
CS 3305: Operating Systems
Department of Computer Science

The University of W estern Ontario
Programming Assignment 1

Winter 2010

Purpose
The goals of this assignment are the following:

 Get experience with the fork(), execlp(), pipe() and dup2() system calls
 Understand how a shell works
 Learn more about how operating systems are structured
 Gain more experience with the C programming language

Part I : Specification for Shell Program

In this part of the assignment you are to implement a basic shell. A shell is a
command line interpreter that accepts input from the user and executes programs on
behalf of the user based on the commands that the user inputs. The line that the user
enters commands on is referred to as the command line. The shell repeatedly prints a
prompt on the command line, waits for the user to enter commands and executes
programs. You are to write a simple Unix-like shell in the C programming language that
has these features:

 If your name is xyz then the prompt should be the string xyz>
 You may assume that the user enters commands correctly.
 Your shell must support pipes but does not need to support redirection or

background processes. In other words, you should be able to handle commands
ndle commands that c

support any number of command line arguments, for example the user could type
ls -al foo.c blah.h .

 Your shell should look for commands in the /bin directory.
 A built-in command is a command that changes the state of the shell or requests

 You should support the following two built-in
commands:

o quit: This command is used to terminate the shell.
o history: This command is used to print a list of the last 10 commands

issued; If there are fewer then 10 commands then print out all previously
issued commands.

 Your shell should look for commands (except for built-in commands) in the /bin
directory. In the case of an error you should print an error message and quit.

 Your shell must support multiple pipes. However, you may assume that you have a
constant defined that specifies the maximum number of commands allowed.

 Your code must work in Minix.

Part I I : H ints
1. You will need to make use of system calls such as execvp(), fork(), pipe(), wait() and

dup2(). The functionality of these system calls is similar for MINIX and Unix-based
systems. The man pages are an excellent starting point. If you follow the Resources
link in the CS 3305 web page, you will find links to several useful references. There
are many more on the web. Example code is provided on the Assignments web page
of the CS 3305 web page.

2.
each command. A pipe must be created (using the pipe command) between the first
and second process and the second and third process. Creating a pipeline between
two processes is relatively simple (you have sample code for this), but the building of
a multiple command pipeline is more difficult. An excellent discussion of the
considerations needed for developing a multiple command pipeline can be found at:
http://www.cse.ohio-state.edu/~mamrak/CIS762/pipes_lab_notes.html

3. You may use any of the system calls found in the exec() family. My own solution
uses execvp(). The main challenge of calling execvp() is to build the argument list
correctly. If you use execvp, remember that the first argument in the array is the name
of the command itself, and the last argument must be a null pointer. There are several
code examples that show how to construct the arrays needed for execvp.

4. A shell needs a command-line parser. The parser breaks down the string representing
the command into constituent parts. These parts are referred to as tokens. To read a
line from the user, you may use gets(). The parser you implement may use scanf(),
strtok() or any other suitable C library functions. Parsing requires these steps:

a. Read a line from standard input. You may use the gets() system call.
b. A token is a sequence of non-whitespace characters that is separated from

other tokens by whitespace characters. For each command line, you should
form an array of tokens. This can be done using the strtok() system call.
Example code is provided that takes a string and provides the tokens in an
array.

c. You should determine commands by analyzing the array created in the
previous step. Any tokens between pipe signs are considered to be part of the
same command.

d. You may assume that there is whitespace befor
most shells this is not necessary, but if you make this assumption parsing is
easier.

5.
incremental stages. One order of stages is the following:

a. Write a shell that can fork single program invocations (with no arguments)
and wait for their completion.

b. Develop the command line parser.
c. Extend the shell developed earlier to be able to handle arguments.
d. Add support for pipes

6. Start early!

