UNIVERSITY OF WESTERN ONTARIO

Computer Science 3331a, Fall 2009 Foundations of Computer Science I

ASSIGNMENT 4 Due: Monday, Dec. 7, 2009 No late assignment will be accepted

- 1. Give a regular grammar for each of the following languages:
 - (1) $L_1 = \{0^i 1^j \mid i, j \ge 0\}.$
 - (2) L_2 is the set of all words, over $\Sigma = \{a, b\}$, of even length.
 - (3) L_3 is the set of all binary numbers divisible by 3.
- 2. Change the following CFG into an equivalent CFG in Chomsky normal form:

$$\begin{split} S &\to aAB \mid bBBC \\ A &\to aB \mid D \mid \varepsilon \\ D &\to AB \\ B &\to bA \mid \varepsilon \\ C &\to aC \\ E &\to cB \\ F &\to bAA \mid \varepsilon \end{split}$$

- 3. Construct a deterministic pushdown automaton that accepts all words in $\{a, b\}^*$ such that the number of a's is one less than the number of b's. (Both numbers are greater than or equal to zero.)
- 4. Construct a pushdown automaton to accept the language

$$\{a^i b^i \mid i > 0\} \cup \{a^i b^{2i} \mid i > 0\}.$$

- 5. Prove by using the pumping lemma for context-free languages that $L = \{ww \mid w \in \{0,1\}^*\}$ is not a context-free language.
- 6. (Bonus) Give a context-free grammar that generates the set of all words, over the alphabet $\Sigma = \{a, b\}$, that are not of the form ww for any word $w \in \Sigma^*$.