CS 2209b - Midterm - Partial Solutions

Paul Vrbik

March 21, 2011

Question 2

Show $\{\supset,0\}$ is adequate provided that $\{\,\vee\,,\sim\}$ is adequate.

Proof. It is trivial to show that

$$(P \supset 0) \equiv \sim P$$

We also know that $P \lor Q \equiv \sim P \supset Q$; or, using our rule for $\sim P$:

$$(P \supset 0) \supset Q \equiv P \lor Q.$$

Since we can write $\{ \lor, \sim \}$ (which is adequate) using only $\{ \supset, 0 \}$ —this must too be adequate. \Box

Question 3

Prove or refute using: a) truth table; b) S/I rules; c) resolution.

$$1 \quad \sim (\sim E \bullet J) \supset (\sim P \supset I)$$

$$2 \quad M \bullet \sim J$$

$$3 \quad \therefore \quad (M \bullet \sim P)$$

Truth-table.

EIJMP	$(\sim (\sim E \bullet J) \supset (\sim P \supset I))$	$(M \bullet \sim J)$:	$M \bullet P$
00010	0	1	0
00110	1	0	0
01010	1	1	0
01110	1	0	0
10010	0	1	0
10110	0	1	0
11010	1	1	0
11110	1	0	0

Therefore the argument is invalid.

Note: observe that the conclusion can be false only when M or P is false. It must be the case that M is true since $M \bullet \sim J$ must be true. So we must only check cases where M = 1 and P = 0 (significantly reducing the number of rows).

S/I Rules. One can easily extract a invalid row from the truth table (I chose the second last row) and construct the "refutation box":

$$E = 1, I = 1, J = 0, M = 1, P = 0$$

and provide the corresponding truth assignment:

TRUTH-ASSIGNMENT

$$i. \sim (\sim E \bullet J) \supset (\sim P \supset I) = 1 \qquad ii. \sim (\sim E^{1} \bullet J^{0}) \supset (\sim P^{0} \supset I^{1}) = 1$$
$$M \bullet \sim J = 1 \qquad \qquad M^{1} \bullet \sim J^{0} = 1$$
$$\therefore (M \bullet \sim P) = 0 \qquad \qquad \therefore (M^{1} \bullet \sim P^{0}) = 0$$

iv.

iii.

 $1 \supset (1 \supset 1) = 1$ $1 \bullet \sim 1 = 1$ $\therefore \quad (1 \bullet 0) = 0$

Refuted

Resolution Proof.

First we convert all premises into conjunctive normal form:

$$\sim (\sim E \bullet J) \supset (\sim P \supset I) \equiv \sim \sim (\sim E \bullet J) \lor (\sim \sim P \lor I)$$
$$\equiv (\sim E \bullet J) \lor (P \lor I)$$
$$\equiv (\sim E \lor P \lor I) \bullet (J \lor P \lor I)$$

which gives the clauses $\{\sim E, P, I\}$ and $\{J, P, I\}$.

The second premise is already in CNF and gives clauses: $\{M\}$ and $\{\sim J\}$.

The negation of the conclusion, $\sim (M \bullet \sim P) \equiv (\sim M \lor \sim P)$ giving the clause $\{\sim M, \sim P\}$.

1	$\{\sim E, P, I\}$	premise	
2	$\{J, P, I\}$	premise	
3	$\{M\}$	premise	
4	$\{\sim J\}$	premise	
5	$\{\sim M, \sim P\}$	negated goal	
6	$\{\sim E, \sim M, I\}$: 1, 5	
7	$\{P,I\}$: 2, 4	
8	$\{J, \sim M, I\}$: 2, 5	
9	$\{\sim P\}$: 3, 5	
10	$\{\sim E, I\}$: 3, 6	
11	$\{J,I\}$: 3, 8	
12	$\{\sim M, I\}$: 4, 8	
13	$\{I\}$: 4, 11	
14	$\{\sim M, I\}$: 5, 7	
15	$\{I\}$: 7, 9	

We have exhausted all cancellations and therefore this argument is invalid.