UNIVERSITY OF WESTERN ONTARIO

Computer Science 3331a, 2011 Foundations of Computer Science I

ASSIGNMENT 2 Due: Wednesday, October 19, 2011

- 1. Give a full definition of a deterministic finite automaton (DFA) that accepts the set of all binary numbers (over the alphabet $\{0, 1\}$) each of which has a value divisible by 5. (Note that the set includes ε , 101, 1010, 1111, \cdots .)
- 2. Give deterministic finite automata (DFAs) accepting the following languages over the alphabet $\{a, b, c\}$. Note that all the DFAs are required to be complete DFAs. (Transition diagrams only)
 - (1) The set of all words that have abb as a prefix.
 - (2) The set of all words that have abc as a subword.
 - (3) The set of all words ending in cbc.
 - (4) The set of all words such that the second symbol from the right-end is c.
- 3. Prove that the language $L = \{a^i b^j \mid 0 \le j < i\}$ is not accepted by any DFA.
- 4. Design nondeterministic finite automata (NFA) for the following languages over the alphabet $\{0, 1, 2\}$. (Transition diagrams only.)
 - (1) The set of all words such that the fourth symbol from the right-end is 0.
 - (2) The set of all words that have a subword 20201.
- 5. Convert the following ε -NFA into a DFA ($\Sigma = \{a, b\}$). Intermediate steps are required.

