CS 2209b - Quiz 2 - Solutions

Paul Vrbik

Jan 31, 2011

Question 1

Prove or refute the following three arguments using only the S/I-rules.

a. Proof.

1	$\sim (A \supset \sim B)$	
2	C	
3	$\sim (B \bullet \sim D)$	
4	$\sim (D \bullet E)$	
5	assume: $\sim ((A \bullet C) \lor \sim E)$	
6	\therefore A	NIF: 1
7	$\therefore B$	NIF: 1
8	:. D	CS: 4, 7
9	$\therefore \sim E$	CS: 3, 8
10	$\therefore \sim (A \bullet C)$	CS: 9, 5
11	$\therefore \sim A \text{ contradiction}$	CS: 2, 10
12	$\therefore ((A \bullet C) \bullet \sim E)$	Contradiction of: 5

b. Proof.

1	$((\sim S \bullet F) \lor X)$	
2	$(\sim X \lor \sim S)$	
3	$(\sim S \supset \sim (\sim X \supset N))$	
4	assume: $\sim (\sim S \bullet \sim X)$	
5	assume: $(\sim S \bullet F)$	
6	$\therefore \sim S$	AND: 5
7	$\therefore X$	AND: 4
8	$\therefore \sim (\sim X \supset N)$	MP: 3, 6
9	$\therefore \sim X$ contradiction	NIF: 8
10	$\therefore \sim (\sim S \bullet F)$	Contradiction of: 5
11	$\therefore X$	DS: 2, 10
12	$\therefore \sim S$	DS: 1, 11
13	$\therefore \sim (\sim X \supset N)$	MP: 3
14	$\therefore \sim X$ contradiction	NIF: 13
15	$\therefore (\sim S \bullet \sim X)$	Contradiction of: 4

c. Proof.

1
$$(A \lor \sim (B \supset \sim C))$$
2 $(\sim (\sim A \bullet D) \supset \sim B)$ 3 $B \supset A$ 4assume: $(\sim B \supset \sim A)$ 5| assume: A 6| $\therefore B$ 7| $\therefore (\sim A \bullet D)$ 8| $\therefore \sim A$ contradiction9| $\therefore \sim A$ 10| $\therefore \circ (B \supset \sim C)$ 11| $\therefore B$ 12| $\therefore \land (\sim B \supset \sim A)$ 13| $\therefore \sim (\sim B \supset \sim A)$

Question 2

Translate the following into wffs, prove/refute the conclusion using only S/I-rules.

- If the world had a beginning in time and it didn't just pop into existence, then the world was caused by God.
- If the world was caused by God, then there is a God.
- \therefore either (\lor) the world had no beginning in time, or it just popped into existence.

(Use B,P,C, and G).

Solution. Converting everything to WFFs we have

$$1 \quad ((B \bullet \sim P) \supset C)$$

$$2 \quad (C \supset G)$$

$$3 \quad \therefore \quad (\sim B \lor P)$$

Refute by truth-assignment. Consider the "refutation box"'

$$B = 1, P = 0, C = 1, G = 1$$

with

$$\left(\left(B^1 \bullet \sim P^0 \right) \supset C^1 \right) = 1$$
$$\left(C^1 \supset G^1 \right) = 1$$
$$\left(\sim B^1 \lor P^0 \right) = 0.$$

This shows that one can make all the premises true with false conclusion. Therefore we conclude that the original assertion is *invalid*.

Question 3

Four students are planning to travel to Europe in the summer...

- 1. If Jim does not go or Kate goes, then Michael will not go.
- 2. If Kate goes, then Michael will go.
- 3. If Nick does not go or Michael does not go, then Kate will go.

Prove: Michael will go.

Proof.

 \therefore Michael will go.

Typeset by: Paul Vrbik and compiled on February 1, 2011