 where
log2 4 = 2 > 1.75 = k. Therefore S(n) = O(nlog

2
4) = O(n2) as given by the master theorem.

3. S(n) = 3S(n/2) + n1.5. For the master theorem a = 3, b = 2, c = 1, k = 1.5 where log2 3 =
1.58 > 1.5 = k. Therefore S(n) = O(nlog

2
3) as given by the master theorem.

Question 4

Let T (1) = 1 and T (n) = 3T (n/2) + ℓn with n a power of two and ℓ constant.

T (2) = 3T (n/2) + 2ℓ = 3T (1) + 2ℓ = 3 + 2ℓ

T (4) = 3T (4/2) + 4ℓ = 3T (2) + 4ℓ = 9 + 6ℓ + 4ℓ = 9 + 10ℓ

T (8) = 3T (8/2) + 8ℓ = 3T (4) + 8ℓ = 27 + 30ℓ + 8ℓ = 27 + 38ℓ

Prove (by induction) that

T (2n) = 3n + 2(3n−1 + 2 · 3n−2 + · · ·+ 2n−2 · 3 + 2n−1)ℓ. (1)

The base case has already been given in the first part of this question. For the induction
hypothesis assume

T (2n−1) = 3n−1 + 2(3n−2 + 2 · 3n−3 + · · ·+ 2n−3 · 3 + 2n−2)ℓ

and proceed in the natural way:

T (2n) = 3T (2n/2) + ℓ2n by definition

= 3T (2n−1) + ℓ2n

= 3(3n−1 + 2(3n−2 + 2 · 3n−3 + · · · + 2n−3 · 3 + 2n−2)ℓ) + ℓ2n by assumption

= 3n + 2(3n−1 + 2 · 3n−2 + · · ·+ 2n−3 · 32 + 2n−2 · 3)ℓ + ℓ2n

= 3n + 2(3n−1 + 2 · 3n−2 + · · ·+ 2n−2 · 3 + 2n−1)ℓ.

Therefore (1) has been proved.
It is clear that RHS of (1) is dominated by 3n in the limit. T (2n) = O(3n) is a direct consequence

of this.

4

Question 5 - Uniqueness of Quotient and Remainder

Suppose that we have q, g, q′ and r′ all generated by Euclidean division, satisfying

f = q · g + r = q′ · g + r′

where q 6= q′ and r 6= r′. By the division algorithm neither r or r′ has a term divisible by LT(g).
However, (q − q′) · LT(g) does (any term of (q − q′)g1). Since r− r′ = (q − q′) · g it must also be the
case that r − r′ has a term divisible by LT(g). This is only possible when r − r′ = 0 contradicting
our assumption. Therefore q and r must be unique.

Question 6 - Division Rules

Addition

Show:
(A1 rem B) + (A2 rem B) = (A1 + A2) rem B.

Proof. By the division algorithm we have unique q1, q2, r1 = A1 rem B and r2 = A2 rem B such
that A1 = q1B + r1 and A2 = q2B + r2. Since adding A1 and A2 gives

A1 + A2 = (q1 + q2)B + (r1 + r2)

(r1 + r2) must be the unique remainder when dividing A1 + A2 by B. That is, (A1 + A2) rem B =
r1 + r2 = (A1 rem B) + (A2 rem B).

Multiplication

Show:
((A1 rem B) × (A2 rem B)) rem B = (A1 × A2) rem B.

Proof. By the division algorithm we have unique q1, q2, r1 = A1 rem B and r2 = A2 rem B such
that A1 = q1B + r1 and A2 = q2B + r2. Multiplying A1 by A2 gives

A1 × A2 = q1q2B
2 + r2q1B + r1q2B + r1r2

= q1q2B
2 + r2q1B + r1q2B + (r1r2 div B)B + r1r2 rem B

= (q1q2B + r2q1 + r1q2 + r1r2 div B)B + r1r2 rem B.

By the division algorithm r1r2 rem B must be the unique remainder when dividing A1 × A2 by B.
That is, (A1 × A2) rem B = r1r2 rem B = ((A1 rem B) × (A2 rem B)) rem B.

