
Assignment 3
CS 3305b

Paul Vrbik

250389673

February 26, 2010

1

CS 3305b Assignment 3 1

Part 1: Your first Minix Hacks

Minix source file /user/src/servers/pm/exec.c

Modified line 70 (name buf[] was printed).

Printed -

172.16.225.132 login:

/bin/gettyin/ssh

/sbin/gettyin/ssh

Password:

/usr/lib/pwdauth

/bin/sh/pwdauth

/usr/bin/stty

Part 2: A “Simple” System Call

This code was copied from the code for top.

1 #define PROCS (NR PROCS+NR TASKS)
2 PUBLIC int do numberprocs (void) {
3 int p , a l i v e ;
4 stat ic struct proc proc [PROCS] ;
5

6 sy s g e tp roc tab (proc) ;
7

8 a l i v e = 0 ;
9

10 for (p = 0 ; p < PROCS; p++) {
11 i f (p − NR TASKS == IDLE)
12 continue ;
13 i f (proc [p] . p r t s f l a g s & SLOT FREE)
14 continue ;
15 a l i v e++;
16 }
17 return a l i v e ;
18 }

CS 3305b Assignment 3 2

Part 3: Comparing Scheduling Algorithms

Original

Trial Real User System

1 1:37.20 1.16 6.90

2 1:35.20 1.56 8.80

3 1:36.91 1.88 9.71

Proc1.c
(single user queue)

Trial Real User System

1 1:41.33 1.48 3.98

2 1:33.78 1.53 8.25

3 1:33.76 1.35 6.41

Proc2.c
(single user queue, modified enqueue)

Trial Real User System

1 6:41.43 1.08 5.41

2 6:38.56 1.03 6.08

3 1:33.76 0.88 5.46

Proc3.c
(least p user time first)

Trial Real User System

1 0:46.95 1.16 9.48

2 0:35.11 2.33 11.93

3 0:42.36 2.11 10.71

Proc1.c The actual change was made in proc.h to the environment variable USER Q. This variable
was changed from 7 to 1 (which changes the number of user queues to one).

Timings here are basically unchanged because reducing the number of queues from seven to
one—when there are only two user processes—won’t have any significant affects. There is
nothing to gain here from having higher priority queues. Two processes can’t even occupy
more than one queue in the first place (one will be running, the other queued)!

Proc2.c The single user queue was implemented as in Proc1.c. The new queue requirement was
done by making a trivial change to the enqueue() procedure. Namely, the part of the “if”
statement that would add to the front of the queue was removed.

Modifying the enqueue() procedure in the prescribed way has the unfortunate effect of never
allowing i/o bound processes to preempt cpu bound processes. Here scanfiles will only get
control of the cpu when timewaste blocks or is interrupted. The longer timings are a result
of this.

CS 3305b Assignment 3 3

Proc3.c The procedure pick proc.c was changed to the following:

1 PRIVATE void p i ck proc ()
2 {
3 register struct proc ∗ rp ; /∗ proces s to run ∗/
4 int q ; /∗ i t e r a t e over queues ∗/
5 int MinTime , MinProc ;
6

7 MinTime = −1;
8

9 for (q=0; q < NR SCHED QUEUES; q++) {
10 i f ((rp = rdy head [q]) != NIL PROC) {
11 i f (MinTime == −1) {
12 MinTime = rp −> p use r t ime ;
13 MinProc = q ;
14 } else i f (MinTime > rp −> p use r t ime) {
15 MinTime = rp −> p use r t ime ;
16 MinProc = q ;
17 }
18 }
19 }
20

21 rp = rdy head [MinProc] ;
22 next pt r = rp ;
23

24 i f (pr iv (rp)−> s f l a g s & BILLABLE)
25 b i l l p t r = rp ; /∗ b i l l f o r system time ∗/
26

27 return ;
28 }

Here we have the opposite scenario as in Proc2.c. Now processes which have the least amount
of cumulative time on the cpu (i.e. i/o bound processes) will always preempt those processes
“hogging” the CPU. As a result we see that scanfiles finishes much quicker — which seems
like a good thing here, but would result in much longer wait times for CPU bound processes.

