CS 3331a - Assignment 1 - Solutions

Paul Vrbik

September 29, 2010

Question 1 - 21 marks

Given an equivalence relation R over Σ and two arbitrary equivalence classes $[a]_R$ and $[b]_R$, where $a, b \in \Sigma$, prove that either $[a]_R = [b]_R$ or $[a]_R \cap [b]_R = \emptyset$.

Proof. Suppose that $[a]_R \cap [b]_R \neq \emptyset$,

$$\begin{split} [a]_R \cap [b]_R \neq \emptyset \Rightarrow \exists x, \text{ such that } x \in [a]_R \land x \in [b]_R \\ \Rightarrow aRx \land bRx & \text{def. of class} \\ \Rightarrow aRb & \text{symmetry and transitivity} \\ \Rightarrow \forall c \in \Sigma, (aRc \Rightarrow bRc) & \text{symmetry and transitivity} \\ \Rightarrow \forall x \in [a]_R, (aRx \Rightarrow bRx \Rightarrow x \in [b]_R) & \text{def. of class} \\ \Rightarrow [a]_R \subseteq [b]_R \end{split}$$

By similar argument $[b]_R \subseteq [a]_R$ giving $[a]_R = [b]_R$. So it has been shown that either $[a]_R = [b]_R$ or $[a]_R \cap [b]_R = \emptyset$, as desired.

Marks were awarded for "reasonable progress"

Question 2 - 20 marks

Let $A = \{1, 2, 3, 4, 5\}$ be a set and $R = \{(1, 3), (1, 4), (2, 5), (3, 2), (4, 1)\}$ a relation defined on $A \times A$. Find the transitive closure and the reflexive and transitive closure.

Solution. In the graphs to follow, dotted lines indicate the relations that were added.

Transitive closure

Reflexive closure

 $R^* = R^+ \cup \{(2,2), (3,3), (5,5)\}.$

Graphs were not required for full marks.

Question 3 - 20 marks

Prove by induction on n that

$$1 + 3 + \dots + (2n - 1) = n^2 \tag{1}$$

Solution.

Base - marks Let n = 1 we have

LHS = 1 and RHS =
$$n^2 \Big|_{n=1} = 1^2 = 1$$

so (1) holds for n = 1.

Assumption - marks

Assume that:

$$1 + 3 + \dots + (2n - 1) = n^2$$

Induction - marks Show that the assumption implies (1) at n + 1.

$$1 + 3 + \dots + (2n - 1) + (2(n + 1) - 1) = n^{2} + (2(n + 1) - 1)$$
 by assumption
= $n^{2} + 2n + 1$
= $(n + 1)^{2}$ as desired

So (1) is proved by induction.

Question 4 - 18 marks

Give a brief English descriptions for each of the following languages and answer whether each of the given words is in the language:

(a) $L_1 = \{w \in \{a, b\}^* \mid |w|_a = |w|_b\}$. $x_1 = abbaab, x_2 = baababbba.$

Solution. L_1 consists of all words constructible with the letters a and b such that the number of as and bs in the word are equal. Trivially, $x_1 \in L_1$ and $x_2 \notin L_1$.

(b) If x is in L_2 , then axb and bxa are in L_2 ; if x and y are in L_2 , then xy is in L_2 ; and no other words are in L_2 . $y_1 = bbbaaa$, $y_2 = baaababb$.

Solution. Is again the language consisting of words with an equal amount of as and bs. Trivially $y_1 \in L_2$ as it can be generated by repeated application of the rule $bxa \in L_2$. Also, if we write

$$y_2 = (ba)(a(a(ba)b)b)$$

we see that $y_2 \in L_2$ as well.

3

(c) $L_3 = \{w \in \{0,1\}^+ \mid \text{the value of } w \text{ as a binary number is divisible by5}\}$. $z_1 = 01010, z_2 = 1101.$

Solution. L_3 is the set of binary numbers (allowing arbitrary leading zeros) that are divisible by 5 (base ten). z_1 , which is 10 base ten, and therefore divisible by 5 is in the language. z_2 , which is 13 base ten, is not.

Question 5 - 21 marks

Prove that $(AB)^R = B^R A^R$ for arbitrary given languages A and B.

Proof. Let $x \in (AB)^R$ (and show $x \in B^R A^R$). Since $x \in (AB)^R$ we can write

$$x = (uv)^R$$

with $u \in A$ and $v \in B$ (by definition of reversal of languages).

Letting $u = u_0 \cdots u_n$ and $v = v_0 \cdots v_m$ where $u_i, v_j \in \Sigma$ we can write

$x = (u_0 \cdots u_n \cdot u_0 \cdots u_m)$	
$= (v_m \cdots v_0 \cdot v_n \cdots v_0)$	by definition of reversal
$= v^R u^R$	by definition of reversal

Since $v^R \in B^R$ and $u^R \in A^R$ (by definition) we have

$$v^{R}u^{R} \in B^{R}A^{R} \Rightarrow x \in B^{R}A^{R}$$
$$\Rightarrow \left(x \in (AB)^{R} \Rightarrow x \in B^{R}A^{R}\right)$$
$$\Rightarrow (AB)^{R} \subseteq B^{R}A^{R}$$

This same argument in reverse yields $B^R A^R \subseteq (AB)^R$ which gives

$$(AB)^R = B^R A^R$$

as desired.