Question 7 - Modular Multiplication

First we compute

c0 + c1x = (a0 + a1x)(b0 + b1x) rem (x2 + 2)

= a0b0 + (a0b1 + a1b0)x + a1b1x
2 rem (x2 + 2)

= (a0b0 − 2a1b1) + (a0b1 + a1b0)x

5

and copy the trick of Karatsuba to do

c0 = a0b0 − a1b1 − a1b1

c1 = (a0 + a1)(b0 + b1) − a0b0 − a1b1

= (a0 + a1)(b0 + b1) + a1b1 − c0

which establishes the required modular multiplication using only three products (a0b0, a1b1 and
(a0 + a1)(b0 + b1)).

Question 8 - Alternative Quadratic Multiplication

Let f = f0 + f1x + f2x
2 and g = g0 + g1x + g2x

2 and

h = fg = h0 + h1x + h2x
2 + h3x

3 + h4x
4

= f0g0 + (f0g1 + f1g0)x + (f0g2 + f1g1 + f2g0)x
2 + (f1g2 + f2g1)x

3 + f2g2x
4.

We show:

H0 = F0G0 = f(0)g(0) = f0g0 = h(0)

H1 = F1G1 = f(1)g(1)

= f0g0 + f0g1 + f1g0 + f0g2 + f1g1 + f2g0 + f1g2 + f2g1 + f2g2

= h(1)

H−1 = F−1G−1 = f(−1)g(−1)

= f0g0 − (f0g1 + f1g0) + (f0g2 + f1g1 + f2g0) − (f1g2 + f2g1) + f2g2

= h(−1)

H
x
2+2 = F

x
2+2Gx

2+2 rem (x2 + 2)

= (f0 − 2f2 + f1x)(g0 − 2g2 + g1x) rem (x2 + 2)

= f0g0 − 2f0g2 − 2f2g0 + 4f2g2 + (f0g1x − 2f2g1 + f1g0 − 2f1g2)x + f1g1x
2 rem (x2 + 2)

= f0g0 + (f0g1 + f1g0)x − 2(f0g2 − f1g1 + f2g0) − 2(f1g1 + f2g1)x + 4f2g2

= h rem (x2 + 2).

To recover h from H0, H1, H−1, Hx
2+2 we solve:

H0 = h0

H1 = h0 + h1 + h2 + h3 + h4

H−1 = h0 − h1 + h2 − h3 + h4

H
x
2+2 = (h0 − 2h2 + 4h4) + (h1 − 2h3)x = c0 + c1x

which is equivalent to solving

1 0 0 0 0
1 1 1 1 1
1 −1 1 −1 1
1 0 −2 0 4
1 0 0 −2 0

h0

h1

h2

h3

h4

=

H0

H1

H−1

c0

c1

6

and can be done with three divisions by two (done in constant time via bit shifting).
We require one multiplication (each) to get H0, H1, H−1 and three to do H

x
2+2 (by Question 7.)

for a total of six multiplications.
To apply recursively we observe that any polynomial f = f0 + f1x + · · · + f

n
xn ∈ R[x] can be

written as

F = (f0 + f1x + · · · + f
m−1x

m−1) + (f
m

+ · · ·+ f2m−1x
m−1)X + (f2m

+ f
n
xn−2m)X2

= a0 + a1X + a2X
2

where X = xm, m = ⌈n/3⌉. So now we may use our multiplication scheme to multiply any
two polynomials f, g ∈ R[x] by first representing them as quadratics polynomials (as above) and
recursively applying the scheme to resolve the coefficient products (which will be polynomials of
degree less than m). This recursion is guaranteed to terminate as the degrees of the coefficients at
each step form a strictly descending chain.

Suppose that M(n) is the number of products required to multiply two polynomials of degree
less than n. For this algorithm, at each step, we do six multiplications of polynomials one third of
the original degree. More explicitly we have M(n) = 6M(n/3). We can use the master theorem
which implies, in this case, that the complexity of this scheme is O(nlog36).

Question 9

time to complete < (20 min) × (8 questions) = 2.7 hours

7

